All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata Maven / Gradle / Ivy

There is a newer version: 0.141.0
Show newest version
/*
 * Copyright 2024 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: google/cloud/automl/v1beta1/image.proto

// Protobuf Java Version: 3.25.3
package com.google.cloud.automl.v1beta1;

/**
 *
 *
 * 
 * Model metadata specific to image object detection.
 * 
* * Protobuf type {@code google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata} */ public final class ImageObjectDetectionModelMetadata extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata) ImageObjectDetectionModelMetadataOrBuilder { private static final long serialVersionUID = 0L; // Use ImageObjectDetectionModelMetadata.newBuilder() to construct. private ImageObjectDetectionModelMetadata( com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private ImageObjectDetectionModelMetadata() { modelType_ = ""; stopReason_ = ""; } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance(UnusedPrivateParameter unused) { return new ImageObjectDetectionModelMetadata(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.ImageProto .internal_static_google_cloud_automl_v1beta1_ImageObjectDetectionModelMetadata_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.ImageProto .internal_static_google_cloud_automl_v1beta1_ImageObjectDetectionModelMetadata_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata.class, com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata.Builder.class); } public static final int MODEL_TYPE_FIELD_NUMBER = 1; @SuppressWarnings("serial") private volatile java.lang.Object modelType_ = ""; /** * * *
   * Optional. Type of the model. The available values are:
   * *   `cloud-high-accuracy-1` - (default) A model to be used via prediction
   *               calls to AutoML API. Expected to have a higher latency, but
   *               should also have a higher prediction quality than other
   *               models.
   * *   `cloud-low-latency-1` -  A model to be used via prediction
   *               calls to AutoML API. Expected to have low latency, but may
   *               have lower prediction quality than other models.
   * *   `mobile-low-latency-1` - A model that, in addition to providing
   *               prediction via AutoML API, can also be exported (see
   *               [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
   *               with TensorFlow afterwards. Expected to have low latency, but
   *               may have lower prediction quality than other models.
   * *   `mobile-versatile-1` - A model that, in addition to providing
   *               prediction via AutoML API, can also be exported (see
   *               [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
   *               with TensorFlow afterwards.
   * *   `mobile-high-accuracy-1` - A model that, in addition to providing
   *               prediction via AutoML API, can also be exported (see
   *               [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
   *               with TensorFlow afterwards.  Expected to have a higher
   *               latency, but should also have a higher prediction quality
   *               than other models.
   * 
* * string model_type = 1; * * @return The modelType. */ @java.lang.Override public java.lang.String getModelType() { java.lang.Object ref = modelType_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); modelType_ = s; return s; } } /** * * *
   * Optional. Type of the model. The available values are:
   * *   `cloud-high-accuracy-1` - (default) A model to be used via prediction
   *               calls to AutoML API. Expected to have a higher latency, but
   *               should also have a higher prediction quality than other
   *               models.
   * *   `cloud-low-latency-1` -  A model to be used via prediction
   *               calls to AutoML API. Expected to have low latency, but may
   *               have lower prediction quality than other models.
   * *   `mobile-low-latency-1` - A model that, in addition to providing
   *               prediction via AutoML API, can also be exported (see
   *               [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
   *               with TensorFlow afterwards. Expected to have low latency, but
   *               may have lower prediction quality than other models.
   * *   `mobile-versatile-1` - A model that, in addition to providing
   *               prediction via AutoML API, can also be exported (see
   *               [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
   *               with TensorFlow afterwards.
   * *   `mobile-high-accuracy-1` - A model that, in addition to providing
   *               prediction via AutoML API, can also be exported (see
   *               [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
   *               with TensorFlow afterwards.  Expected to have a higher
   *               latency, but should also have a higher prediction quality
   *               than other models.
   * 
* * string model_type = 1; * * @return The bytes for modelType. */ @java.lang.Override public com.google.protobuf.ByteString getModelTypeBytes() { java.lang.Object ref = modelType_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref); modelType_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int NODE_COUNT_FIELD_NUMBER = 3; private long nodeCount_ = 0L; /** * * *
   * Output only. The number of nodes this model is deployed on. A node is an
   * abstraction of a machine resource, which can handle online prediction QPS
   * as given in the qps_per_node field.
   * 
* * int64 node_count = 3; * * @return The nodeCount. */ @java.lang.Override public long getNodeCount() { return nodeCount_; } public static final int NODE_QPS_FIELD_NUMBER = 4; private double nodeQps_ = 0D; /** * * *
   * Output only. An approximate number of online prediction QPS that can
   * be supported by this model per each node on which it is deployed.
   * 
* * double node_qps = 4; * * @return The nodeQps. */ @java.lang.Override public double getNodeQps() { return nodeQps_; } public static final int STOP_REASON_FIELD_NUMBER = 5; @SuppressWarnings("serial") private volatile java.lang.Object stopReason_ = ""; /** * * *
   * Output only. The reason that this create model operation stopped,
   * e.g. `BUDGET_REACHED`, `MODEL_CONVERGED`.
   * 
* * string stop_reason = 5; * * @return The stopReason. */ @java.lang.Override public java.lang.String getStopReason() { java.lang.Object ref = stopReason_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); stopReason_ = s; return s; } } /** * * *
   * Output only. The reason that this create model operation stopped,
   * e.g. `BUDGET_REACHED`, `MODEL_CONVERGED`.
   * 
* * string stop_reason = 5; * * @return The bytes for stopReason. */ @java.lang.Override public com.google.protobuf.ByteString getStopReasonBytes() { java.lang.Object ref = stopReason_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref); stopReason_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int TRAIN_BUDGET_MILLI_NODE_HOURS_FIELD_NUMBER = 6; private long trainBudgetMilliNodeHours_ = 0L; /** * * *
   * The train budget of creating this model, expressed in milli node
   * hours i.e. 1,000 value in this field means 1 node hour. The actual
   * `train_cost` will be equal or less than this value. If further model
   * training ceases to provide any improvements, it will stop without using
   * full budget and the stop_reason will be `MODEL_CONVERGED`.
   * Note, node_hour  = actual_hour * number_of_nodes_invovled.
   * For model type `cloud-high-accuracy-1`(default) and `cloud-low-latency-1`,
   * the train budget must be between 20,000 and 900,000 milli node hours,
   * inclusive. The default value is 216, 000 which represents one day in
   * wall time.
   * For model type `mobile-low-latency-1`, `mobile-versatile-1`,
   * `mobile-high-accuracy-1`, `mobile-core-ml-low-latency-1`,
   * `mobile-core-ml-versatile-1`, `mobile-core-ml-high-accuracy-1`, the train
   * budget must be between 1,000 and 100,000 milli node hours, inclusive.
   * The default value is 24, 000 which represents one day in wall time.
   * 
* * int64 train_budget_milli_node_hours = 6; * * @return The trainBudgetMilliNodeHours. */ @java.lang.Override public long getTrainBudgetMilliNodeHours() { return trainBudgetMilliNodeHours_; } public static final int TRAIN_COST_MILLI_NODE_HOURS_FIELD_NUMBER = 7; private long trainCostMilliNodeHours_ = 0L; /** * * *
   * Output only. The actual train cost of creating this model, expressed in
   * milli node hours, i.e. 1,000 value in this field means 1 node hour.
   * Guaranteed to not exceed the train budget.
   * 
* * int64 train_cost_milli_node_hours = 7; * * @return The trainCostMilliNodeHours. */ @java.lang.Override public long getTrainCostMilliNodeHours() { return trainCostMilliNodeHours_; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(modelType_)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 1, modelType_); } if (nodeCount_ != 0L) { output.writeInt64(3, nodeCount_); } if (java.lang.Double.doubleToRawLongBits(nodeQps_) != 0) { output.writeDouble(4, nodeQps_); } if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(stopReason_)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 5, stopReason_); } if (trainBudgetMilliNodeHours_ != 0L) { output.writeInt64(6, trainBudgetMilliNodeHours_); } if (trainCostMilliNodeHours_ != 0L) { output.writeInt64(7, trainCostMilliNodeHours_); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(modelType_)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(1, modelType_); } if (nodeCount_ != 0L) { size += com.google.protobuf.CodedOutputStream.computeInt64Size(3, nodeCount_); } if (java.lang.Double.doubleToRawLongBits(nodeQps_) != 0) { size += com.google.protobuf.CodedOutputStream.computeDoubleSize(4, nodeQps_); } if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(stopReason_)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(5, stopReason_); } if (trainBudgetMilliNodeHours_ != 0L) { size += com.google.protobuf.CodedOutputStream.computeInt64Size(6, trainBudgetMilliNodeHours_); } if (trainCostMilliNodeHours_ != 0L) { size += com.google.protobuf.CodedOutputStream.computeInt64Size(7, trainCostMilliNodeHours_); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata)) { return super.equals(obj); } com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata other = (com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata) obj; if (!getModelType().equals(other.getModelType())) return false; if (getNodeCount() != other.getNodeCount()) return false; if (java.lang.Double.doubleToLongBits(getNodeQps()) != java.lang.Double.doubleToLongBits(other.getNodeQps())) return false; if (!getStopReason().equals(other.getStopReason())) return false; if (getTrainBudgetMilliNodeHours() != other.getTrainBudgetMilliNodeHours()) return false; if (getTrainCostMilliNodeHours() != other.getTrainCostMilliNodeHours()) return false; if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); hash = (37 * hash) + MODEL_TYPE_FIELD_NUMBER; hash = (53 * hash) + getModelType().hashCode(); hash = (37 * hash) + NODE_COUNT_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong(getNodeCount()); hash = (37 * hash) + NODE_QPS_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( java.lang.Double.doubleToLongBits(getNodeQps())); hash = (37 * hash) + STOP_REASON_FIELD_NUMBER; hash = (53 * hash) + getStopReason().hashCode(); hash = (37 * hash) + TRAIN_BUDGET_MILLI_NODE_HOURS_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong(getTrainBudgetMilliNodeHours()); hash = (37 * hash) + TRAIN_COST_MILLI_NODE_HOURS_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong(getTrainCostMilliNodeHours()); hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata parseFrom( byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata parseFrom( java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder( com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * * *
   * Model metadata specific to image object detection.
   * 
* * Protobuf type {@code google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata) com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadataOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.ImageProto .internal_static_google_cloud_automl_v1beta1_ImageObjectDetectionModelMetadata_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.ImageProto .internal_static_google_cloud_automl_v1beta1_ImageObjectDetectionModelMetadata_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata.class, com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata.Builder.class); } // Construct using // com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata.newBuilder() private Builder() {} private Builder(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; modelType_ = ""; nodeCount_ = 0L; nodeQps_ = 0D; stopReason_ = ""; trainBudgetMilliNodeHours_ = 0L; trainCostMilliNodeHours_ = 0L; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return com.google.cloud.automl.v1beta1.ImageProto .internal_static_google_cloud_automl_v1beta1_ImageObjectDetectionModelMetadata_descriptor; } @java.lang.Override public com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata getDefaultInstanceForType() { return com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata.getDefaultInstance(); } @java.lang.Override public com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata build() { com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata buildPartial() { com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata result = new com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata(this); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartial0( com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata result) { int from_bitField0_ = bitField0_; if (((from_bitField0_ & 0x00000001) != 0)) { result.modelType_ = modelType_; } if (((from_bitField0_ & 0x00000002) != 0)) { result.nodeCount_ = nodeCount_; } if (((from_bitField0_ & 0x00000004) != 0)) { result.nodeQps_ = nodeQps_; } if (((from_bitField0_ & 0x00000008) != 0)) { result.stopReason_ = stopReason_; } if (((from_bitField0_ & 0x00000010) != 0)) { result.trainBudgetMilliNodeHours_ = trainBudgetMilliNodeHours_; } if (((from_bitField0_ & 0x00000020) != 0)) { result.trainCostMilliNodeHours_ = trainCostMilliNodeHours_; } } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata) { return mergeFrom((com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata) other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom( com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata other) { if (other == com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata.getDefaultInstance()) return this; if (!other.getModelType().isEmpty()) { modelType_ = other.modelType_; bitField0_ |= 0x00000001; onChanged(); } if (other.getNodeCount() != 0L) { setNodeCount(other.getNodeCount()); } if (other.getNodeQps() != 0D) { setNodeQps(other.getNodeQps()); } if (!other.getStopReason().isEmpty()) { stopReason_ = other.stopReason_; bitField0_ |= 0x00000008; onChanged(); } if (other.getTrainBudgetMilliNodeHours() != 0L) { setTrainBudgetMilliNodeHours(other.getTrainBudgetMilliNodeHours()); } if (other.getTrainCostMilliNodeHours() != 0L) { setTrainCostMilliNodeHours(other.getTrainCostMilliNodeHours()); } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { modelType_ = input.readStringRequireUtf8(); bitField0_ |= 0x00000001; break; } // case 10 case 24: { nodeCount_ = input.readInt64(); bitField0_ |= 0x00000002; break; } // case 24 case 33: { nodeQps_ = input.readDouble(); bitField0_ |= 0x00000004; break; } // case 33 case 42: { stopReason_ = input.readStringRequireUtf8(); bitField0_ |= 0x00000008; break; } // case 42 case 48: { trainBudgetMilliNodeHours_ = input.readInt64(); bitField0_ |= 0x00000010; break; } // case 48 case 56: { trainCostMilliNodeHours_ = input.readInt64(); bitField0_ |= 0x00000020; break; } // case 56 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private java.lang.Object modelType_ = ""; /** * * *
     * Optional. Type of the model. The available values are:
     * *   `cloud-high-accuracy-1` - (default) A model to be used via prediction
     *               calls to AutoML API. Expected to have a higher latency, but
     *               should also have a higher prediction quality than other
     *               models.
     * *   `cloud-low-latency-1` -  A model to be used via prediction
     *               calls to AutoML API. Expected to have low latency, but may
     *               have lower prediction quality than other models.
     * *   `mobile-low-latency-1` - A model that, in addition to providing
     *               prediction via AutoML API, can also be exported (see
     *               [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
     *               with TensorFlow afterwards. Expected to have low latency, but
     *               may have lower prediction quality than other models.
     * *   `mobile-versatile-1` - A model that, in addition to providing
     *               prediction via AutoML API, can also be exported (see
     *               [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
     *               with TensorFlow afterwards.
     * *   `mobile-high-accuracy-1` - A model that, in addition to providing
     *               prediction via AutoML API, can also be exported (see
     *               [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
     *               with TensorFlow afterwards.  Expected to have a higher
     *               latency, but should also have a higher prediction quality
     *               than other models.
     * 
* * string model_type = 1; * * @return The modelType. */ public java.lang.String getModelType() { java.lang.Object ref = modelType_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); modelType_ = s; return s; } else { return (java.lang.String) ref; } } /** * * *
     * Optional. Type of the model. The available values are:
     * *   `cloud-high-accuracy-1` - (default) A model to be used via prediction
     *               calls to AutoML API. Expected to have a higher latency, but
     *               should also have a higher prediction quality than other
     *               models.
     * *   `cloud-low-latency-1` -  A model to be used via prediction
     *               calls to AutoML API. Expected to have low latency, but may
     *               have lower prediction quality than other models.
     * *   `mobile-low-latency-1` - A model that, in addition to providing
     *               prediction via AutoML API, can also be exported (see
     *               [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
     *               with TensorFlow afterwards. Expected to have low latency, but
     *               may have lower prediction quality than other models.
     * *   `mobile-versatile-1` - A model that, in addition to providing
     *               prediction via AutoML API, can also be exported (see
     *               [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
     *               with TensorFlow afterwards.
     * *   `mobile-high-accuracy-1` - A model that, in addition to providing
     *               prediction via AutoML API, can also be exported (see
     *               [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
     *               with TensorFlow afterwards.  Expected to have a higher
     *               latency, but should also have a higher prediction quality
     *               than other models.
     * 
* * string model_type = 1; * * @return The bytes for modelType. */ public com.google.protobuf.ByteString getModelTypeBytes() { java.lang.Object ref = modelType_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref); modelType_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** * * *
     * Optional. Type of the model. The available values are:
     * *   `cloud-high-accuracy-1` - (default) A model to be used via prediction
     *               calls to AutoML API. Expected to have a higher latency, but
     *               should also have a higher prediction quality than other
     *               models.
     * *   `cloud-low-latency-1` -  A model to be used via prediction
     *               calls to AutoML API. Expected to have low latency, but may
     *               have lower prediction quality than other models.
     * *   `mobile-low-latency-1` - A model that, in addition to providing
     *               prediction via AutoML API, can also be exported (see
     *               [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
     *               with TensorFlow afterwards. Expected to have low latency, but
     *               may have lower prediction quality than other models.
     * *   `mobile-versatile-1` - A model that, in addition to providing
     *               prediction via AutoML API, can also be exported (see
     *               [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
     *               with TensorFlow afterwards.
     * *   `mobile-high-accuracy-1` - A model that, in addition to providing
     *               prediction via AutoML API, can also be exported (see
     *               [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
     *               with TensorFlow afterwards.  Expected to have a higher
     *               latency, but should also have a higher prediction quality
     *               than other models.
     * 
* * string model_type = 1; * * @param value The modelType to set. * @return This builder for chaining. */ public Builder setModelType(java.lang.String value) { if (value == null) { throw new NullPointerException(); } modelType_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } /** * * *
     * Optional. Type of the model. The available values are:
     * *   `cloud-high-accuracy-1` - (default) A model to be used via prediction
     *               calls to AutoML API. Expected to have a higher latency, but
     *               should also have a higher prediction quality than other
     *               models.
     * *   `cloud-low-latency-1` -  A model to be used via prediction
     *               calls to AutoML API. Expected to have low latency, but may
     *               have lower prediction quality than other models.
     * *   `mobile-low-latency-1` - A model that, in addition to providing
     *               prediction via AutoML API, can also be exported (see
     *               [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
     *               with TensorFlow afterwards. Expected to have low latency, but
     *               may have lower prediction quality than other models.
     * *   `mobile-versatile-1` - A model that, in addition to providing
     *               prediction via AutoML API, can also be exported (see
     *               [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
     *               with TensorFlow afterwards.
     * *   `mobile-high-accuracy-1` - A model that, in addition to providing
     *               prediction via AutoML API, can also be exported (see
     *               [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
     *               with TensorFlow afterwards.  Expected to have a higher
     *               latency, but should also have a higher prediction quality
     *               than other models.
     * 
* * string model_type = 1; * * @return This builder for chaining. */ public Builder clearModelType() { modelType_ = getDefaultInstance().getModelType(); bitField0_ = (bitField0_ & ~0x00000001); onChanged(); return this; } /** * * *
     * Optional. Type of the model. The available values are:
     * *   `cloud-high-accuracy-1` - (default) A model to be used via prediction
     *               calls to AutoML API. Expected to have a higher latency, but
     *               should also have a higher prediction quality than other
     *               models.
     * *   `cloud-low-latency-1` -  A model to be used via prediction
     *               calls to AutoML API. Expected to have low latency, but may
     *               have lower prediction quality than other models.
     * *   `mobile-low-latency-1` - A model that, in addition to providing
     *               prediction via AutoML API, can also be exported (see
     *               [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
     *               with TensorFlow afterwards. Expected to have low latency, but
     *               may have lower prediction quality than other models.
     * *   `mobile-versatile-1` - A model that, in addition to providing
     *               prediction via AutoML API, can also be exported (see
     *               [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
     *               with TensorFlow afterwards.
     * *   `mobile-high-accuracy-1` - A model that, in addition to providing
     *               prediction via AutoML API, can also be exported (see
     *               [AutoMl.ExportModel][google.cloud.automl.v1beta1.AutoMl.ExportModel]) and used on a mobile or edge device
     *               with TensorFlow afterwards.  Expected to have a higher
     *               latency, but should also have a higher prediction quality
     *               than other models.
     * 
* * string model_type = 1; * * @param value The bytes for modelType to set. * @return This builder for chaining. */ public Builder setModelTypeBytes(com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } checkByteStringIsUtf8(value); modelType_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } private long nodeCount_; /** * * *
     * Output only. The number of nodes this model is deployed on. A node is an
     * abstraction of a machine resource, which can handle online prediction QPS
     * as given in the qps_per_node field.
     * 
* * int64 node_count = 3; * * @return The nodeCount. */ @java.lang.Override public long getNodeCount() { return nodeCount_; } /** * * *
     * Output only. The number of nodes this model is deployed on. A node is an
     * abstraction of a machine resource, which can handle online prediction QPS
     * as given in the qps_per_node field.
     * 
* * int64 node_count = 3; * * @param value The nodeCount to set. * @return This builder for chaining. */ public Builder setNodeCount(long value) { nodeCount_ = value; bitField0_ |= 0x00000002; onChanged(); return this; } /** * * *
     * Output only. The number of nodes this model is deployed on. A node is an
     * abstraction of a machine resource, which can handle online prediction QPS
     * as given in the qps_per_node field.
     * 
* * int64 node_count = 3; * * @return This builder for chaining. */ public Builder clearNodeCount() { bitField0_ = (bitField0_ & ~0x00000002); nodeCount_ = 0L; onChanged(); return this; } private double nodeQps_; /** * * *
     * Output only. An approximate number of online prediction QPS that can
     * be supported by this model per each node on which it is deployed.
     * 
* * double node_qps = 4; * * @return The nodeQps. */ @java.lang.Override public double getNodeQps() { return nodeQps_; } /** * * *
     * Output only. An approximate number of online prediction QPS that can
     * be supported by this model per each node on which it is deployed.
     * 
* * double node_qps = 4; * * @param value The nodeQps to set. * @return This builder for chaining. */ public Builder setNodeQps(double value) { nodeQps_ = value; bitField0_ |= 0x00000004; onChanged(); return this; } /** * * *
     * Output only. An approximate number of online prediction QPS that can
     * be supported by this model per each node on which it is deployed.
     * 
* * double node_qps = 4; * * @return This builder for chaining. */ public Builder clearNodeQps() { bitField0_ = (bitField0_ & ~0x00000004); nodeQps_ = 0D; onChanged(); return this; } private java.lang.Object stopReason_ = ""; /** * * *
     * Output only. The reason that this create model operation stopped,
     * e.g. `BUDGET_REACHED`, `MODEL_CONVERGED`.
     * 
* * string stop_reason = 5; * * @return The stopReason. */ public java.lang.String getStopReason() { java.lang.Object ref = stopReason_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); stopReason_ = s; return s; } else { return (java.lang.String) ref; } } /** * * *
     * Output only. The reason that this create model operation stopped,
     * e.g. `BUDGET_REACHED`, `MODEL_CONVERGED`.
     * 
* * string stop_reason = 5; * * @return The bytes for stopReason. */ public com.google.protobuf.ByteString getStopReasonBytes() { java.lang.Object ref = stopReason_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref); stopReason_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** * * *
     * Output only. The reason that this create model operation stopped,
     * e.g. `BUDGET_REACHED`, `MODEL_CONVERGED`.
     * 
* * string stop_reason = 5; * * @param value The stopReason to set. * @return This builder for chaining. */ public Builder setStopReason(java.lang.String value) { if (value == null) { throw new NullPointerException(); } stopReason_ = value; bitField0_ |= 0x00000008; onChanged(); return this; } /** * * *
     * Output only. The reason that this create model operation stopped,
     * e.g. `BUDGET_REACHED`, `MODEL_CONVERGED`.
     * 
* * string stop_reason = 5; * * @return This builder for chaining. */ public Builder clearStopReason() { stopReason_ = getDefaultInstance().getStopReason(); bitField0_ = (bitField0_ & ~0x00000008); onChanged(); return this; } /** * * *
     * Output only. The reason that this create model operation stopped,
     * e.g. `BUDGET_REACHED`, `MODEL_CONVERGED`.
     * 
* * string stop_reason = 5; * * @param value The bytes for stopReason to set. * @return This builder for chaining. */ public Builder setStopReasonBytes(com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } checkByteStringIsUtf8(value); stopReason_ = value; bitField0_ |= 0x00000008; onChanged(); return this; } private long trainBudgetMilliNodeHours_; /** * * *
     * The train budget of creating this model, expressed in milli node
     * hours i.e. 1,000 value in this field means 1 node hour. The actual
     * `train_cost` will be equal or less than this value. If further model
     * training ceases to provide any improvements, it will stop without using
     * full budget and the stop_reason will be `MODEL_CONVERGED`.
     * Note, node_hour  = actual_hour * number_of_nodes_invovled.
     * For model type `cloud-high-accuracy-1`(default) and `cloud-low-latency-1`,
     * the train budget must be between 20,000 and 900,000 milli node hours,
     * inclusive. The default value is 216, 000 which represents one day in
     * wall time.
     * For model type `mobile-low-latency-1`, `mobile-versatile-1`,
     * `mobile-high-accuracy-1`, `mobile-core-ml-low-latency-1`,
     * `mobile-core-ml-versatile-1`, `mobile-core-ml-high-accuracy-1`, the train
     * budget must be between 1,000 and 100,000 milli node hours, inclusive.
     * The default value is 24, 000 which represents one day in wall time.
     * 
* * int64 train_budget_milli_node_hours = 6; * * @return The trainBudgetMilliNodeHours. */ @java.lang.Override public long getTrainBudgetMilliNodeHours() { return trainBudgetMilliNodeHours_; } /** * * *
     * The train budget of creating this model, expressed in milli node
     * hours i.e. 1,000 value in this field means 1 node hour. The actual
     * `train_cost` will be equal or less than this value. If further model
     * training ceases to provide any improvements, it will stop without using
     * full budget and the stop_reason will be `MODEL_CONVERGED`.
     * Note, node_hour  = actual_hour * number_of_nodes_invovled.
     * For model type `cloud-high-accuracy-1`(default) and `cloud-low-latency-1`,
     * the train budget must be between 20,000 and 900,000 milli node hours,
     * inclusive. The default value is 216, 000 which represents one day in
     * wall time.
     * For model type `mobile-low-latency-1`, `mobile-versatile-1`,
     * `mobile-high-accuracy-1`, `mobile-core-ml-low-latency-1`,
     * `mobile-core-ml-versatile-1`, `mobile-core-ml-high-accuracy-1`, the train
     * budget must be between 1,000 and 100,000 milli node hours, inclusive.
     * The default value is 24, 000 which represents one day in wall time.
     * 
* * int64 train_budget_milli_node_hours = 6; * * @param value The trainBudgetMilliNodeHours to set. * @return This builder for chaining. */ public Builder setTrainBudgetMilliNodeHours(long value) { trainBudgetMilliNodeHours_ = value; bitField0_ |= 0x00000010; onChanged(); return this; } /** * * *
     * The train budget of creating this model, expressed in milli node
     * hours i.e. 1,000 value in this field means 1 node hour. The actual
     * `train_cost` will be equal or less than this value. If further model
     * training ceases to provide any improvements, it will stop without using
     * full budget and the stop_reason will be `MODEL_CONVERGED`.
     * Note, node_hour  = actual_hour * number_of_nodes_invovled.
     * For model type `cloud-high-accuracy-1`(default) and `cloud-low-latency-1`,
     * the train budget must be between 20,000 and 900,000 milli node hours,
     * inclusive. The default value is 216, 000 which represents one day in
     * wall time.
     * For model type `mobile-low-latency-1`, `mobile-versatile-1`,
     * `mobile-high-accuracy-1`, `mobile-core-ml-low-latency-1`,
     * `mobile-core-ml-versatile-1`, `mobile-core-ml-high-accuracy-1`, the train
     * budget must be between 1,000 and 100,000 milli node hours, inclusive.
     * The default value is 24, 000 which represents one day in wall time.
     * 
* * int64 train_budget_milli_node_hours = 6; * * @return This builder for chaining. */ public Builder clearTrainBudgetMilliNodeHours() { bitField0_ = (bitField0_ & ~0x00000010); trainBudgetMilliNodeHours_ = 0L; onChanged(); return this; } private long trainCostMilliNodeHours_; /** * * *
     * Output only. The actual train cost of creating this model, expressed in
     * milli node hours, i.e. 1,000 value in this field means 1 node hour.
     * Guaranteed to not exceed the train budget.
     * 
* * int64 train_cost_milli_node_hours = 7; * * @return The trainCostMilliNodeHours. */ @java.lang.Override public long getTrainCostMilliNodeHours() { return trainCostMilliNodeHours_; } /** * * *
     * Output only. The actual train cost of creating this model, expressed in
     * milli node hours, i.e. 1,000 value in this field means 1 node hour.
     * Guaranteed to not exceed the train budget.
     * 
* * int64 train_cost_milli_node_hours = 7; * * @param value The trainCostMilliNodeHours to set. * @return This builder for chaining. */ public Builder setTrainCostMilliNodeHours(long value) { trainCostMilliNodeHours_ = value; bitField0_ |= 0x00000020; onChanged(); return this; } /** * * *
     * Output only. The actual train cost of creating this model, expressed in
     * milli node hours, i.e. 1,000 value in this field means 1 node hour.
     * Guaranteed to not exceed the train budget.
     * 
* * int64 train_cost_milli_node_hours = 7; * * @return This builder for chaining. */ public Builder clearTrainCostMilliNodeHours() { bitField0_ = (bitField0_ & ~0x00000020); trainCostMilliNodeHours_ = 0L; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields(final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata) } // @@protoc_insertion_point(class_scope:google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata) private static final com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata(); } public static com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public ImageObjectDetectionModelMetadata parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public com.google.cloud.automl.v1beta1.ImageObjectDetectionModelMetadata getDefaultInstanceForType() { return DEFAULT_INSTANCE; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy