google.cloud.automl.v1.text.proto Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of proto-google-cloud-automl-v1 Show documentation
Show all versions of proto-google-cloud-automl-v1 Show documentation
PROTO library for proto-google-cloud-automl-v1
// Copyright 2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax = "proto3";
package google.cloud.automl.v1;
import "google/cloud/automl/v1/classification.proto";
option csharp_namespace = "Google.Cloud.AutoML.V1";
option go_package = "cloud.google.com/go/automl/apiv1/automlpb;automlpb";
option java_multiple_files = true;
option java_outer_classname = "TextProto";
option java_package = "com.google.cloud.automl.v1";
option php_namespace = "Google\\Cloud\\AutoMl\\V1";
option ruby_package = "Google::Cloud::AutoML::V1";
// Dataset metadata for classification.
message TextClassificationDatasetMetadata {
// Required. Type of the classification problem.
ClassificationType classification_type = 1;
}
// Model metadata that is specific to text classification.
message TextClassificationModelMetadata {
// Output only. Classification type of the dataset used to train this model.
ClassificationType classification_type = 3;
}
// Dataset metadata that is specific to text extraction
message TextExtractionDatasetMetadata {
}
// Model metadata that is specific to text extraction.
message TextExtractionModelMetadata {
}
// Dataset metadata for text sentiment.
message TextSentimentDatasetMetadata {
// Required. A sentiment is expressed as an integer ordinal, where higher value
// means a more positive sentiment. The range of sentiments that will be used
// is between 0 and sentiment_max (inclusive on both ends), and all the values
// in the range must be represented in the dataset before a model can be
// created.
// sentiment_max value must be between 1 and 10 (inclusive).
int32 sentiment_max = 1;
}
// Model metadata that is specific to text sentiment.
message TextSentimentModelMetadata {
}