All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.cloud.aiplatform.v1.TensorboardServiceGrpc Maven / Gradle / Ivy

The newest version!
/*
 * Copyright 2024 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.google.cloud.aiplatform.v1;

import static io.grpc.MethodDescriptor.generateFullMethodName;

/**
 *
 *
 * 
 * TensorboardService
 * 
*/ @javax.annotation.Generated( value = "by gRPC proto compiler", comments = "Source: google/cloud/aiplatform/v1/tensorboard_service.proto") @io.grpc.stub.annotations.GrpcGenerated public final class TensorboardServiceGrpc { private TensorboardServiceGrpc() {} public static final java.lang.String SERVICE_NAME = "google.cloud.aiplatform.v1.TensorboardService"; // Static method descriptors that strictly reflect the proto. private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.CreateTensorboardRequest, com.google.longrunning.Operation> getCreateTensorboardMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "CreateTensorboard", requestType = com.google.cloud.aiplatform.v1.CreateTensorboardRequest.class, responseType = com.google.longrunning.Operation.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.CreateTensorboardRequest, com.google.longrunning.Operation> getCreateTensorboardMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.CreateTensorboardRequest, com.google.longrunning.Operation> getCreateTensorboardMethod; if ((getCreateTensorboardMethod = TensorboardServiceGrpc.getCreateTensorboardMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getCreateTensorboardMethod = TensorboardServiceGrpc.getCreateTensorboardMethod) == null) { TensorboardServiceGrpc.getCreateTensorboardMethod = getCreateTensorboardMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName(generateFullMethodName(SERVICE_NAME, "CreateTensorboard")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.CreateTensorboardRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.longrunning.Operation.getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier("CreateTensorboard")) .build(); } } } return getCreateTensorboardMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.GetTensorboardRequest, com.google.cloud.aiplatform.v1.Tensorboard> getGetTensorboardMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "GetTensorboard", requestType = com.google.cloud.aiplatform.v1.GetTensorboardRequest.class, responseType = com.google.cloud.aiplatform.v1.Tensorboard.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.GetTensorboardRequest, com.google.cloud.aiplatform.v1.Tensorboard> getGetTensorboardMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.GetTensorboardRequest, com.google.cloud.aiplatform.v1.Tensorboard> getGetTensorboardMethod; if ((getGetTensorboardMethod = TensorboardServiceGrpc.getGetTensorboardMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getGetTensorboardMethod = TensorboardServiceGrpc.getGetTensorboardMethod) == null) { TensorboardServiceGrpc.getGetTensorboardMethod = getGetTensorboardMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName(generateFullMethodName(SERVICE_NAME, "GetTensorboard")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.GetTensorboardRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.Tensorboard.getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier("GetTensorboard")) .build(); } } } return getGetTensorboardMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.UpdateTensorboardRequest, com.google.longrunning.Operation> getUpdateTensorboardMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "UpdateTensorboard", requestType = com.google.cloud.aiplatform.v1.UpdateTensorboardRequest.class, responseType = com.google.longrunning.Operation.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.UpdateTensorboardRequest, com.google.longrunning.Operation> getUpdateTensorboardMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.UpdateTensorboardRequest, com.google.longrunning.Operation> getUpdateTensorboardMethod; if ((getUpdateTensorboardMethod = TensorboardServiceGrpc.getUpdateTensorboardMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getUpdateTensorboardMethod = TensorboardServiceGrpc.getUpdateTensorboardMethod) == null) { TensorboardServiceGrpc.getUpdateTensorboardMethod = getUpdateTensorboardMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName(generateFullMethodName(SERVICE_NAME, "UpdateTensorboard")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.UpdateTensorboardRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.longrunning.Operation.getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier("UpdateTensorboard")) .build(); } } } return getUpdateTensorboardMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ListTensorboardsRequest, com.google.cloud.aiplatform.v1.ListTensorboardsResponse> getListTensorboardsMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "ListTensorboards", requestType = com.google.cloud.aiplatform.v1.ListTensorboardsRequest.class, responseType = com.google.cloud.aiplatform.v1.ListTensorboardsResponse.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ListTensorboardsRequest, com.google.cloud.aiplatform.v1.ListTensorboardsResponse> getListTensorboardsMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ListTensorboardsRequest, com.google.cloud.aiplatform.v1.ListTensorboardsResponse> getListTensorboardsMethod; if ((getListTensorboardsMethod = TensorboardServiceGrpc.getListTensorboardsMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getListTensorboardsMethod = TensorboardServiceGrpc.getListTensorboardsMethod) == null) { TensorboardServiceGrpc.getListTensorboardsMethod = getListTensorboardsMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName(generateFullMethodName(SERVICE_NAME, "ListTensorboards")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.ListTensorboardsRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.ListTensorboardsResponse .getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier("ListTensorboards")) .build(); } } } return getListTensorboardsMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.DeleteTensorboardRequest, com.google.longrunning.Operation> getDeleteTensorboardMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "DeleteTensorboard", requestType = com.google.cloud.aiplatform.v1.DeleteTensorboardRequest.class, responseType = com.google.longrunning.Operation.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.DeleteTensorboardRequest, com.google.longrunning.Operation> getDeleteTensorboardMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.DeleteTensorboardRequest, com.google.longrunning.Operation> getDeleteTensorboardMethod; if ((getDeleteTensorboardMethod = TensorboardServiceGrpc.getDeleteTensorboardMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getDeleteTensorboardMethod = TensorboardServiceGrpc.getDeleteTensorboardMethod) == null) { TensorboardServiceGrpc.getDeleteTensorboardMethod = getDeleteTensorboardMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName(generateFullMethodName(SERVICE_NAME, "DeleteTensorboard")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.DeleteTensorboardRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.longrunning.Operation.getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier("DeleteTensorboard")) .build(); } } } return getDeleteTensorboardMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ReadTensorboardUsageRequest, com.google.cloud.aiplatform.v1.ReadTensorboardUsageResponse> getReadTensorboardUsageMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "ReadTensorboardUsage", requestType = com.google.cloud.aiplatform.v1.ReadTensorboardUsageRequest.class, responseType = com.google.cloud.aiplatform.v1.ReadTensorboardUsageResponse.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ReadTensorboardUsageRequest, com.google.cloud.aiplatform.v1.ReadTensorboardUsageResponse> getReadTensorboardUsageMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ReadTensorboardUsageRequest, com.google.cloud.aiplatform.v1.ReadTensorboardUsageResponse> getReadTensorboardUsageMethod; if ((getReadTensorboardUsageMethod = TensorboardServiceGrpc.getReadTensorboardUsageMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getReadTensorboardUsageMethod = TensorboardServiceGrpc.getReadTensorboardUsageMethod) == null) { TensorboardServiceGrpc.getReadTensorboardUsageMethod = getReadTensorboardUsageMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName( generateFullMethodName(SERVICE_NAME, "ReadTensorboardUsage")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.ReadTensorboardUsageRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.ReadTensorboardUsageResponse .getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier("ReadTensorboardUsage")) .build(); } } } return getReadTensorboardUsageMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ReadTensorboardSizeRequest, com.google.cloud.aiplatform.v1.ReadTensorboardSizeResponse> getReadTensorboardSizeMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "ReadTensorboardSize", requestType = com.google.cloud.aiplatform.v1.ReadTensorboardSizeRequest.class, responseType = com.google.cloud.aiplatform.v1.ReadTensorboardSizeResponse.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ReadTensorboardSizeRequest, com.google.cloud.aiplatform.v1.ReadTensorboardSizeResponse> getReadTensorboardSizeMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ReadTensorboardSizeRequest, com.google.cloud.aiplatform.v1.ReadTensorboardSizeResponse> getReadTensorboardSizeMethod; if ((getReadTensorboardSizeMethod = TensorboardServiceGrpc.getReadTensorboardSizeMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getReadTensorboardSizeMethod = TensorboardServiceGrpc.getReadTensorboardSizeMethod) == null) { TensorboardServiceGrpc.getReadTensorboardSizeMethod = getReadTensorboardSizeMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName( generateFullMethodName(SERVICE_NAME, "ReadTensorboardSize")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.ReadTensorboardSizeRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.ReadTensorboardSizeResponse .getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier("ReadTensorboardSize")) .build(); } } } return getReadTensorboardSizeMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.CreateTensorboardExperimentRequest, com.google.cloud.aiplatform.v1.TensorboardExperiment> getCreateTensorboardExperimentMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "CreateTensorboardExperiment", requestType = com.google.cloud.aiplatform.v1.CreateTensorboardExperimentRequest.class, responseType = com.google.cloud.aiplatform.v1.TensorboardExperiment.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.CreateTensorboardExperimentRequest, com.google.cloud.aiplatform.v1.TensorboardExperiment> getCreateTensorboardExperimentMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.CreateTensorboardExperimentRequest, com.google.cloud.aiplatform.v1.TensorboardExperiment> getCreateTensorboardExperimentMethod; if ((getCreateTensorboardExperimentMethod = TensorboardServiceGrpc.getCreateTensorboardExperimentMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getCreateTensorboardExperimentMethod = TensorboardServiceGrpc.getCreateTensorboardExperimentMethod) == null) { TensorboardServiceGrpc.getCreateTensorboardExperimentMethod = getCreateTensorboardExperimentMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName( generateFullMethodName(SERVICE_NAME, "CreateTensorboardExperiment")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.CreateTensorboardExperimentRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.TensorboardExperiment .getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier( "CreateTensorboardExperiment")) .build(); } } } return getCreateTensorboardExperimentMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.GetTensorboardExperimentRequest, com.google.cloud.aiplatform.v1.TensorboardExperiment> getGetTensorboardExperimentMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "GetTensorboardExperiment", requestType = com.google.cloud.aiplatform.v1.GetTensorboardExperimentRequest.class, responseType = com.google.cloud.aiplatform.v1.TensorboardExperiment.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.GetTensorboardExperimentRequest, com.google.cloud.aiplatform.v1.TensorboardExperiment> getGetTensorboardExperimentMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.GetTensorboardExperimentRequest, com.google.cloud.aiplatform.v1.TensorboardExperiment> getGetTensorboardExperimentMethod; if ((getGetTensorboardExperimentMethod = TensorboardServiceGrpc.getGetTensorboardExperimentMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getGetTensorboardExperimentMethod = TensorboardServiceGrpc.getGetTensorboardExperimentMethod) == null) { TensorboardServiceGrpc.getGetTensorboardExperimentMethod = getGetTensorboardExperimentMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName( generateFullMethodName(SERVICE_NAME, "GetTensorboardExperiment")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.GetTensorboardExperimentRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.TensorboardExperiment .getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier( "GetTensorboardExperiment")) .build(); } } } return getGetTensorboardExperimentMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.UpdateTensorboardExperimentRequest, com.google.cloud.aiplatform.v1.TensorboardExperiment> getUpdateTensorboardExperimentMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "UpdateTensorboardExperiment", requestType = com.google.cloud.aiplatform.v1.UpdateTensorboardExperimentRequest.class, responseType = com.google.cloud.aiplatform.v1.TensorboardExperiment.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.UpdateTensorboardExperimentRequest, com.google.cloud.aiplatform.v1.TensorboardExperiment> getUpdateTensorboardExperimentMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.UpdateTensorboardExperimentRequest, com.google.cloud.aiplatform.v1.TensorboardExperiment> getUpdateTensorboardExperimentMethod; if ((getUpdateTensorboardExperimentMethod = TensorboardServiceGrpc.getUpdateTensorboardExperimentMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getUpdateTensorboardExperimentMethod = TensorboardServiceGrpc.getUpdateTensorboardExperimentMethod) == null) { TensorboardServiceGrpc.getUpdateTensorboardExperimentMethod = getUpdateTensorboardExperimentMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName( generateFullMethodName(SERVICE_NAME, "UpdateTensorboardExperiment")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.UpdateTensorboardExperimentRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.TensorboardExperiment .getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier( "UpdateTensorboardExperiment")) .build(); } } } return getUpdateTensorboardExperimentMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ListTensorboardExperimentsRequest, com.google.cloud.aiplatform.v1.ListTensorboardExperimentsResponse> getListTensorboardExperimentsMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "ListTensorboardExperiments", requestType = com.google.cloud.aiplatform.v1.ListTensorboardExperimentsRequest.class, responseType = com.google.cloud.aiplatform.v1.ListTensorboardExperimentsResponse.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ListTensorboardExperimentsRequest, com.google.cloud.aiplatform.v1.ListTensorboardExperimentsResponse> getListTensorboardExperimentsMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ListTensorboardExperimentsRequest, com.google.cloud.aiplatform.v1.ListTensorboardExperimentsResponse> getListTensorboardExperimentsMethod; if ((getListTensorboardExperimentsMethod = TensorboardServiceGrpc.getListTensorboardExperimentsMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getListTensorboardExperimentsMethod = TensorboardServiceGrpc.getListTensorboardExperimentsMethod) == null) { TensorboardServiceGrpc.getListTensorboardExperimentsMethod = getListTensorboardExperimentsMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName( generateFullMethodName(SERVICE_NAME, "ListTensorboardExperiments")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.ListTensorboardExperimentsRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.ListTensorboardExperimentsResponse .getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier( "ListTensorboardExperiments")) .build(); } } } return getListTensorboardExperimentsMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.DeleteTensorboardExperimentRequest, com.google.longrunning.Operation> getDeleteTensorboardExperimentMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "DeleteTensorboardExperiment", requestType = com.google.cloud.aiplatform.v1.DeleteTensorboardExperimentRequest.class, responseType = com.google.longrunning.Operation.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.DeleteTensorboardExperimentRequest, com.google.longrunning.Operation> getDeleteTensorboardExperimentMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.DeleteTensorboardExperimentRequest, com.google.longrunning.Operation> getDeleteTensorboardExperimentMethod; if ((getDeleteTensorboardExperimentMethod = TensorboardServiceGrpc.getDeleteTensorboardExperimentMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getDeleteTensorboardExperimentMethod = TensorboardServiceGrpc.getDeleteTensorboardExperimentMethod) == null) { TensorboardServiceGrpc.getDeleteTensorboardExperimentMethod = getDeleteTensorboardExperimentMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName( generateFullMethodName(SERVICE_NAME, "DeleteTensorboardExperiment")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.DeleteTensorboardExperimentRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.longrunning.Operation.getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier( "DeleteTensorboardExperiment")) .build(); } } } return getDeleteTensorboardExperimentMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.CreateTensorboardRunRequest, com.google.cloud.aiplatform.v1.TensorboardRun> getCreateTensorboardRunMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "CreateTensorboardRun", requestType = com.google.cloud.aiplatform.v1.CreateTensorboardRunRequest.class, responseType = com.google.cloud.aiplatform.v1.TensorboardRun.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.CreateTensorboardRunRequest, com.google.cloud.aiplatform.v1.TensorboardRun> getCreateTensorboardRunMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.CreateTensorboardRunRequest, com.google.cloud.aiplatform.v1.TensorboardRun> getCreateTensorboardRunMethod; if ((getCreateTensorboardRunMethod = TensorboardServiceGrpc.getCreateTensorboardRunMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getCreateTensorboardRunMethod = TensorboardServiceGrpc.getCreateTensorboardRunMethod) == null) { TensorboardServiceGrpc.getCreateTensorboardRunMethod = getCreateTensorboardRunMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName( generateFullMethodName(SERVICE_NAME, "CreateTensorboardRun")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.CreateTensorboardRunRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.TensorboardRun.getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier("CreateTensorboardRun")) .build(); } } } return getCreateTensorboardRunMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsRequest, com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsResponse> getBatchCreateTensorboardRunsMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "BatchCreateTensorboardRuns", requestType = com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsRequest.class, responseType = com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsResponse.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsRequest, com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsResponse> getBatchCreateTensorboardRunsMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsRequest, com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsResponse> getBatchCreateTensorboardRunsMethod; if ((getBatchCreateTensorboardRunsMethod = TensorboardServiceGrpc.getBatchCreateTensorboardRunsMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getBatchCreateTensorboardRunsMethod = TensorboardServiceGrpc.getBatchCreateTensorboardRunsMethod) == null) { TensorboardServiceGrpc.getBatchCreateTensorboardRunsMethod = getBatchCreateTensorboardRunsMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName( generateFullMethodName(SERVICE_NAME, "BatchCreateTensorboardRuns")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsResponse .getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier( "BatchCreateTensorboardRuns")) .build(); } } } return getBatchCreateTensorboardRunsMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.GetTensorboardRunRequest, com.google.cloud.aiplatform.v1.TensorboardRun> getGetTensorboardRunMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "GetTensorboardRun", requestType = com.google.cloud.aiplatform.v1.GetTensorboardRunRequest.class, responseType = com.google.cloud.aiplatform.v1.TensorboardRun.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.GetTensorboardRunRequest, com.google.cloud.aiplatform.v1.TensorboardRun> getGetTensorboardRunMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.GetTensorboardRunRequest, com.google.cloud.aiplatform.v1.TensorboardRun> getGetTensorboardRunMethod; if ((getGetTensorboardRunMethod = TensorboardServiceGrpc.getGetTensorboardRunMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getGetTensorboardRunMethod = TensorboardServiceGrpc.getGetTensorboardRunMethod) == null) { TensorboardServiceGrpc.getGetTensorboardRunMethod = getGetTensorboardRunMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName(generateFullMethodName(SERVICE_NAME, "GetTensorboardRun")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.GetTensorboardRunRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.TensorboardRun.getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier("GetTensorboardRun")) .build(); } } } return getGetTensorboardRunMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.UpdateTensorboardRunRequest, com.google.cloud.aiplatform.v1.TensorboardRun> getUpdateTensorboardRunMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "UpdateTensorboardRun", requestType = com.google.cloud.aiplatform.v1.UpdateTensorboardRunRequest.class, responseType = com.google.cloud.aiplatform.v1.TensorboardRun.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.UpdateTensorboardRunRequest, com.google.cloud.aiplatform.v1.TensorboardRun> getUpdateTensorboardRunMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.UpdateTensorboardRunRequest, com.google.cloud.aiplatform.v1.TensorboardRun> getUpdateTensorboardRunMethod; if ((getUpdateTensorboardRunMethod = TensorboardServiceGrpc.getUpdateTensorboardRunMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getUpdateTensorboardRunMethod = TensorboardServiceGrpc.getUpdateTensorboardRunMethod) == null) { TensorboardServiceGrpc.getUpdateTensorboardRunMethod = getUpdateTensorboardRunMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName( generateFullMethodName(SERVICE_NAME, "UpdateTensorboardRun")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.UpdateTensorboardRunRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.TensorboardRun.getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier("UpdateTensorboardRun")) .build(); } } } return getUpdateTensorboardRunMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ListTensorboardRunsRequest, com.google.cloud.aiplatform.v1.ListTensorboardRunsResponse> getListTensorboardRunsMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "ListTensorboardRuns", requestType = com.google.cloud.aiplatform.v1.ListTensorboardRunsRequest.class, responseType = com.google.cloud.aiplatform.v1.ListTensorboardRunsResponse.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ListTensorboardRunsRequest, com.google.cloud.aiplatform.v1.ListTensorboardRunsResponse> getListTensorboardRunsMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ListTensorboardRunsRequest, com.google.cloud.aiplatform.v1.ListTensorboardRunsResponse> getListTensorboardRunsMethod; if ((getListTensorboardRunsMethod = TensorboardServiceGrpc.getListTensorboardRunsMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getListTensorboardRunsMethod = TensorboardServiceGrpc.getListTensorboardRunsMethod) == null) { TensorboardServiceGrpc.getListTensorboardRunsMethod = getListTensorboardRunsMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName( generateFullMethodName(SERVICE_NAME, "ListTensorboardRuns")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.ListTensorboardRunsRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.ListTensorboardRunsResponse .getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier("ListTensorboardRuns")) .build(); } } } return getListTensorboardRunsMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.DeleteTensorboardRunRequest, com.google.longrunning.Operation> getDeleteTensorboardRunMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "DeleteTensorboardRun", requestType = com.google.cloud.aiplatform.v1.DeleteTensorboardRunRequest.class, responseType = com.google.longrunning.Operation.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.DeleteTensorboardRunRequest, com.google.longrunning.Operation> getDeleteTensorboardRunMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.DeleteTensorboardRunRequest, com.google.longrunning.Operation> getDeleteTensorboardRunMethod; if ((getDeleteTensorboardRunMethod = TensorboardServiceGrpc.getDeleteTensorboardRunMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getDeleteTensorboardRunMethod = TensorboardServiceGrpc.getDeleteTensorboardRunMethod) == null) { TensorboardServiceGrpc.getDeleteTensorboardRunMethod = getDeleteTensorboardRunMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName( generateFullMethodName(SERVICE_NAME, "DeleteTensorboardRun")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.DeleteTensorboardRunRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.longrunning.Operation.getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier("DeleteTensorboardRun")) .build(); } } } return getDeleteTensorboardRunMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesRequest, com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesResponse> getBatchCreateTensorboardTimeSeriesMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "BatchCreateTensorboardTimeSeries", requestType = com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesRequest.class, responseType = com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesResponse.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesRequest, com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesResponse> getBatchCreateTensorboardTimeSeriesMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesRequest, com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesResponse> getBatchCreateTensorboardTimeSeriesMethod; if ((getBatchCreateTensorboardTimeSeriesMethod = TensorboardServiceGrpc.getBatchCreateTensorboardTimeSeriesMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getBatchCreateTensorboardTimeSeriesMethod = TensorboardServiceGrpc.getBatchCreateTensorboardTimeSeriesMethod) == null) { TensorboardServiceGrpc.getBatchCreateTensorboardTimeSeriesMethod = getBatchCreateTensorboardTimeSeriesMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName( generateFullMethodName(SERVICE_NAME, "BatchCreateTensorboardTimeSeries")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1 .BatchCreateTensorboardTimeSeriesResponse.getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier( "BatchCreateTensorboardTimeSeries")) .build(); } } } return getBatchCreateTensorboardTimeSeriesMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.CreateTensorboardTimeSeriesRequest, com.google.cloud.aiplatform.v1.TensorboardTimeSeries> getCreateTensorboardTimeSeriesMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "CreateTensorboardTimeSeries", requestType = com.google.cloud.aiplatform.v1.CreateTensorboardTimeSeriesRequest.class, responseType = com.google.cloud.aiplatform.v1.TensorboardTimeSeries.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.CreateTensorboardTimeSeriesRequest, com.google.cloud.aiplatform.v1.TensorboardTimeSeries> getCreateTensorboardTimeSeriesMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.CreateTensorboardTimeSeriesRequest, com.google.cloud.aiplatform.v1.TensorboardTimeSeries> getCreateTensorboardTimeSeriesMethod; if ((getCreateTensorboardTimeSeriesMethod = TensorboardServiceGrpc.getCreateTensorboardTimeSeriesMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getCreateTensorboardTimeSeriesMethod = TensorboardServiceGrpc.getCreateTensorboardTimeSeriesMethod) == null) { TensorboardServiceGrpc.getCreateTensorboardTimeSeriesMethod = getCreateTensorboardTimeSeriesMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName( generateFullMethodName(SERVICE_NAME, "CreateTensorboardTimeSeries")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.CreateTensorboardTimeSeriesRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.TensorboardTimeSeries .getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier( "CreateTensorboardTimeSeries")) .build(); } } } return getCreateTensorboardTimeSeriesMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.GetTensorboardTimeSeriesRequest, com.google.cloud.aiplatform.v1.TensorboardTimeSeries> getGetTensorboardTimeSeriesMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "GetTensorboardTimeSeries", requestType = com.google.cloud.aiplatform.v1.GetTensorboardTimeSeriesRequest.class, responseType = com.google.cloud.aiplatform.v1.TensorboardTimeSeries.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.GetTensorboardTimeSeriesRequest, com.google.cloud.aiplatform.v1.TensorboardTimeSeries> getGetTensorboardTimeSeriesMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.GetTensorboardTimeSeriesRequest, com.google.cloud.aiplatform.v1.TensorboardTimeSeries> getGetTensorboardTimeSeriesMethod; if ((getGetTensorboardTimeSeriesMethod = TensorboardServiceGrpc.getGetTensorboardTimeSeriesMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getGetTensorboardTimeSeriesMethod = TensorboardServiceGrpc.getGetTensorboardTimeSeriesMethod) == null) { TensorboardServiceGrpc.getGetTensorboardTimeSeriesMethod = getGetTensorboardTimeSeriesMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName( generateFullMethodName(SERVICE_NAME, "GetTensorboardTimeSeries")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.GetTensorboardTimeSeriesRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.TensorboardTimeSeries .getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier( "GetTensorboardTimeSeries")) .build(); } } } return getGetTensorboardTimeSeriesMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.UpdateTensorboardTimeSeriesRequest, com.google.cloud.aiplatform.v1.TensorboardTimeSeries> getUpdateTensorboardTimeSeriesMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "UpdateTensorboardTimeSeries", requestType = com.google.cloud.aiplatform.v1.UpdateTensorboardTimeSeriesRequest.class, responseType = com.google.cloud.aiplatform.v1.TensorboardTimeSeries.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.UpdateTensorboardTimeSeriesRequest, com.google.cloud.aiplatform.v1.TensorboardTimeSeries> getUpdateTensorboardTimeSeriesMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.UpdateTensorboardTimeSeriesRequest, com.google.cloud.aiplatform.v1.TensorboardTimeSeries> getUpdateTensorboardTimeSeriesMethod; if ((getUpdateTensorboardTimeSeriesMethod = TensorboardServiceGrpc.getUpdateTensorboardTimeSeriesMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getUpdateTensorboardTimeSeriesMethod = TensorboardServiceGrpc.getUpdateTensorboardTimeSeriesMethod) == null) { TensorboardServiceGrpc.getUpdateTensorboardTimeSeriesMethod = getUpdateTensorboardTimeSeriesMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName( generateFullMethodName(SERVICE_NAME, "UpdateTensorboardTimeSeries")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.UpdateTensorboardTimeSeriesRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.TensorboardTimeSeries .getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier( "UpdateTensorboardTimeSeries")) .build(); } } } return getUpdateTensorboardTimeSeriesMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesRequest, com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesResponse> getListTensorboardTimeSeriesMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "ListTensorboardTimeSeries", requestType = com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesRequest.class, responseType = com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesResponse.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesRequest, com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesResponse> getListTensorboardTimeSeriesMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesRequest, com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesResponse> getListTensorboardTimeSeriesMethod; if ((getListTensorboardTimeSeriesMethod = TensorboardServiceGrpc.getListTensorboardTimeSeriesMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getListTensorboardTimeSeriesMethod = TensorboardServiceGrpc.getListTensorboardTimeSeriesMethod) == null) { TensorboardServiceGrpc.getListTensorboardTimeSeriesMethod = getListTensorboardTimeSeriesMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName( generateFullMethodName(SERVICE_NAME, "ListTensorboardTimeSeries")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesResponse .getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier( "ListTensorboardTimeSeries")) .build(); } } } return getListTensorboardTimeSeriesMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.DeleteTensorboardTimeSeriesRequest, com.google.longrunning.Operation> getDeleteTensorboardTimeSeriesMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "DeleteTensorboardTimeSeries", requestType = com.google.cloud.aiplatform.v1.DeleteTensorboardTimeSeriesRequest.class, responseType = com.google.longrunning.Operation.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.DeleteTensorboardTimeSeriesRequest, com.google.longrunning.Operation> getDeleteTensorboardTimeSeriesMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.DeleteTensorboardTimeSeriesRequest, com.google.longrunning.Operation> getDeleteTensorboardTimeSeriesMethod; if ((getDeleteTensorboardTimeSeriesMethod = TensorboardServiceGrpc.getDeleteTensorboardTimeSeriesMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getDeleteTensorboardTimeSeriesMethod = TensorboardServiceGrpc.getDeleteTensorboardTimeSeriesMethod) == null) { TensorboardServiceGrpc.getDeleteTensorboardTimeSeriesMethod = getDeleteTensorboardTimeSeriesMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName( generateFullMethodName(SERVICE_NAME, "DeleteTensorboardTimeSeries")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.DeleteTensorboardTimeSeriesRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.longrunning.Operation.getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier( "DeleteTensorboardTimeSeries")) .build(); } } } return getDeleteTensorboardTimeSeriesMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataRequest, com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataResponse> getBatchReadTensorboardTimeSeriesDataMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "BatchReadTensorboardTimeSeriesData", requestType = com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataRequest.class, responseType = com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataResponse.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataRequest, com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataResponse> getBatchReadTensorboardTimeSeriesDataMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataRequest, com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataResponse> getBatchReadTensorboardTimeSeriesDataMethod; if ((getBatchReadTensorboardTimeSeriesDataMethod = TensorboardServiceGrpc.getBatchReadTensorboardTimeSeriesDataMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getBatchReadTensorboardTimeSeriesDataMethod = TensorboardServiceGrpc.getBatchReadTensorboardTimeSeriesDataMethod) == null) { TensorboardServiceGrpc.getBatchReadTensorboardTimeSeriesDataMethod = getBatchReadTensorboardTimeSeriesDataMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName( generateFullMethodName( SERVICE_NAME, "BatchReadTensorboardTimeSeriesData")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1 .BatchReadTensorboardTimeSeriesDataRequest.getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1 .BatchReadTensorboardTimeSeriesDataResponse.getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier( "BatchReadTensorboardTimeSeriesData")) .build(); } } } return getBatchReadTensorboardTimeSeriesDataMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataRequest, com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataResponse> getReadTensorboardTimeSeriesDataMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "ReadTensorboardTimeSeriesData", requestType = com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataRequest.class, responseType = com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataResponse.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataRequest, com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataResponse> getReadTensorboardTimeSeriesDataMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataRequest, com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataResponse> getReadTensorboardTimeSeriesDataMethod; if ((getReadTensorboardTimeSeriesDataMethod = TensorboardServiceGrpc.getReadTensorboardTimeSeriesDataMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getReadTensorboardTimeSeriesDataMethod = TensorboardServiceGrpc.getReadTensorboardTimeSeriesDataMethod) == null) { TensorboardServiceGrpc.getReadTensorboardTimeSeriesDataMethod = getReadTensorboardTimeSeriesDataMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName( generateFullMethodName(SERVICE_NAME, "ReadTensorboardTimeSeriesData")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataResponse .getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier( "ReadTensorboardTimeSeriesData")) .build(); } } } return getReadTensorboardTimeSeriesDataMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataRequest, com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataResponse> getReadTensorboardBlobDataMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "ReadTensorboardBlobData", requestType = com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataRequest.class, responseType = com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataResponse.class, methodType = io.grpc.MethodDescriptor.MethodType.SERVER_STREAMING) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataRequest, com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataResponse> getReadTensorboardBlobDataMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataRequest, com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataResponse> getReadTensorboardBlobDataMethod; if ((getReadTensorboardBlobDataMethod = TensorboardServiceGrpc.getReadTensorboardBlobDataMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getReadTensorboardBlobDataMethod = TensorboardServiceGrpc.getReadTensorboardBlobDataMethod) == null) { TensorboardServiceGrpc.getReadTensorboardBlobDataMethod = getReadTensorboardBlobDataMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.SERVER_STREAMING) .setFullMethodName( generateFullMethodName(SERVICE_NAME, "ReadTensorboardBlobData")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataResponse .getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier("ReadTensorboardBlobData")) .build(); } } } return getReadTensorboardBlobDataMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataRequest, com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataResponse> getWriteTensorboardExperimentDataMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "WriteTensorboardExperimentData", requestType = com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataRequest.class, responseType = com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataResponse.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataRequest, com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataResponse> getWriteTensorboardExperimentDataMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataRequest, com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataResponse> getWriteTensorboardExperimentDataMethod; if ((getWriteTensorboardExperimentDataMethod = TensorboardServiceGrpc.getWriteTensorboardExperimentDataMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getWriteTensorboardExperimentDataMethod = TensorboardServiceGrpc.getWriteTensorboardExperimentDataMethod) == null) { TensorboardServiceGrpc.getWriteTensorboardExperimentDataMethod = getWriteTensorboardExperimentDataMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName( generateFullMethodName(SERVICE_NAME, "WriteTensorboardExperimentData")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataResponse .getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier( "WriteTensorboardExperimentData")) .build(); } } } return getWriteTensorboardExperimentDataMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.WriteTensorboardRunDataRequest, com.google.cloud.aiplatform.v1.WriteTensorboardRunDataResponse> getWriteTensorboardRunDataMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "WriteTensorboardRunData", requestType = com.google.cloud.aiplatform.v1.WriteTensorboardRunDataRequest.class, responseType = com.google.cloud.aiplatform.v1.WriteTensorboardRunDataResponse.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.WriteTensorboardRunDataRequest, com.google.cloud.aiplatform.v1.WriteTensorboardRunDataResponse> getWriteTensorboardRunDataMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.WriteTensorboardRunDataRequest, com.google.cloud.aiplatform.v1.WriteTensorboardRunDataResponse> getWriteTensorboardRunDataMethod; if ((getWriteTensorboardRunDataMethod = TensorboardServiceGrpc.getWriteTensorboardRunDataMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getWriteTensorboardRunDataMethod = TensorboardServiceGrpc.getWriteTensorboardRunDataMethod) == null) { TensorboardServiceGrpc.getWriteTensorboardRunDataMethod = getWriteTensorboardRunDataMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName( generateFullMethodName(SERVICE_NAME, "WriteTensorboardRunData")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.WriteTensorboardRunDataRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.WriteTensorboardRunDataResponse .getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier("WriteTensorboardRunData")) .build(); } } } return getWriteTensorboardRunDataMethod; } private static volatile io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataRequest, com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataResponse> getExportTensorboardTimeSeriesDataMethod; @io.grpc.stub.annotations.RpcMethod( fullMethodName = SERVICE_NAME + '/' + "ExportTensorboardTimeSeriesData", requestType = com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataRequest.class, responseType = com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataResponse.class, methodType = io.grpc.MethodDescriptor.MethodType.UNARY) public static io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataRequest, com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataResponse> getExportTensorboardTimeSeriesDataMethod() { io.grpc.MethodDescriptor< com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataRequest, com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataResponse> getExportTensorboardTimeSeriesDataMethod; if ((getExportTensorboardTimeSeriesDataMethod = TensorboardServiceGrpc.getExportTensorboardTimeSeriesDataMethod) == null) { synchronized (TensorboardServiceGrpc.class) { if ((getExportTensorboardTimeSeriesDataMethod = TensorboardServiceGrpc.getExportTensorboardTimeSeriesDataMethod) == null) { TensorboardServiceGrpc.getExportTensorboardTimeSeriesDataMethod = getExportTensorboardTimeSeriesDataMethod = io.grpc.MethodDescriptor . newBuilder() .setType(io.grpc.MethodDescriptor.MethodType.UNARY) .setFullMethodName( generateFullMethodName(SERVICE_NAME, "ExportTensorboardTimeSeriesData")) .setSampledToLocalTracing(true) .setRequestMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataRequest .getDefaultInstance())) .setResponseMarshaller( io.grpc.protobuf.ProtoUtils.marshaller( com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataResponse .getDefaultInstance())) .setSchemaDescriptor( new TensorboardServiceMethodDescriptorSupplier( "ExportTensorboardTimeSeriesData")) .build(); } } } return getExportTensorboardTimeSeriesDataMethod; } /** Creates a new async stub that supports all call types for the service */ public static TensorboardServiceStub newStub(io.grpc.Channel channel) { io.grpc.stub.AbstractStub.StubFactory factory = new io.grpc.stub.AbstractStub.StubFactory() { @java.lang.Override public TensorboardServiceStub newStub( io.grpc.Channel channel, io.grpc.CallOptions callOptions) { return new TensorboardServiceStub(channel, callOptions); } }; return TensorboardServiceStub.newStub(factory, channel); } /** * Creates a new blocking-style stub that supports unary and streaming output calls on the service */ public static TensorboardServiceBlockingStub newBlockingStub(io.grpc.Channel channel) { io.grpc.stub.AbstractStub.StubFactory factory = new io.grpc.stub.AbstractStub.StubFactory() { @java.lang.Override public TensorboardServiceBlockingStub newStub( io.grpc.Channel channel, io.grpc.CallOptions callOptions) { return new TensorboardServiceBlockingStub(channel, callOptions); } }; return TensorboardServiceBlockingStub.newStub(factory, channel); } /** Creates a new ListenableFuture-style stub that supports unary calls on the service */ public static TensorboardServiceFutureStub newFutureStub(io.grpc.Channel channel) { io.grpc.stub.AbstractStub.StubFactory factory = new io.grpc.stub.AbstractStub.StubFactory() { @java.lang.Override public TensorboardServiceFutureStub newStub( io.grpc.Channel channel, io.grpc.CallOptions callOptions) { return new TensorboardServiceFutureStub(channel, callOptions); } }; return TensorboardServiceFutureStub.newStub(factory, channel); } /** * * *
   * TensorboardService
   * 
*/ public interface AsyncService { /** * * *
     * Creates a Tensorboard.
     * 
*/ default void createTensorboard( com.google.cloud.aiplatform.v1.CreateTensorboardRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getCreateTensorboardMethod(), responseObserver); } /** * * *
     * Gets a Tensorboard.
     * 
*/ default void getTensorboard( com.google.cloud.aiplatform.v1.GetTensorboardRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getGetTensorboardMethod(), responseObserver); } /** * * *
     * Updates a Tensorboard.
     * 
*/ default void updateTensorboard( com.google.cloud.aiplatform.v1.UpdateTensorboardRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getUpdateTensorboardMethod(), responseObserver); } /** * * *
     * Lists Tensorboards in a Location.
     * 
*/ default void listTensorboards( com.google.cloud.aiplatform.v1.ListTensorboardsRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getListTensorboardsMethod(), responseObserver); } /** * * *
     * Deletes a Tensorboard.
     * 
*/ default void deleteTensorboard( com.google.cloud.aiplatform.v1.DeleteTensorboardRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getDeleteTensorboardMethod(), responseObserver); } /** * * *
     * Returns a list of monthly active users for a given TensorBoard instance.
     * 
*/ default void readTensorboardUsage( com.google.cloud.aiplatform.v1.ReadTensorboardUsageRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getReadTensorboardUsageMethod(), responseObserver); } /** * * *
     * Returns the storage size for a given TensorBoard instance.
     * 
*/ default void readTensorboardSize( com.google.cloud.aiplatform.v1.ReadTensorboardSizeRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getReadTensorboardSizeMethod(), responseObserver); } /** * * *
     * Creates a TensorboardExperiment.
     * 
*/ default void createTensorboardExperiment( com.google.cloud.aiplatform.v1.CreateTensorboardExperimentRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getCreateTensorboardExperimentMethod(), responseObserver); } /** * * *
     * Gets a TensorboardExperiment.
     * 
*/ default void getTensorboardExperiment( com.google.cloud.aiplatform.v1.GetTensorboardExperimentRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getGetTensorboardExperimentMethod(), responseObserver); } /** * * *
     * Updates a TensorboardExperiment.
     * 
*/ default void updateTensorboardExperiment( com.google.cloud.aiplatform.v1.UpdateTensorboardExperimentRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getUpdateTensorboardExperimentMethod(), responseObserver); } /** * * *
     * Lists TensorboardExperiments in a Location.
     * 
*/ default void listTensorboardExperiments( com.google.cloud.aiplatform.v1.ListTensorboardExperimentsRequest request, io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.ListTensorboardExperimentsResponse> responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getListTensorboardExperimentsMethod(), responseObserver); } /** * * *
     * Deletes a TensorboardExperiment.
     * 
*/ default void deleteTensorboardExperiment( com.google.cloud.aiplatform.v1.DeleteTensorboardExperimentRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getDeleteTensorboardExperimentMethod(), responseObserver); } /** * * *
     * Creates a TensorboardRun.
     * 
*/ default void createTensorboardRun( com.google.cloud.aiplatform.v1.CreateTensorboardRunRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getCreateTensorboardRunMethod(), responseObserver); } /** * * *
     * Batch create TensorboardRuns.
     * 
*/ default void batchCreateTensorboardRuns( com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsRequest request, io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsResponse> responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getBatchCreateTensorboardRunsMethod(), responseObserver); } /** * * *
     * Gets a TensorboardRun.
     * 
*/ default void getTensorboardRun( com.google.cloud.aiplatform.v1.GetTensorboardRunRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getGetTensorboardRunMethod(), responseObserver); } /** * * *
     * Updates a TensorboardRun.
     * 
*/ default void updateTensorboardRun( com.google.cloud.aiplatform.v1.UpdateTensorboardRunRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getUpdateTensorboardRunMethod(), responseObserver); } /** * * *
     * Lists TensorboardRuns in a Location.
     * 
*/ default void listTensorboardRuns( com.google.cloud.aiplatform.v1.ListTensorboardRunsRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getListTensorboardRunsMethod(), responseObserver); } /** * * *
     * Deletes a TensorboardRun.
     * 
*/ default void deleteTensorboardRun( com.google.cloud.aiplatform.v1.DeleteTensorboardRunRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getDeleteTensorboardRunMethod(), responseObserver); } /** * * *
     * Batch create TensorboardTimeSeries that belong to a TensorboardExperiment.
     * 
*/ default void batchCreateTensorboardTimeSeries( com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesRequest request, io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesResponse> responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getBatchCreateTensorboardTimeSeriesMethod(), responseObserver); } /** * * *
     * Creates a TensorboardTimeSeries.
     * 
*/ default void createTensorboardTimeSeries( com.google.cloud.aiplatform.v1.CreateTensorboardTimeSeriesRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getCreateTensorboardTimeSeriesMethod(), responseObserver); } /** * * *
     * Gets a TensorboardTimeSeries.
     * 
*/ default void getTensorboardTimeSeries( com.google.cloud.aiplatform.v1.GetTensorboardTimeSeriesRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getGetTensorboardTimeSeriesMethod(), responseObserver); } /** * * *
     * Updates a TensorboardTimeSeries.
     * 
*/ default void updateTensorboardTimeSeries( com.google.cloud.aiplatform.v1.UpdateTensorboardTimeSeriesRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getUpdateTensorboardTimeSeriesMethod(), responseObserver); } /** * * *
     * Lists TensorboardTimeSeries in a Location.
     * 
*/ default void listTensorboardTimeSeries( com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesRequest request, io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesResponse> responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getListTensorboardTimeSeriesMethod(), responseObserver); } /** * * *
     * Deletes a TensorboardTimeSeries.
     * 
*/ default void deleteTensorboardTimeSeries( com.google.cloud.aiplatform.v1.DeleteTensorboardTimeSeriesRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getDeleteTensorboardTimeSeriesMethod(), responseObserver); } /** * * *
     * Reads multiple TensorboardTimeSeries' data. The data point number limit is
     * 1000 for scalars, 100 for tensors and blob references. If the number of
     * data points stored is less than the limit, all data is returned.
     * Otherwise, the number limit of data points is randomly selected from
     * this time series and returned.
     * 
*/ default void batchReadTensorboardTimeSeriesData( com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataRequest request, io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataResponse> responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getBatchReadTensorboardTimeSeriesDataMethod(), responseObserver); } /** * * *
     * Reads a TensorboardTimeSeries' data. By default, if the number of data
     * points stored is less than 1000, all data is returned. Otherwise, 1000
     * data points is randomly selected from this time series and returned.
     * This value can be changed by changing max_data_points, which can't be
     * greater than 10k.
     * 
*/ default void readTensorboardTimeSeriesData( com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataRequest request, io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataResponse> responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getReadTensorboardTimeSeriesDataMethod(), responseObserver); } /** * * *
     * Gets bytes of TensorboardBlobs.
     * This is to allow reading blob data stored in consumer project's Cloud
     * Storage bucket without users having to obtain Cloud Storage access
     * permission.
     * 
*/ default void readTensorboardBlobData( com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getReadTensorboardBlobDataMethod(), responseObserver); } /** * * *
     * Write time series data points of multiple TensorboardTimeSeries in multiple
     * TensorboardRun's. If any data fail to be ingested, an error is returned.
     * 
*/ default void writeTensorboardExperimentData( com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataRequest request, io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataResponse> responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getWriteTensorboardExperimentDataMethod(), responseObserver); } /** * * *
     * Write time series data points into multiple TensorboardTimeSeries under
     * a TensorboardRun. If any data fail to be ingested, an error is returned.
     * 
*/ default void writeTensorboardRunData( com.google.cloud.aiplatform.v1.WriteTensorboardRunDataRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getWriteTensorboardRunDataMethod(), responseObserver); } /** * * *
     * Exports a TensorboardTimeSeries' data. Data is returned in paginated
     * responses.
     * 
*/ default void exportTensorboardTimeSeriesData( com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataRequest request, io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataResponse> responseObserver) { io.grpc.stub.ServerCalls.asyncUnimplementedUnaryCall( getExportTensorboardTimeSeriesDataMethod(), responseObserver); } } /** * Base class for the server implementation of the service TensorboardService. * *
   * TensorboardService
   * 
*/ public abstract static class TensorboardServiceImplBase implements io.grpc.BindableService, AsyncService { @java.lang.Override public final io.grpc.ServerServiceDefinition bindService() { return TensorboardServiceGrpc.bindService(this); } } /** * A stub to allow clients to do asynchronous rpc calls to service TensorboardService. * *
   * TensorboardService
   * 
*/ public static final class TensorboardServiceStub extends io.grpc.stub.AbstractAsyncStub { private TensorboardServiceStub(io.grpc.Channel channel, io.grpc.CallOptions callOptions) { super(channel, callOptions); } @java.lang.Override protected TensorboardServiceStub build( io.grpc.Channel channel, io.grpc.CallOptions callOptions) { return new TensorboardServiceStub(channel, callOptions); } /** * * *
     * Creates a Tensorboard.
     * 
*/ public void createTensorboard( com.google.cloud.aiplatform.v1.CreateTensorboardRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getCreateTensorboardMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Gets a Tensorboard.
     * 
*/ public void getTensorboard( com.google.cloud.aiplatform.v1.GetTensorboardRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getGetTensorboardMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Updates a Tensorboard.
     * 
*/ public void updateTensorboard( com.google.cloud.aiplatform.v1.UpdateTensorboardRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getUpdateTensorboardMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Lists Tensorboards in a Location.
     * 
*/ public void listTensorboards( com.google.cloud.aiplatform.v1.ListTensorboardsRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getListTensorboardsMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Deletes a Tensorboard.
     * 
*/ public void deleteTensorboard( com.google.cloud.aiplatform.v1.DeleteTensorboardRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getDeleteTensorboardMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Returns a list of monthly active users for a given TensorBoard instance.
     * 
*/ public void readTensorboardUsage( com.google.cloud.aiplatform.v1.ReadTensorboardUsageRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getReadTensorboardUsageMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Returns the storage size for a given TensorBoard instance.
     * 
*/ public void readTensorboardSize( com.google.cloud.aiplatform.v1.ReadTensorboardSizeRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getReadTensorboardSizeMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Creates a TensorboardExperiment.
     * 
*/ public void createTensorboardExperiment( com.google.cloud.aiplatform.v1.CreateTensorboardExperimentRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getCreateTensorboardExperimentMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Gets a TensorboardExperiment.
     * 
*/ public void getTensorboardExperiment( com.google.cloud.aiplatform.v1.GetTensorboardExperimentRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getGetTensorboardExperimentMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Updates a TensorboardExperiment.
     * 
*/ public void updateTensorboardExperiment( com.google.cloud.aiplatform.v1.UpdateTensorboardExperimentRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getUpdateTensorboardExperimentMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Lists TensorboardExperiments in a Location.
     * 
*/ public void listTensorboardExperiments( com.google.cloud.aiplatform.v1.ListTensorboardExperimentsRequest request, io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.ListTensorboardExperimentsResponse> responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getListTensorboardExperimentsMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Deletes a TensorboardExperiment.
     * 
*/ public void deleteTensorboardExperiment( com.google.cloud.aiplatform.v1.DeleteTensorboardExperimentRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getDeleteTensorboardExperimentMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Creates a TensorboardRun.
     * 
*/ public void createTensorboardRun( com.google.cloud.aiplatform.v1.CreateTensorboardRunRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getCreateTensorboardRunMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Batch create TensorboardRuns.
     * 
*/ public void batchCreateTensorboardRuns( com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsRequest request, io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsResponse> responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getBatchCreateTensorboardRunsMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Gets a TensorboardRun.
     * 
*/ public void getTensorboardRun( com.google.cloud.aiplatform.v1.GetTensorboardRunRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getGetTensorboardRunMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Updates a TensorboardRun.
     * 
*/ public void updateTensorboardRun( com.google.cloud.aiplatform.v1.UpdateTensorboardRunRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getUpdateTensorboardRunMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Lists TensorboardRuns in a Location.
     * 
*/ public void listTensorboardRuns( com.google.cloud.aiplatform.v1.ListTensorboardRunsRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getListTensorboardRunsMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Deletes a TensorboardRun.
     * 
*/ public void deleteTensorboardRun( com.google.cloud.aiplatform.v1.DeleteTensorboardRunRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getDeleteTensorboardRunMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Batch create TensorboardTimeSeries that belong to a TensorboardExperiment.
     * 
*/ public void batchCreateTensorboardTimeSeries( com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesRequest request, io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesResponse> responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getBatchCreateTensorboardTimeSeriesMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Creates a TensorboardTimeSeries.
     * 
*/ public void createTensorboardTimeSeries( com.google.cloud.aiplatform.v1.CreateTensorboardTimeSeriesRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getCreateTensorboardTimeSeriesMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Gets a TensorboardTimeSeries.
     * 
*/ public void getTensorboardTimeSeries( com.google.cloud.aiplatform.v1.GetTensorboardTimeSeriesRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getGetTensorboardTimeSeriesMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Updates a TensorboardTimeSeries.
     * 
*/ public void updateTensorboardTimeSeries( com.google.cloud.aiplatform.v1.UpdateTensorboardTimeSeriesRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getUpdateTensorboardTimeSeriesMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Lists TensorboardTimeSeries in a Location.
     * 
*/ public void listTensorboardTimeSeries( com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesRequest request, io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesResponse> responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getListTensorboardTimeSeriesMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Deletes a TensorboardTimeSeries.
     * 
*/ public void deleteTensorboardTimeSeries( com.google.cloud.aiplatform.v1.DeleteTensorboardTimeSeriesRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getDeleteTensorboardTimeSeriesMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Reads multiple TensorboardTimeSeries' data. The data point number limit is
     * 1000 for scalars, 100 for tensors and blob references. If the number of
     * data points stored is less than the limit, all data is returned.
     * Otherwise, the number limit of data points is randomly selected from
     * this time series and returned.
     * 
*/ public void batchReadTensorboardTimeSeriesData( com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataRequest request, io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataResponse> responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getBatchReadTensorboardTimeSeriesDataMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Reads a TensorboardTimeSeries' data. By default, if the number of data
     * points stored is less than 1000, all data is returned. Otherwise, 1000
     * data points is randomly selected from this time series and returned.
     * This value can be changed by changing max_data_points, which can't be
     * greater than 10k.
     * 
*/ public void readTensorboardTimeSeriesData( com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataRequest request, io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataResponse> responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getReadTensorboardTimeSeriesDataMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Gets bytes of TensorboardBlobs.
     * This is to allow reading blob data stored in consumer project's Cloud
     * Storage bucket without users having to obtain Cloud Storage access
     * permission.
     * 
*/ public void readTensorboardBlobData( com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ClientCalls.asyncServerStreamingCall( getChannel().newCall(getReadTensorboardBlobDataMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Write time series data points of multiple TensorboardTimeSeries in multiple
     * TensorboardRun's. If any data fail to be ingested, an error is returned.
     * 
*/ public void writeTensorboardExperimentData( com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataRequest request, io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataResponse> responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getWriteTensorboardExperimentDataMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Write time series data points into multiple TensorboardTimeSeries under
     * a TensorboardRun. If any data fail to be ingested, an error is returned.
     * 
*/ public void writeTensorboardRunData( com.google.cloud.aiplatform.v1.WriteTensorboardRunDataRequest request, io.grpc.stub.StreamObserver responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getWriteTensorboardRunDataMethod(), getCallOptions()), request, responseObserver); } /** * * *
     * Exports a TensorboardTimeSeries' data. Data is returned in paginated
     * responses.
     * 
*/ public void exportTensorboardTimeSeriesData( com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataRequest request, io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataResponse> responseObserver) { io.grpc.stub.ClientCalls.asyncUnaryCall( getChannel().newCall(getExportTensorboardTimeSeriesDataMethod(), getCallOptions()), request, responseObserver); } } /** * A stub to allow clients to do synchronous rpc calls to service TensorboardService. * *
   * TensorboardService
   * 
*/ public static final class TensorboardServiceBlockingStub extends io.grpc.stub.AbstractBlockingStub { private TensorboardServiceBlockingStub( io.grpc.Channel channel, io.grpc.CallOptions callOptions) { super(channel, callOptions); } @java.lang.Override protected TensorboardServiceBlockingStub build( io.grpc.Channel channel, io.grpc.CallOptions callOptions) { return new TensorboardServiceBlockingStub(channel, callOptions); } /** * * *
     * Creates a Tensorboard.
     * 
*/ public com.google.longrunning.Operation createTensorboard( com.google.cloud.aiplatform.v1.CreateTensorboardRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getCreateTensorboardMethod(), getCallOptions(), request); } /** * * *
     * Gets a Tensorboard.
     * 
*/ public com.google.cloud.aiplatform.v1.Tensorboard getTensorboard( com.google.cloud.aiplatform.v1.GetTensorboardRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getGetTensorboardMethod(), getCallOptions(), request); } /** * * *
     * Updates a Tensorboard.
     * 
*/ public com.google.longrunning.Operation updateTensorboard( com.google.cloud.aiplatform.v1.UpdateTensorboardRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getUpdateTensorboardMethod(), getCallOptions(), request); } /** * * *
     * Lists Tensorboards in a Location.
     * 
*/ public com.google.cloud.aiplatform.v1.ListTensorboardsResponse listTensorboards( com.google.cloud.aiplatform.v1.ListTensorboardsRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getListTensorboardsMethod(), getCallOptions(), request); } /** * * *
     * Deletes a Tensorboard.
     * 
*/ public com.google.longrunning.Operation deleteTensorboard( com.google.cloud.aiplatform.v1.DeleteTensorboardRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getDeleteTensorboardMethod(), getCallOptions(), request); } /** * * *
     * Returns a list of monthly active users for a given TensorBoard instance.
     * 
*/ public com.google.cloud.aiplatform.v1.ReadTensorboardUsageResponse readTensorboardUsage( com.google.cloud.aiplatform.v1.ReadTensorboardUsageRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getReadTensorboardUsageMethod(), getCallOptions(), request); } /** * * *
     * Returns the storage size for a given TensorBoard instance.
     * 
*/ public com.google.cloud.aiplatform.v1.ReadTensorboardSizeResponse readTensorboardSize( com.google.cloud.aiplatform.v1.ReadTensorboardSizeRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getReadTensorboardSizeMethod(), getCallOptions(), request); } /** * * *
     * Creates a TensorboardExperiment.
     * 
*/ public com.google.cloud.aiplatform.v1.TensorboardExperiment createTensorboardExperiment( com.google.cloud.aiplatform.v1.CreateTensorboardExperimentRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getCreateTensorboardExperimentMethod(), getCallOptions(), request); } /** * * *
     * Gets a TensorboardExperiment.
     * 
*/ public com.google.cloud.aiplatform.v1.TensorboardExperiment getTensorboardExperiment( com.google.cloud.aiplatform.v1.GetTensorboardExperimentRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getGetTensorboardExperimentMethod(), getCallOptions(), request); } /** * * *
     * Updates a TensorboardExperiment.
     * 
*/ public com.google.cloud.aiplatform.v1.TensorboardExperiment updateTensorboardExperiment( com.google.cloud.aiplatform.v1.UpdateTensorboardExperimentRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getUpdateTensorboardExperimentMethod(), getCallOptions(), request); } /** * * *
     * Lists TensorboardExperiments in a Location.
     * 
*/ public com.google.cloud.aiplatform.v1.ListTensorboardExperimentsResponse listTensorboardExperiments( com.google.cloud.aiplatform.v1.ListTensorboardExperimentsRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getListTensorboardExperimentsMethod(), getCallOptions(), request); } /** * * *
     * Deletes a TensorboardExperiment.
     * 
*/ public com.google.longrunning.Operation deleteTensorboardExperiment( com.google.cloud.aiplatform.v1.DeleteTensorboardExperimentRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getDeleteTensorboardExperimentMethod(), getCallOptions(), request); } /** * * *
     * Creates a TensorboardRun.
     * 
*/ public com.google.cloud.aiplatform.v1.TensorboardRun createTensorboardRun( com.google.cloud.aiplatform.v1.CreateTensorboardRunRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getCreateTensorboardRunMethod(), getCallOptions(), request); } /** * * *
     * Batch create TensorboardRuns.
     * 
*/ public com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsResponse batchCreateTensorboardRuns( com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getBatchCreateTensorboardRunsMethod(), getCallOptions(), request); } /** * * *
     * Gets a TensorboardRun.
     * 
*/ public com.google.cloud.aiplatform.v1.TensorboardRun getTensorboardRun( com.google.cloud.aiplatform.v1.GetTensorboardRunRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getGetTensorboardRunMethod(), getCallOptions(), request); } /** * * *
     * Updates a TensorboardRun.
     * 
*/ public com.google.cloud.aiplatform.v1.TensorboardRun updateTensorboardRun( com.google.cloud.aiplatform.v1.UpdateTensorboardRunRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getUpdateTensorboardRunMethod(), getCallOptions(), request); } /** * * *
     * Lists TensorboardRuns in a Location.
     * 
*/ public com.google.cloud.aiplatform.v1.ListTensorboardRunsResponse listTensorboardRuns( com.google.cloud.aiplatform.v1.ListTensorboardRunsRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getListTensorboardRunsMethod(), getCallOptions(), request); } /** * * *
     * Deletes a TensorboardRun.
     * 
*/ public com.google.longrunning.Operation deleteTensorboardRun( com.google.cloud.aiplatform.v1.DeleteTensorboardRunRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getDeleteTensorboardRunMethod(), getCallOptions(), request); } /** * * *
     * Batch create TensorboardTimeSeries that belong to a TensorboardExperiment.
     * 
*/ public com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesResponse batchCreateTensorboardTimeSeries( com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getBatchCreateTensorboardTimeSeriesMethod(), getCallOptions(), request); } /** * * *
     * Creates a TensorboardTimeSeries.
     * 
*/ public com.google.cloud.aiplatform.v1.TensorboardTimeSeries createTensorboardTimeSeries( com.google.cloud.aiplatform.v1.CreateTensorboardTimeSeriesRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getCreateTensorboardTimeSeriesMethod(), getCallOptions(), request); } /** * * *
     * Gets a TensorboardTimeSeries.
     * 
*/ public com.google.cloud.aiplatform.v1.TensorboardTimeSeries getTensorboardTimeSeries( com.google.cloud.aiplatform.v1.GetTensorboardTimeSeriesRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getGetTensorboardTimeSeriesMethod(), getCallOptions(), request); } /** * * *
     * Updates a TensorboardTimeSeries.
     * 
*/ public com.google.cloud.aiplatform.v1.TensorboardTimeSeries updateTensorboardTimeSeries( com.google.cloud.aiplatform.v1.UpdateTensorboardTimeSeriesRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getUpdateTensorboardTimeSeriesMethod(), getCallOptions(), request); } /** * * *
     * Lists TensorboardTimeSeries in a Location.
     * 
*/ public com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesResponse listTensorboardTimeSeries( com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getListTensorboardTimeSeriesMethod(), getCallOptions(), request); } /** * * *
     * Deletes a TensorboardTimeSeries.
     * 
*/ public com.google.longrunning.Operation deleteTensorboardTimeSeries( com.google.cloud.aiplatform.v1.DeleteTensorboardTimeSeriesRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getDeleteTensorboardTimeSeriesMethod(), getCallOptions(), request); } /** * * *
     * Reads multiple TensorboardTimeSeries' data. The data point number limit is
     * 1000 for scalars, 100 for tensors and blob references. If the number of
     * data points stored is less than the limit, all data is returned.
     * Otherwise, the number limit of data points is randomly selected from
     * this time series and returned.
     * 
*/ public com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataResponse batchReadTensorboardTimeSeriesData( com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getBatchReadTensorboardTimeSeriesDataMethod(), getCallOptions(), request); } /** * * *
     * Reads a TensorboardTimeSeries' data. By default, if the number of data
     * points stored is less than 1000, all data is returned. Otherwise, 1000
     * data points is randomly selected from this time series and returned.
     * This value can be changed by changing max_data_points, which can't be
     * greater than 10k.
     * 
*/ public com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataResponse readTensorboardTimeSeriesData( com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getReadTensorboardTimeSeriesDataMethod(), getCallOptions(), request); } /** * * *
     * Gets bytes of TensorboardBlobs.
     * This is to allow reading blob data stored in consumer project's Cloud
     * Storage bucket without users having to obtain Cloud Storage access
     * permission.
     * 
*/ public java.util.Iterator readTensorboardBlobData( com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataRequest request) { return io.grpc.stub.ClientCalls.blockingServerStreamingCall( getChannel(), getReadTensorboardBlobDataMethod(), getCallOptions(), request); } /** * * *
     * Write time series data points of multiple TensorboardTimeSeries in multiple
     * TensorboardRun's. If any data fail to be ingested, an error is returned.
     * 
*/ public com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataResponse writeTensorboardExperimentData( com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getWriteTensorboardExperimentDataMethod(), getCallOptions(), request); } /** * * *
     * Write time series data points into multiple TensorboardTimeSeries under
     * a TensorboardRun. If any data fail to be ingested, an error is returned.
     * 
*/ public com.google.cloud.aiplatform.v1.WriteTensorboardRunDataResponse writeTensorboardRunData( com.google.cloud.aiplatform.v1.WriteTensorboardRunDataRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getWriteTensorboardRunDataMethod(), getCallOptions(), request); } /** * * *
     * Exports a TensorboardTimeSeries' data. Data is returned in paginated
     * responses.
     * 
*/ public com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataResponse exportTensorboardTimeSeriesData( com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataRequest request) { return io.grpc.stub.ClientCalls.blockingUnaryCall( getChannel(), getExportTensorboardTimeSeriesDataMethod(), getCallOptions(), request); } } /** * A stub to allow clients to do ListenableFuture-style rpc calls to service TensorboardService. * *
   * TensorboardService
   * 
*/ public static final class TensorboardServiceFutureStub extends io.grpc.stub.AbstractFutureStub { private TensorboardServiceFutureStub(io.grpc.Channel channel, io.grpc.CallOptions callOptions) { super(channel, callOptions); } @java.lang.Override protected TensorboardServiceFutureStub build( io.grpc.Channel channel, io.grpc.CallOptions callOptions) { return new TensorboardServiceFutureStub(channel, callOptions); } /** * * *
     * Creates a Tensorboard.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture createTensorboard(com.google.cloud.aiplatform.v1.CreateTensorboardRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getCreateTensorboardMethod(), getCallOptions()), request); } /** * * *
     * Gets a Tensorboard.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture< com.google.cloud.aiplatform.v1.Tensorboard> getTensorboard(com.google.cloud.aiplatform.v1.GetTensorboardRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getGetTensorboardMethod(), getCallOptions()), request); } /** * * *
     * Updates a Tensorboard.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture updateTensorboard(com.google.cloud.aiplatform.v1.UpdateTensorboardRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getUpdateTensorboardMethod(), getCallOptions()), request); } /** * * *
     * Lists Tensorboards in a Location.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture< com.google.cloud.aiplatform.v1.ListTensorboardsResponse> listTensorboards(com.google.cloud.aiplatform.v1.ListTensorboardsRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getListTensorboardsMethod(), getCallOptions()), request); } /** * * *
     * Deletes a Tensorboard.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture deleteTensorboard(com.google.cloud.aiplatform.v1.DeleteTensorboardRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getDeleteTensorboardMethod(), getCallOptions()), request); } /** * * *
     * Returns a list of monthly active users for a given TensorBoard instance.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture< com.google.cloud.aiplatform.v1.ReadTensorboardUsageResponse> readTensorboardUsage(com.google.cloud.aiplatform.v1.ReadTensorboardUsageRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getReadTensorboardUsageMethod(), getCallOptions()), request); } /** * * *
     * Returns the storage size for a given TensorBoard instance.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture< com.google.cloud.aiplatform.v1.ReadTensorboardSizeResponse> readTensorboardSize(com.google.cloud.aiplatform.v1.ReadTensorboardSizeRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getReadTensorboardSizeMethod(), getCallOptions()), request); } /** * * *
     * Creates a TensorboardExperiment.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture< com.google.cloud.aiplatform.v1.TensorboardExperiment> createTensorboardExperiment( com.google.cloud.aiplatform.v1.CreateTensorboardExperimentRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getCreateTensorboardExperimentMethod(), getCallOptions()), request); } /** * * *
     * Gets a TensorboardExperiment.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture< com.google.cloud.aiplatform.v1.TensorboardExperiment> getTensorboardExperiment( com.google.cloud.aiplatform.v1.GetTensorboardExperimentRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getGetTensorboardExperimentMethod(), getCallOptions()), request); } /** * * *
     * Updates a TensorboardExperiment.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture< com.google.cloud.aiplatform.v1.TensorboardExperiment> updateTensorboardExperiment( com.google.cloud.aiplatform.v1.UpdateTensorboardExperimentRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getUpdateTensorboardExperimentMethod(), getCallOptions()), request); } /** * * *
     * Lists TensorboardExperiments in a Location.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture< com.google.cloud.aiplatform.v1.ListTensorboardExperimentsResponse> listTensorboardExperiments( com.google.cloud.aiplatform.v1.ListTensorboardExperimentsRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getListTensorboardExperimentsMethod(), getCallOptions()), request); } /** * * *
     * Deletes a TensorboardExperiment.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture deleteTensorboardExperiment( com.google.cloud.aiplatform.v1.DeleteTensorboardExperimentRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getDeleteTensorboardExperimentMethod(), getCallOptions()), request); } /** * * *
     * Creates a TensorboardRun.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture< com.google.cloud.aiplatform.v1.TensorboardRun> createTensorboardRun(com.google.cloud.aiplatform.v1.CreateTensorboardRunRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getCreateTensorboardRunMethod(), getCallOptions()), request); } /** * * *
     * Batch create TensorboardRuns.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture< com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsResponse> batchCreateTensorboardRuns( com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getBatchCreateTensorboardRunsMethod(), getCallOptions()), request); } /** * * *
     * Gets a TensorboardRun.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture< com.google.cloud.aiplatform.v1.TensorboardRun> getTensorboardRun(com.google.cloud.aiplatform.v1.GetTensorboardRunRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getGetTensorboardRunMethod(), getCallOptions()), request); } /** * * *
     * Updates a TensorboardRun.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture< com.google.cloud.aiplatform.v1.TensorboardRun> updateTensorboardRun(com.google.cloud.aiplatform.v1.UpdateTensorboardRunRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getUpdateTensorboardRunMethod(), getCallOptions()), request); } /** * * *
     * Lists TensorboardRuns in a Location.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture< com.google.cloud.aiplatform.v1.ListTensorboardRunsResponse> listTensorboardRuns(com.google.cloud.aiplatform.v1.ListTensorboardRunsRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getListTensorboardRunsMethod(), getCallOptions()), request); } /** * * *
     * Deletes a TensorboardRun.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture deleteTensorboardRun(com.google.cloud.aiplatform.v1.DeleteTensorboardRunRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getDeleteTensorboardRunMethod(), getCallOptions()), request); } /** * * *
     * Batch create TensorboardTimeSeries that belong to a TensorboardExperiment.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture< com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesResponse> batchCreateTensorboardTimeSeries( com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getBatchCreateTensorboardTimeSeriesMethod(), getCallOptions()), request); } /** * * *
     * Creates a TensorboardTimeSeries.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture< com.google.cloud.aiplatform.v1.TensorboardTimeSeries> createTensorboardTimeSeries( com.google.cloud.aiplatform.v1.CreateTensorboardTimeSeriesRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getCreateTensorboardTimeSeriesMethod(), getCallOptions()), request); } /** * * *
     * Gets a TensorboardTimeSeries.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture< com.google.cloud.aiplatform.v1.TensorboardTimeSeries> getTensorboardTimeSeries( com.google.cloud.aiplatform.v1.GetTensorboardTimeSeriesRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getGetTensorboardTimeSeriesMethod(), getCallOptions()), request); } /** * * *
     * Updates a TensorboardTimeSeries.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture< com.google.cloud.aiplatform.v1.TensorboardTimeSeries> updateTensorboardTimeSeries( com.google.cloud.aiplatform.v1.UpdateTensorboardTimeSeriesRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getUpdateTensorboardTimeSeriesMethod(), getCallOptions()), request); } /** * * *
     * Lists TensorboardTimeSeries in a Location.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture< com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesResponse> listTensorboardTimeSeries( com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getListTensorboardTimeSeriesMethod(), getCallOptions()), request); } /** * * *
     * Deletes a TensorboardTimeSeries.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture deleteTensorboardTimeSeries( com.google.cloud.aiplatform.v1.DeleteTensorboardTimeSeriesRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getDeleteTensorboardTimeSeriesMethod(), getCallOptions()), request); } /** * * *
     * Reads multiple TensorboardTimeSeries' data. The data point number limit is
     * 1000 for scalars, 100 for tensors and blob references. If the number of
     * data points stored is less than the limit, all data is returned.
     * Otherwise, the number limit of data points is randomly selected from
     * this time series and returned.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture< com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataResponse> batchReadTensorboardTimeSeriesData( com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getBatchReadTensorboardTimeSeriesDataMethod(), getCallOptions()), request); } /** * * *
     * Reads a TensorboardTimeSeries' data. By default, if the number of data
     * points stored is less than 1000, all data is returned. Otherwise, 1000
     * data points is randomly selected from this time series and returned.
     * This value can be changed by changing max_data_points, which can't be
     * greater than 10k.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture< com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataResponse> readTensorboardTimeSeriesData( com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getReadTensorboardTimeSeriesDataMethod(), getCallOptions()), request); } /** * * *
     * Write time series data points of multiple TensorboardTimeSeries in multiple
     * TensorboardRun's. If any data fail to be ingested, an error is returned.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture< com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataResponse> writeTensorboardExperimentData( com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getWriteTensorboardExperimentDataMethod(), getCallOptions()), request); } /** * * *
     * Write time series data points into multiple TensorboardTimeSeries under
     * a TensorboardRun. If any data fail to be ingested, an error is returned.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture< com.google.cloud.aiplatform.v1.WriteTensorboardRunDataResponse> writeTensorboardRunData( com.google.cloud.aiplatform.v1.WriteTensorboardRunDataRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getWriteTensorboardRunDataMethod(), getCallOptions()), request); } /** * * *
     * Exports a TensorboardTimeSeries' data. Data is returned in paginated
     * responses.
     * 
*/ public com.google.common.util.concurrent.ListenableFuture< com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataResponse> exportTensorboardTimeSeriesData( com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataRequest request) { return io.grpc.stub.ClientCalls.futureUnaryCall( getChannel().newCall(getExportTensorboardTimeSeriesDataMethod(), getCallOptions()), request); } } private static final int METHODID_CREATE_TENSORBOARD = 0; private static final int METHODID_GET_TENSORBOARD = 1; private static final int METHODID_UPDATE_TENSORBOARD = 2; private static final int METHODID_LIST_TENSORBOARDS = 3; private static final int METHODID_DELETE_TENSORBOARD = 4; private static final int METHODID_READ_TENSORBOARD_USAGE = 5; private static final int METHODID_READ_TENSORBOARD_SIZE = 6; private static final int METHODID_CREATE_TENSORBOARD_EXPERIMENT = 7; private static final int METHODID_GET_TENSORBOARD_EXPERIMENT = 8; private static final int METHODID_UPDATE_TENSORBOARD_EXPERIMENT = 9; private static final int METHODID_LIST_TENSORBOARD_EXPERIMENTS = 10; private static final int METHODID_DELETE_TENSORBOARD_EXPERIMENT = 11; private static final int METHODID_CREATE_TENSORBOARD_RUN = 12; private static final int METHODID_BATCH_CREATE_TENSORBOARD_RUNS = 13; private static final int METHODID_GET_TENSORBOARD_RUN = 14; private static final int METHODID_UPDATE_TENSORBOARD_RUN = 15; private static final int METHODID_LIST_TENSORBOARD_RUNS = 16; private static final int METHODID_DELETE_TENSORBOARD_RUN = 17; private static final int METHODID_BATCH_CREATE_TENSORBOARD_TIME_SERIES = 18; private static final int METHODID_CREATE_TENSORBOARD_TIME_SERIES = 19; private static final int METHODID_GET_TENSORBOARD_TIME_SERIES = 20; private static final int METHODID_UPDATE_TENSORBOARD_TIME_SERIES = 21; private static final int METHODID_LIST_TENSORBOARD_TIME_SERIES = 22; private static final int METHODID_DELETE_TENSORBOARD_TIME_SERIES = 23; private static final int METHODID_BATCH_READ_TENSORBOARD_TIME_SERIES_DATA = 24; private static final int METHODID_READ_TENSORBOARD_TIME_SERIES_DATA = 25; private static final int METHODID_READ_TENSORBOARD_BLOB_DATA = 26; private static final int METHODID_WRITE_TENSORBOARD_EXPERIMENT_DATA = 27; private static final int METHODID_WRITE_TENSORBOARD_RUN_DATA = 28; private static final int METHODID_EXPORT_TENSORBOARD_TIME_SERIES_DATA = 29; private static final class MethodHandlers implements io.grpc.stub.ServerCalls.UnaryMethod, io.grpc.stub.ServerCalls.ServerStreamingMethod, io.grpc.stub.ServerCalls.ClientStreamingMethod, io.grpc.stub.ServerCalls.BidiStreamingMethod { private final AsyncService serviceImpl; private final int methodId; MethodHandlers(AsyncService serviceImpl, int methodId) { this.serviceImpl = serviceImpl; this.methodId = methodId; } @java.lang.Override @java.lang.SuppressWarnings("unchecked") public void invoke(Req request, io.grpc.stub.StreamObserver responseObserver) { switch (methodId) { case METHODID_CREATE_TENSORBOARD: serviceImpl.createTensorboard( (com.google.cloud.aiplatform.v1.CreateTensorboardRequest) request, (io.grpc.stub.StreamObserver) responseObserver); break; case METHODID_GET_TENSORBOARD: serviceImpl.getTensorboard( (com.google.cloud.aiplatform.v1.GetTensorboardRequest) request, (io.grpc.stub.StreamObserver) responseObserver); break; case METHODID_UPDATE_TENSORBOARD: serviceImpl.updateTensorboard( (com.google.cloud.aiplatform.v1.UpdateTensorboardRequest) request, (io.grpc.stub.StreamObserver) responseObserver); break; case METHODID_LIST_TENSORBOARDS: serviceImpl.listTensorboards( (com.google.cloud.aiplatform.v1.ListTensorboardsRequest) request, (io.grpc.stub.StreamObserver) responseObserver); break; case METHODID_DELETE_TENSORBOARD: serviceImpl.deleteTensorboard( (com.google.cloud.aiplatform.v1.DeleteTensorboardRequest) request, (io.grpc.stub.StreamObserver) responseObserver); break; case METHODID_READ_TENSORBOARD_USAGE: serviceImpl.readTensorboardUsage( (com.google.cloud.aiplatform.v1.ReadTensorboardUsageRequest) request, (io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.ReadTensorboardUsageResponse>) responseObserver); break; case METHODID_READ_TENSORBOARD_SIZE: serviceImpl.readTensorboardSize( (com.google.cloud.aiplatform.v1.ReadTensorboardSizeRequest) request, (io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.ReadTensorboardSizeResponse>) responseObserver); break; case METHODID_CREATE_TENSORBOARD_EXPERIMENT: serviceImpl.createTensorboardExperiment( (com.google.cloud.aiplatform.v1.CreateTensorboardExperimentRequest) request, (io.grpc.stub.StreamObserver) responseObserver); break; case METHODID_GET_TENSORBOARD_EXPERIMENT: serviceImpl.getTensorboardExperiment( (com.google.cloud.aiplatform.v1.GetTensorboardExperimentRequest) request, (io.grpc.stub.StreamObserver) responseObserver); break; case METHODID_UPDATE_TENSORBOARD_EXPERIMENT: serviceImpl.updateTensorboardExperiment( (com.google.cloud.aiplatform.v1.UpdateTensorboardExperimentRequest) request, (io.grpc.stub.StreamObserver) responseObserver); break; case METHODID_LIST_TENSORBOARD_EXPERIMENTS: serviceImpl.listTensorboardExperiments( (com.google.cloud.aiplatform.v1.ListTensorboardExperimentsRequest) request, (io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.ListTensorboardExperimentsResponse>) responseObserver); break; case METHODID_DELETE_TENSORBOARD_EXPERIMENT: serviceImpl.deleteTensorboardExperiment( (com.google.cloud.aiplatform.v1.DeleteTensorboardExperimentRequest) request, (io.grpc.stub.StreamObserver) responseObserver); break; case METHODID_CREATE_TENSORBOARD_RUN: serviceImpl.createTensorboardRun( (com.google.cloud.aiplatform.v1.CreateTensorboardRunRequest) request, (io.grpc.stub.StreamObserver) responseObserver); break; case METHODID_BATCH_CREATE_TENSORBOARD_RUNS: serviceImpl.batchCreateTensorboardRuns( (com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsRequest) request, (io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsResponse>) responseObserver); break; case METHODID_GET_TENSORBOARD_RUN: serviceImpl.getTensorboardRun( (com.google.cloud.aiplatform.v1.GetTensorboardRunRequest) request, (io.grpc.stub.StreamObserver) responseObserver); break; case METHODID_UPDATE_TENSORBOARD_RUN: serviceImpl.updateTensorboardRun( (com.google.cloud.aiplatform.v1.UpdateTensorboardRunRequest) request, (io.grpc.stub.StreamObserver) responseObserver); break; case METHODID_LIST_TENSORBOARD_RUNS: serviceImpl.listTensorboardRuns( (com.google.cloud.aiplatform.v1.ListTensorboardRunsRequest) request, (io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.ListTensorboardRunsResponse>) responseObserver); break; case METHODID_DELETE_TENSORBOARD_RUN: serviceImpl.deleteTensorboardRun( (com.google.cloud.aiplatform.v1.DeleteTensorboardRunRequest) request, (io.grpc.stub.StreamObserver) responseObserver); break; case METHODID_BATCH_CREATE_TENSORBOARD_TIME_SERIES: serviceImpl.batchCreateTensorboardTimeSeries( (com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesRequest) request, (io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesResponse>) responseObserver); break; case METHODID_CREATE_TENSORBOARD_TIME_SERIES: serviceImpl.createTensorboardTimeSeries( (com.google.cloud.aiplatform.v1.CreateTensorboardTimeSeriesRequest) request, (io.grpc.stub.StreamObserver) responseObserver); break; case METHODID_GET_TENSORBOARD_TIME_SERIES: serviceImpl.getTensorboardTimeSeries( (com.google.cloud.aiplatform.v1.GetTensorboardTimeSeriesRequest) request, (io.grpc.stub.StreamObserver) responseObserver); break; case METHODID_UPDATE_TENSORBOARD_TIME_SERIES: serviceImpl.updateTensorboardTimeSeries( (com.google.cloud.aiplatform.v1.UpdateTensorboardTimeSeriesRequest) request, (io.grpc.stub.StreamObserver) responseObserver); break; case METHODID_LIST_TENSORBOARD_TIME_SERIES: serviceImpl.listTensorboardTimeSeries( (com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesRequest) request, (io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesResponse>) responseObserver); break; case METHODID_DELETE_TENSORBOARD_TIME_SERIES: serviceImpl.deleteTensorboardTimeSeries( (com.google.cloud.aiplatform.v1.DeleteTensorboardTimeSeriesRequest) request, (io.grpc.stub.StreamObserver) responseObserver); break; case METHODID_BATCH_READ_TENSORBOARD_TIME_SERIES_DATA: serviceImpl.batchReadTensorboardTimeSeriesData( (com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataRequest) request, (io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataResponse>) responseObserver); break; case METHODID_READ_TENSORBOARD_TIME_SERIES_DATA: serviceImpl.readTensorboardTimeSeriesData( (com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataRequest) request, (io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataResponse>) responseObserver); break; case METHODID_READ_TENSORBOARD_BLOB_DATA: serviceImpl.readTensorboardBlobData( (com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataRequest) request, (io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataResponse>) responseObserver); break; case METHODID_WRITE_TENSORBOARD_EXPERIMENT_DATA: serviceImpl.writeTensorboardExperimentData( (com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataRequest) request, (io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataResponse>) responseObserver); break; case METHODID_WRITE_TENSORBOARD_RUN_DATA: serviceImpl.writeTensorboardRunData( (com.google.cloud.aiplatform.v1.WriteTensorboardRunDataRequest) request, (io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.WriteTensorboardRunDataResponse>) responseObserver); break; case METHODID_EXPORT_TENSORBOARD_TIME_SERIES_DATA: serviceImpl.exportTensorboardTimeSeriesData( (com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataRequest) request, (io.grpc.stub.StreamObserver< com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataResponse>) responseObserver); break; default: throw new AssertionError(); } } @java.lang.Override @java.lang.SuppressWarnings("unchecked") public io.grpc.stub.StreamObserver invoke( io.grpc.stub.StreamObserver responseObserver) { switch (methodId) { default: throw new AssertionError(); } } } public static final io.grpc.ServerServiceDefinition bindService(AsyncService service) { return io.grpc.ServerServiceDefinition.builder(getServiceDescriptor()) .addMethod( getCreateTensorboardMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.CreateTensorboardRequest, com.google.longrunning.Operation>(service, METHODID_CREATE_TENSORBOARD))) .addMethod( getGetTensorboardMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.GetTensorboardRequest, com.google.cloud.aiplatform.v1.Tensorboard>(service, METHODID_GET_TENSORBOARD))) .addMethod( getUpdateTensorboardMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.UpdateTensorboardRequest, com.google.longrunning.Operation>(service, METHODID_UPDATE_TENSORBOARD))) .addMethod( getListTensorboardsMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.ListTensorboardsRequest, com.google.cloud.aiplatform.v1.ListTensorboardsResponse>( service, METHODID_LIST_TENSORBOARDS))) .addMethod( getDeleteTensorboardMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.DeleteTensorboardRequest, com.google.longrunning.Operation>(service, METHODID_DELETE_TENSORBOARD))) .addMethod( getReadTensorboardUsageMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.ReadTensorboardUsageRequest, com.google.cloud.aiplatform.v1.ReadTensorboardUsageResponse>( service, METHODID_READ_TENSORBOARD_USAGE))) .addMethod( getReadTensorboardSizeMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.ReadTensorboardSizeRequest, com.google.cloud.aiplatform.v1.ReadTensorboardSizeResponse>( service, METHODID_READ_TENSORBOARD_SIZE))) .addMethod( getCreateTensorboardExperimentMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.CreateTensorboardExperimentRequest, com.google.cloud.aiplatform.v1.TensorboardExperiment>( service, METHODID_CREATE_TENSORBOARD_EXPERIMENT))) .addMethod( getGetTensorboardExperimentMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.GetTensorboardExperimentRequest, com.google.cloud.aiplatform.v1.TensorboardExperiment>( service, METHODID_GET_TENSORBOARD_EXPERIMENT))) .addMethod( getUpdateTensorboardExperimentMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.UpdateTensorboardExperimentRequest, com.google.cloud.aiplatform.v1.TensorboardExperiment>( service, METHODID_UPDATE_TENSORBOARD_EXPERIMENT))) .addMethod( getListTensorboardExperimentsMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.ListTensorboardExperimentsRequest, com.google.cloud.aiplatform.v1.ListTensorboardExperimentsResponse>( service, METHODID_LIST_TENSORBOARD_EXPERIMENTS))) .addMethod( getDeleteTensorboardExperimentMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.DeleteTensorboardExperimentRequest, com.google.longrunning.Operation>( service, METHODID_DELETE_TENSORBOARD_EXPERIMENT))) .addMethod( getCreateTensorboardRunMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.CreateTensorboardRunRequest, com.google.cloud.aiplatform.v1.TensorboardRun>( service, METHODID_CREATE_TENSORBOARD_RUN))) .addMethod( getBatchCreateTensorboardRunsMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsRequest, com.google.cloud.aiplatform.v1.BatchCreateTensorboardRunsResponse>( service, METHODID_BATCH_CREATE_TENSORBOARD_RUNS))) .addMethod( getGetTensorboardRunMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.GetTensorboardRunRequest, com.google.cloud.aiplatform.v1.TensorboardRun>( service, METHODID_GET_TENSORBOARD_RUN))) .addMethod( getUpdateTensorboardRunMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.UpdateTensorboardRunRequest, com.google.cloud.aiplatform.v1.TensorboardRun>( service, METHODID_UPDATE_TENSORBOARD_RUN))) .addMethod( getListTensorboardRunsMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.ListTensorboardRunsRequest, com.google.cloud.aiplatform.v1.ListTensorboardRunsResponse>( service, METHODID_LIST_TENSORBOARD_RUNS))) .addMethod( getDeleteTensorboardRunMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.DeleteTensorboardRunRequest, com.google.longrunning.Operation>(service, METHODID_DELETE_TENSORBOARD_RUN))) .addMethod( getBatchCreateTensorboardTimeSeriesMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesRequest, com.google.cloud.aiplatform.v1.BatchCreateTensorboardTimeSeriesResponse>( service, METHODID_BATCH_CREATE_TENSORBOARD_TIME_SERIES))) .addMethod( getCreateTensorboardTimeSeriesMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.CreateTensorboardTimeSeriesRequest, com.google.cloud.aiplatform.v1.TensorboardTimeSeries>( service, METHODID_CREATE_TENSORBOARD_TIME_SERIES))) .addMethod( getGetTensorboardTimeSeriesMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.GetTensorboardTimeSeriesRequest, com.google.cloud.aiplatform.v1.TensorboardTimeSeries>( service, METHODID_GET_TENSORBOARD_TIME_SERIES))) .addMethod( getUpdateTensorboardTimeSeriesMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.UpdateTensorboardTimeSeriesRequest, com.google.cloud.aiplatform.v1.TensorboardTimeSeries>( service, METHODID_UPDATE_TENSORBOARD_TIME_SERIES))) .addMethod( getListTensorboardTimeSeriesMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesRequest, com.google.cloud.aiplatform.v1.ListTensorboardTimeSeriesResponse>( service, METHODID_LIST_TENSORBOARD_TIME_SERIES))) .addMethod( getDeleteTensorboardTimeSeriesMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.DeleteTensorboardTimeSeriesRequest, com.google.longrunning.Operation>( service, METHODID_DELETE_TENSORBOARD_TIME_SERIES))) .addMethod( getBatchReadTensorboardTimeSeriesDataMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataRequest, com.google.cloud.aiplatform.v1.BatchReadTensorboardTimeSeriesDataResponse>( service, METHODID_BATCH_READ_TENSORBOARD_TIME_SERIES_DATA))) .addMethod( getReadTensorboardTimeSeriesDataMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataRequest, com.google.cloud.aiplatform.v1.ReadTensorboardTimeSeriesDataResponse>( service, METHODID_READ_TENSORBOARD_TIME_SERIES_DATA))) .addMethod( getReadTensorboardBlobDataMethod(), io.grpc.stub.ServerCalls.asyncServerStreamingCall( new MethodHandlers< com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataRequest, com.google.cloud.aiplatform.v1.ReadTensorboardBlobDataResponse>( service, METHODID_READ_TENSORBOARD_BLOB_DATA))) .addMethod( getWriteTensorboardExperimentDataMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataRequest, com.google.cloud.aiplatform.v1.WriteTensorboardExperimentDataResponse>( service, METHODID_WRITE_TENSORBOARD_EXPERIMENT_DATA))) .addMethod( getWriteTensorboardRunDataMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.WriteTensorboardRunDataRequest, com.google.cloud.aiplatform.v1.WriteTensorboardRunDataResponse>( service, METHODID_WRITE_TENSORBOARD_RUN_DATA))) .addMethod( getExportTensorboardTimeSeriesDataMethod(), io.grpc.stub.ServerCalls.asyncUnaryCall( new MethodHandlers< com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataRequest, com.google.cloud.aiplatform.v1.ExportTensorboardTimeSeriesDataResponse>( service, METHODID_EXPORT_TENSORBOARD_TIME_SERIES_DATA))) .build(); } private abstract static class TensorboardServiceBaseDescriptorSupplier implements io.grpc.protobuf.ProtoFileDescriptorSupplier, io.grpc.protobuf.ProtoServiceDescriptorSupplier { TensorboardServiceBaseDescriptorSupplier() {} @java.lang.Override public com.google.protobuf.Descriptors.FileDescriptor getFileDescriptor() { return com.google.cloud.aiplatform.v1.TensorboardServiceProto.getDescriptor(); } @java.lang.Override public com.google.protobuf.Descriptors.ServiceDescriptor getServiceDescriptor() { return getFileDescriptor().findServiceByName("TensorboardService"); } } private static final class TensorboardServiceFileDescriptorSupplier extends TensorboardServiceBaseDescriptorSupplier { TensorboardServiceFileDescriptorSupplier() {} } private static final class TensorboardServiceMethodDescriptorSupplier extends TensorboardServiceBaseDescriptorSupplier implements io.grpc.protobuf.ProtoMethodDescriptorSupplier { private final java.lang.String methodName; TensorboardServiceMethodDescriptorSupplier(java.lang.String methodName) { this.methodName = methodName; } @java.lang.Override public com.google.protobuf.Descriptors.MethodDescriptor getMethodDescriptor() { return getServiceDescriptor().findMethodByName(methodName); } } private static volatile io.grpc.ServiceDescriptor serviceDescriptor; public static io.grpc.ServiceDescriptor getServiceDescriptor() { io.grpc.ServiceDescriptor result = serviceDescriptor; if (result == null) { synchronized (TensorboardServiceGrpc.class) { result = serviceDescriptor; if (result == null) { serviceDescriptor = result = io.grpc.ServiceDescriptor.newBuilder(SERVICE_NAME) .setSchemaDescriptor(new TensorboardServiceFileDescriptorSupplier()) .addMethod(getCreateTensorboardMethod()) .addMethod(getGetTensorboardMethod()) .addMethod(getUpdateTensorboardMethod()) .addMethod(getListTensorboardsMethod()) .addMethod(getDeleteTensorboardMethod()) .addMethod(getReadTensorboardUsageMethod()) .addMethod(getReadTensorboardSizeMethod()) .addMethod(getCreateTensorboardExperimentMethod()) .addMethod(getGetTensorboardExperimentMethod()) .addMethod(getUpdateTensorboardExperimentMethod()) .addMethod(getListTensorboardExperimentsMethod()) .addMethod(getDeleteTensorboardExperimentMethod()) .addMethod(getCreateTensorboardRunMethod()) .addMethod(getBatchCreateTensorboardRunsMethod()) .addMethod(getGetTensorboardRunMethod()) .addMethod(getUpdateTensorboardRunMethod()) .addMethod(getListTensorboardRunsMethod()) .addMethod(getDeleteTensorboardRunMethod()) .addMethod(getBatchCreateTensorboardTimeSeriesMethod()) .addMethod(getCreateTensorboardTimeSeriesMethod()) .addMethod(getGetTensorboardTimeSeriesMethod()) .addMethod(getUpdateTensorboardTimeSeriesMethod()) .addMethod(getListTensorboardTimeSeriesMethod()) .addMethod(getDeleteTensorboardTimeSeriesMethod()) .addMethod(getBatchReadTensorboardTimeSeriesDataMethod()) .addMethod(getReadTensorboardTimeSeriesDataMethod()) .addMethod(getReadTensorboardBlobDataMethod()) .addMethod(getWriteTensorboardExperimentDataMethod()) .addMethod(getWriteTensorboardRunDataMethod()) .addMethod(getExportTensorboardTimeSeriesDataMethod()) .build(); } } } return result; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy