All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.cloud.automl.v1beta1.TablesModelColumnInfo Maven / Gradle / Ivy

There is a newer version: 0.141.0
Show newest version
/*
 * Copyright 2024 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: google/cloud/automl/v1beta1/tables.proto

// Protobuf Java Version: 3.25.3
package com.google.cloud.automl.v1beta1;

/**
 *
 *
 * 
 * An information specific to given column and Tables Model, in context
 * of the Model and the predictions created by it.
 * 
* * Protobuf type {@code google.cloud.automl.v1beta1.TablesModelColumnInfo} */ public final class TablesModelColumnInfo extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:google.cloud.automl.v1beta1.TablesModelColumnInfo) TablesModelColumnInfoOrBuilder { private static final long serialVersionUID = 0L; // Use TablesModelColumnInfo.newBuilder() to construct. private TablesModelColumnInfo(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private TablesModelColumnInfo() { columnSpecName_ = ""; columnDisplayName_ = ""; } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance(UnusedPrivateParameter unused) { return new TablesModelColumnInfo(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.Tables .internal_static_google_cloud_automl_v1beta1_TablesModelColumnInfo_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.Tables .internal_static_google_cloud_automl_v1beta1_TablesModelColumnInfo_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.TablesModelColumnInfo.class, com.google.cloud.automl.v1beta1.TablesModelColumnInfo.Builder.class); } public static final int COLUMN_SPEC_NAME_FIELD_NUMBER = 1; @SuppressWarnings("serial") private volatile java.lang.Object columnSpecName_ = ""; /** * * *
   * Output only. The name of the ColumnSpec describing the column. Not
   * populated when this proto is outputted to BigQuery.
   * 
* * string column_spec_name = 1; * * @return The columnSpecName. */ @java.lang.Override public java.lang.String getColumnSpecName() { java.lang.Object ref = columnSpecName_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); columnSpecName_ = s; return s; } } /** * * *
   * Output only. The name of the ColumnSpec describing the column. Not
   * populated when this proto is outputted to BigQuery.
   * 
* * string column_spec_name = 1; * * @return The bytes for columnSpecName. */ @java.lang.Override public com.google.protobuf.ByteString getColumnSpecNameBytes() { java.lang.Object ref = columnSpecName_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref); columnSpecName_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int COLUMN_DISPLAY_NAME_FIELD_NUMBER = 2; @SuppressWarnings("serial") private volatile java.lang.Object columnDisplayName_ = ""; /** * * *
   * Output only. The display name of the column (same as the display_name of
   * its ColumnSpec).
   * 
* * string column_display_name = 2; * * @return The columnDisplayName. */ @java.lang.Override public java.lang.String getColumnDisplayName() { java.lang.Object ref = columnDisplayName_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); columnDisplayName_ = s; return s; } } /** * * *
   * Output only. The display name of the column (same as the display_name of
   * its ColumnSpec).
   * 
* * string column_display_name = 2; * * @return The bytes for columnDisplayName. */ @java.lang.Override public com.google.protobuf.ByteString getColumnDisplayNameBytes() { java.lang.Object ref = columnDisplayName_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref); columnDisplayName_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int FEATURE_IMPORTANCE_FIELD_NUMBER = 3; private float featureImportance_ = 0F; /** * * *
   * Output only. When given as part of a Model (always populated):
   * Measurement of how much model predictions correctness on the TEST data
   * depend on values in this column. A value between 0 and 1, higher means
   * higher influence. These values are normalized - for all input feature
   * columns of a given model they add to 1.
   *
   * When given back by Predict (populated iff
   * [feature_importance
   * param][google.cloud.automl.v1beta1.PredictRequest.params] is set) or Batch
   * Predict (populated iff
   * [feature_importance][google.cloud.automl.v1beta1.PredictRequest.params]
   * param is set):
   * Measurement of how impactful for the prediction returned for the given row
   * the value in this column was. Specifically, the feature importance
   * specifies the marginal contribution that the feature made to the prediction
   * score compared to the baseline score. These values are computed using the
   * Sampled Shapley method.
   * 
* * float feature_importance = 3; * * @return The featureImportance. */ @java.lang.Override public float getFeatureImportance() { return featureImportance_; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(columnSpecName_)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 1, columnSpecName_); } if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(columnDisplayName_)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 2, columnDisplayName_); } if (java.lang.Float.floatToRawIntBits(featureImportance_) != 0) { output.writeFloat(3, featureImportance_); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(columnSpecName_)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(1, columnSpecName_); } if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(columnDisplayName_)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(2, columnDisplayName_); } if (java.lang.Float.floatToRawIntBits(featureImportance_) != 0) { size += com.google.protobuf.CodedOutputStream.computeFloatSize(3, featureImportance_); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof com.google.cloud.automl.v1beta1.TablesModelColumnInfo)) { return super.equals(obj); } com.google.cloud.automl.v1beta1.TablesModelColumnInfo other = (com.google.cloud.automl.v1beta1.TablesModelColumnInfo) obj; if (!getColumnSpecName().equals(other.getColumnSpecName())) return false; if (!getColumnDisplayName().equals(other.getColumnDisplayName())) return false; if (java.lang.Float.floatToIntBits(getFeatureImportance()) != java.lang.Float.floatToIntBits(other.getFeatureImportance())) return false; if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); hash = (37 * hash) + COLUMN_SPEC_NAME_FIELD_NUMBER; hash = (53 * hash) + getColumnSpecName().hashCode(); hash = (37 * hash) + COLUMN_DISPLAY_NAME_FIELD_NUMBER; hash = (53 * hash) + getColumnDisplayName().hashCode(); hash = (37 * hash) + FEATURE_IMPORTANCE_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits(getFeatureImportance()); hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static com.google.cloud.automl.v1beta1.TablesModelColumnInfo parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.TablesModelColumnInfo parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.TablesModelColumnInfo parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.TablesModelColumnInfo parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.TablesModelColumnInfo parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.TablesModelColumnInfo parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.TablesModelColumnInfo parseFrom( java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.TablesModelColumnInfo parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.TablesModelColumnInfo parseDelimitedFrom( java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.TablesModelColumnInfo parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.TablesModelColumnInfo parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.TablesModelColumnInfo parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder( com.google.cloud.automl.v1beta1.TablesModelColumnInfo prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * * *
   * An information specific to given column and Tables Model, in context
   * of the Model and the predictions created by it.
   * 
* * Protobuf type {@code google.cloud.automl.v1beta1.TablesModelColumnInfo} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:google.cloud.automl.v1beta1.TablesModelColumnInfo) com.google.cloud.automl.v1beta1.TablesModelColumnInfoOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.Tables .internal_static_google_cloud_automl_v1beta1_TablesModelColumnInfo_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.Tables .internal_static_google_cloud_automl_v1beta1_TablesModelColumnInfo_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.TablesModelColumnInfo.class, com.google.cloud.automl.v1beta1.TablesModelColumnInfo.Builder.class); } // Construct using com.google.cloud.automl.v1beta1.TablesModelColumnInfo.newBuilder() private Builder() {} private Builder(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; columnSpecName_ = ""; columnDisplayName_ = ""; featureImportance_ = 0F; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return com.google.cloud.automl.v1beta1.Tables .internal_static_google_cloud_automl_v1beta1_TablesModelColumnInfo_descriptor; } @java.lang.Override public com.google.cloud.automl.v1beta1.TablesModelColumnInfo getDefaultInstanceForType() { return com.google.cloud.automl.v1beta1.TablesModelColumnInfo.getDefaultInstance(); } @java.lang.Override public com.google.cloud.automl.v1beta1.TablesModelColumnInfo build() { com.google.cloud.automl.v1beta1.TablesModelColumnInfo result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public com.google.cloud.automl.v1beta1.TablesModelColumnInfo buildPartial() { com.google.cloud.automl.v1beta1.TablesModelColumnInfo result = new com.google.cloud.automl.v1beta1.TablesModelColumnInfo(this); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartial0(com.google.cloud.automl.v1beta1.TablesModelColumnInfo result) { int from_bitField0_ = bitField0_; if (((from_bitField0_ & 0x00000001) != 0)) { result.columnSpecName_ = columnSpecName_; } if (((from_bitField0_ & 0x00000002) != 0)) { result.columnDisplayName_ = columnDisplayName_; } if (((from_bitField0_ & 0x00000004) != 0)) { result.featureImportance_ = featureImportance_; } } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof com.google.cloud.automl.v1beta1.TablesModelColumnInfo) { return mergeFrom((com.google.cloud.automl.v1beta1.TablesModelColumnInfo) other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(com.google.cloud.automl.v1beta1.TablesModelColumnInfo other) { if (other == com.google.cloud.automl.v1beta1.TablesModelColumnInfo.getDefaultInstance()) return this; if (!other.getColumnSpecName().isEmpty()) { columnSpecName_ = other.columnSpecName_; bitField0_ |= 0x00000001; onChanged(); } if (!other.getColumnDisplayName().isEmpty()) { columnDisplayName_ = other.columnDisplayName_; bitField0_ |= 0x00000002; onChanged(); } if (other.getFeatureImportance() != 0F) { setFeatureImportance(other.getFeatureImportance()); } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { columnSpecName_ = input.readStringRequireUtf8(); bitField0_ |= 0x00000001; break; } // case 10 case 18: { columnDisplayName_ = input.readStringRequireUtf8(); bitField0_ |= 0x00000002; break; } // case 18 case 29: { featureImportance_ = input.readFloat(); bitField0_ |= 0x00000004; break; } // case 29 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private java.lang.Object columnSpecName_ = ""; /** * * *
     * Output only. The name of the ColumnSpec describing the column. Not
     * populated when this proto is outputted to BigQuery.
     * 
* * string column_spec_name = 1; * * @return The columnSpecName. */ public java.lang.String getColumnSpecName() { java.lang.Object ref = columnSpecName_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); columnSpecName_ = s; return s; } else { return (java.lang.String) ref; } } /** * * *
     * Output only. The name of the ColumnSpec describing the column. Not
     * populated when this proto is outputted to BigQuery.
     * 
* * string column_spec_name = 1; * * @return The bytes for columnSpecName. */ public com.google.protobuf.ByteString getColumnSpecNameBytes() { java.lang.Object ref = columnSpecName_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref); columnSpecName_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** * * *
     * Output only. The name of the ColumnSpec describing the column. Not
     * populated when this proto is outputted to BigQuery.
     * 
* * string column_spec_name = 1; * * @param value The columnSpecName to set. * @return This builder for chaining. */ public Builder setColumnSpecName(java.lang.String value) { if (value == null) { throw new NullPointerException(); } columnSpecName_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } /** * * *
     * Output only. The name of the ColumnSpec describing the column. Not
     * populated when this proto is outputted to BigQuery.
     * 
* * string column_spec_name = 1; * * @return This builder for chaining. */ public Builder clearColumnSpecName() { columnSpecName_ = getDefaultInstance().getColumnSpecName(); bitField0_ = (bitField0_ & ~0x00000001); onChanged(); return this; } /** * * *
     * Output only. The name of the ColumnSpec describing the column. Not
     * populated when this proto is outputted to BigQuery.
     * 
* * string column_spec_name = 1; * * @param value The bytes for columnSpecName to set. * @return This builder for chaining. */ public Builder setColumnSpecNameBytes(com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } checkByteStringIsUtf8(value); columnSpecName_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } private java.lang.Object columnDisplayName_ = ""; /** * * *
     * Output only. The display name of the column (same as the display_name of
     * its ColumnSpec).
     * 
* * string column_display_name = 2; * * @return The columnDisplayName. */ public java.lang.String getColumnDisplayName() { java.lang.Object ref = columnDisplayName_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); columnDisplayName_ = s; return s; } else { return (java.lang.String) ref; } } /** * * *
     * Output only. The display name of the column (same as the display_name of
     * its ColumnSpec).
     * 
* * string column_display_name = 2; * * @return The bytes for columnDisplayName. */ public com.google.protobuf.ByteString getColumnDisplayNameBytes() { java.lang.Object ref = columnDisplayName_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref); columnDisplayName_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** * * *
     * Output only. The display name of the column (same as the display_name of
     * its ColumnSpec).
     * 
* * string column_display_name = 2; * * @param value The columnDisplayName to set. * @return This builder for chaining. */ public Builder setColumnDisplayName(java.lang.String value) { if (value == null) { throw new NullPointerException(); } columnDisplayName_ = value; bitField0_ |= 0x00000002; onChanged(); return this; } /** * * *
     * Output only. The display name of the column (same as the display_name of
     * its ColumnSpec).
     * 
* * string column_display_name = 2; * * @return This builder for chaining. */ public Builder clearColumnDisplayName() { columnDisplayName_ = getDefaultInstance().getColumnDisplayName(); bitField0_ = (bitField0_ & ~0x00000002); onChanged(); return this; } /** * * *
     * Output only. The display name of the column (same as the display_name of
     * its ColumnSpec).
     * 
* * string column_display_name = 2; * * @param value The bytes for columnDisplayName to set. * @return This builder for chaining. */ public Builder setColumnDisplayNameBytes(com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } checkByteStringIsUtf8(value); columnDisplayName_ = value; bitField0_ |= 0x00000002; onChanged(); return this; } private float featureImportance_; /** * * *
     * Output only. When given as part of a Model (always populated):
     * Measurement of how much model predictions correctness on the TEST data
     * depend on values in this column. A value between 0 and 1, higher means
     * higher influence. These values are normalized - for all input feature
     * columns of a given model they add to 1.
     *
     * When given back by Predict (populated iff
     * [feature_importance
     * param][google.cloud.automl.v1beta1.PredictRequest.params] is set) or Batch
     * Predict (populated iff
     * [feature_importance][google.cloud.automl.v1beta1.PredictRequest.params]
     * param is set):
     * Measurement of how impactful for the prediction returned for the given row
     * the value in this column was. Specifically, the feature importance
     * specifies the marginal contribution that the feature made to the prediction
     * score compared to the baseline score. These values are computed using the
     * Sampled Shapley method.
     * 
* * float feature_importance = 3; * * @return The featureImportance. */ @java.lang.Override public float getFeatureImportance() { return featureImportance_; } /** * * *
     * Output only. When given as part of a Model (always populated):
     * Measurement of how much model predictions correctness on the TEST data
     * depend on values in this column. A value between 0 and 1, higher means
     * higher influence. These values are normalized - for all input feature
     * columns of a given model they add to 1.
     *
     * When given back by Predict (populated iff
     * [feature_importance
     * param][google.cloud.automl.v1beta1.PredictRequest.params] is set) or Batch
     * Predict (populated iff
     * [feature_importance][google.cloud.automl.v1beta1.PredictRequest.params]
     * param is set):
     * Measurement of how impactful for the prediction returned for the given row
     * the value in this column was. Specifically, the feature importance
     * specifies the marginal contribution that the feature made to the prediction
     * score compared to the baseline score. These values are computed using the
     * Sampled Shapley method.
     * 
* * float feature_importance = 3; * * @param value The featureImportance to set. * @return This builder for chaining. */ public Builder setFeatureImportance(float value) { featureImportance_ = value; bitField0_ |= 0x00000004; onChanged(); return this; } /** * * *
     * Output only. When given as part of a Model (always populated):
     * Measurement of how much model predictions correctness on the TEST data
     * depend on values in this column. A value between 0 and 1, higher means
     * higher influence. These values are normalized - for all input feature
     * columns of a given model they add to 1.
     *
     * When given back by Predict (populated iff
     * [feature_importance
     * param][google.cloud.automl.v1beta1.PredictRequest.params] is set) or Batch
     * Predict (populated iff
     * [feature_importance][google.cloud.automl.v1beta1.PredictRequest.params]
     * param is set):
     * Measurement of how impactful for the prediction returned for the given row
     * the value in this column was. Specifically, the feature importance
     * specifies the marginal contribution that the feature made to the prediction
     * score compared to the baseline score. These values are computed using the
     * Sampled Shapley method.
     * 
* * float feature_importance = 3; * * @return This builder for chaining. */ public Builder clearFeatureImportance() { bitField0_ = (bitField0_ & ~0x00000004); featureImportance_ = 0F; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields(final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:google.cloud.automl.v1beta1.TablesModelColumnInfo) } // @@protoc_insertion_point(class_scope:google.cloud.automl.v1beta1.TablesModelColumnInfo) private static final com.google.cloud.automl.v1beta1.TablesModelColumnInfo DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new com.google.cloud.automl.v1beta1.TablesModelColumnInfo(); } public static com.google.cloud.automl.v1beta1.TablesModelColumnInfo getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public TablesModelColumnInfo parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public com.google.cloud.automl.v1beta1.TablesModelColumnInfo getDefaultInstanceForType() { return DEFAULT_INSTANCE; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy