All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.cloud.automl.v1beta1.BatchPredictInputConfig Maven / Gradle / Ivy

There is a newer version: 0.141.0
Show newest version
/*
 * Copyright 2024 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: google/cloud/automl/v1beta1/io.proto

// Protobuf Java Version: 3.25.5
package com.google.cloud.automl.v1beta1;

/**
 *
 *
 * 
 * Input configuration for BatchPredict Action.
 *
 * The format of input depends on the ML problem of the model used for
 * prediction. As input source the
 * [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source]
 * is expected, unless specified otherwise.
 *
 * The formats are represented in EBNF with commas being literal and with
 * non-terminal symbols defined near the end of this comment. The formats
 * are:
 *
 *  *  For Image Classification:
 *         CSV file(s) with each line having just a single column:
 *           GCS_FILE_PATH
 *           which leads to image of up to 30MB in size. Supported
 *           extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in
 *           the Batch predict output.
 *         Three sample rows:
 *           gs://folder/image1.jpeg
 *           gs://folder/image2.gif
 *           gs://folder/image3.png
 *
 *  *  For Image Object Detection:
 *         CSV file(s) with each line having just a single column:
 *           GCS_FILE_PATH
 *           which leads to image of up to 30MB in size. Supported
 *           extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in
 *           the Batch predict output.
 *         Three sample rows:
 *           gs://folder/image1.jpeg
 *           gs://folder/image2.gif
 *           gs://folder/image3.png
 *  *  For Video Classification:
 *         CSV file(s) with each line in format:
 *           GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END
 *           GCS_FILE_PATH leads to video of up to 50GB in size and up to 3h
 *           duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI.
 *           TIME_SEGMENT_START and TIME_SEGMENT_END must be within the
 *           length of the video, and end has to be after the start.
 *         Three sample rows:
 *           gs://folder/video1.mp4,10,40
 *           gs://folder/video1.mp4,20,60
 *           gs://folder/vid2.mov,0,inf
 *
 *  *  For Video Object Tracking:
 *         CSV file(s) with each line in format:
 *           GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END
 *           GCS_FILE_PATH leads to video of up to 50GB in size and up to 3h
 *           duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI.
 *           TIME_SEGMENT_START and TIME_SEGMENT_END must be within the
 *           length of the video, and end has to be after the start.
 *         Three sample rows:
 *           gs://folder/video1.mp4,10,240
 *           gs://folder/video1.mp4,300,360
 *           gs://folder/vid2.mov,0,inf
 *  *  For Text Classification:
 *         CSV file(s) with each line having just a single column:
 *           GCS_FILE_PATH | TEXT_SNIPPET
 *         Any given text file can have size upto 128kB.
 *         Any given text snippet content must have 60,000 characters or less.
 *         Three sample rows:
 *           gs://folder/text1.txt
 *           "Some text content to predict"
 *           gs://folder/text3.pdf
 *         Supported file extensions: .txt, .pdf
 *
 *  *  For Text Sentiment:
 *         CSV file(s) with each line having just a single column:
 *           GCS_FILE_PATH | TEXT_SNIPPET
 *         Any given text file can have size upto 128kB.
 *         Any given text snippet content must have 500 characters or less.
 *         Three sample rows:
 *           gs://folder/text1.txt
 *           "Some text content to predict"
 *           gs://folder/text3.pdf
 *         Supported file extensions: .txt, .pdf
 *
 *  * For Text Extraction
 *         .JSONL (i.e. JSON Lines) file(s) which either provide text in-line or
 *         as documents (for a single BatchPredict call only one of the these
 *         formats may be used).
 *         The in-line .JSONL file(s) contain per line a proto that
 *           wraps a temporary user-assigned TextSnippet ID (string up to 2000
 *           characters long) called "id", a TextSnippet proto (in
 *           json representation) and zero or more TextFeature protos. Any given
 *           text snippet content must have 30,000 characters or less, and also
 *           be UTF-8 NFC encoded (ASCII already is). The IDs provided should be
 *           unique.
 *         The document .JSONL file(s) contain, per line, a proto that wraps a
 *           Document proto with input_config set. Only PDF documents are
 *           supported now, and each document must be up to 2MB large.
 *         Any given .JSONL file must be 100MB or smaller, and no more than 20
 *         files may be given.
 *         Sample in-line JSON Lines file (presented here with artificial line
 *         breaks, but the only actual line break is denoted by \n):
 *           {
 *             "id": "my_first_id",
 *             "text_snippet": { "content": "dog car cat"},
 *             "text_features": [
 *               {
 *                 "text_segment": {"start_offset": 4, "end_offset": 6},
 *                 "structural_type": PARAGRAPH,
 *                 "bounding_poly": {
 *                   "normalized_vertices": [
 *                     {"x": 0.1, "y": 0.1},
 *                     {"x": 0.1, "y": 0.3},
 *                     {"x": 0.3, "y": 0.3},
 *                     {"x": 0.3, "y": 0.1},
 *                   ]
 *                 },
 *               }
 *             ],
 *           }\n
 *           {
 *             "id": "2",
 *             "text_snippet": {
 *               "content": "An elaborate content",
 *               "mime_type": "text/plain"
 *             }
 *           }
 *         Sample document JSON Lines file (presented here with artificial line
 *         breaks, but the only actual line break is denoted by \n).:
 *           {
 *             "document": {
 *               "input_config": {
 *                 "gcs_source": { "input_uris": [ "gs://folder/document1.pdf" ]
 *                 }
 *               }
 *             }
 *           }\n
 *           {
 *             "document": {
 *               "input_config": {
 *                 "gcs_source": { "input_uris": [ "gs://folder/document2.pdf" ]
 *                 }
 *               }
 *             }
 *           }
 *
 *  *  For Tables:
 *         Either
 *         [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] or
 *
 * [bigquery_source][google.cloud.automl.v1beta1.InputConfig.bigquery_source].
 *         GCS case:
 *           CSV file(s), each by itself 10GB or smaller and total size must be
 *           100GB or smaller, where first file must have a header containing
 *           column names. If the first row of a subsequent file is the same as
 *           the header, then it is also treated as a header. All other rows
 *           contain values for the corresponding columns.
 *           The column names must contain the model's
 *
 * [input_feature_column_specs'][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
 *
 * [display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]
 *           (order doesn't matter). The columns corresponding to the model's
 *           input feature column specs must contain values compatible with the
 *           column spec's data types. Prediction on all the rows, i.e. the CSV
 *           lines, will be attempted. For FORECASTING
 *
 * [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:
 *           all columns having
 *
 * [TIME_SERIES_AVAILABLE_PAST_ONLY][google.cloud.automl.v1beta1.ColumnSpec.ForecastingMetadata.ColumnType]
 *           type will be ignored.
 *           First three sample rows of a CSV file:
 *             "First Name","Last Name","Dob","Addresses"
 *
 * "John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]"
 *
 * "Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]}
 *         BigQuery case:
 *           An URI of a BigQuery table. The user data size of the BigQuery
 *           table must be 100GB or smaller.
 *           The column names must contain the model's
 *
 * [input_feature_column_specs'][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
 *
 * [display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]
 *           (order doesn't matter). The columns corresponding to the model's
 *           input feature column specs must contain values compatible with the
 *           column spec's data types. Prediction on all the rows of the table
 *           will be attempted. For FORECASTING
 *
 * [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:
 *           all columns having
 *
 * [TIME_SERIES_AVAILABLE_PAST_ONLY][google.cloud.automl.v1beta1.ColumnSpec.ForecastingMetadata.ColumnType]
 *           type will be ignored.
 *
 *  Definitions:
 *  GCS_FILE_PATH = A path to file on GCS, e.g. "gs://folder/video.avi".
 *  TEXT_SNIPPET = A content of a text snippet, UTF-8 encoded, enclosed within
 *                 double quotes ("")
 *  TIME_SEGMENT_START = TIME_OFFSET
 *                       Expresses a beginning, inclusive, of a time segment
 *                       within an
 *                       example that has a time dimension (e.g. video).
 *  TIME_SEGMENT_END = TIME_OFFSET
 *                     Expresses an end, exclusive, of a time segment within
 *                     an example that has a time dimension (e.g. video).
 *  TIME_OFFSET = A number of seconds as measured from the start of an
 *                example (e.g. video). Fractions are allowed, up to a
 *                microsecond precision. "inf" is allowed and it means the end
 *                of the example.
 *
 *  Errors:
 *  If any of the provided CSV files can't be parsed or if more than certain
 *  percent of CSV rows cannot be processed then the operation fails and
 *  prediction does not happen. Regardless of overall success or failure the
 *  per-row failures, up to a certain count cap, will be listed in
 *  Operation.metadata.partial_failures.
 * 
* * Protobuf type {@code google.cloud.automl.v1beta1.BatchPredictInputConfig} */ public final class BatchPredictInputConfig extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:google.cloud.automl.v1beta1.BatchPredictInputConfig) BatchPredictInputConfigOrBuilder { private static final long serialVersionUID = 0L; // Use BatchPredictInputConfig.newBuilder() to construct. private BatchPredictInputConfig(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private BatchPredictInputConfig() {} @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance(UnusedPrivateParameter unused) { return new BatchPredictInputConfig(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.Io .internal_static_google_cloud_automl_v1beta1_BatchPredictInputConfig_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.Io .internal_static_google_cloud_automl_v1beta1_BatchPredictInputConfig_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.BatchPredictInputConfig.class, com.google.cloud.automl.v1beta1.BatchPredictInputConfig.Builder.class); } private int sourceCase_ = 0; @SuppressWarnings("serial") private java.lang.Object source_; public enum SourceCase implements com.google.protobuf.Internal.EnumLite, com.google.protobuf.AbstractMessage.InternalOneOfEnum { GCS_SOURCE(1), BIGQUERY_SOURCE(2), SOURCE_NOT_SET(0); private final int value; private SourceCase(int value) { this.value = value; } /** * @param value The number of the enum to look for. * @return The enum associated with the given number. * @deprecated Use {@link #forNumber(int)} instead. */ @java.lang.Deprecated public static SourceCase valueOf(int value) { return forNumber(value); } public static SourceCase forNumber(int value) { switch (value) { case 1: return GCS_SOURCE; case 2: return BIGQUERY_SOURCE; case 0: return SOURCE_NOT_SET; default: return null; } } public int getNumber() { return this.value; } }; public SourceCase getSourceCase() { return SourceCase.forNumber(sourceCase_); } public static final int GCS_SOURCE_FIELD_NUMBER = 1; /** * * *
   * The Google Cloud Storage location for the input content.
   * 
* * .google.cloud.automl.v1beta1.GcsSource gcs_source = 1; * * @return Whether the gcsSource field is set. */ @java.lang.Override public boolean hasGcsSource() { return sourceCase_ == 1; } /** * * *
   * The Google Cloud Storage location for the input content.
   * 
* * .google.cloud.automl.v1beta1.GcsSource gcs_source = 1; * * @return The gcsSource. */ @java.lang.Override public com.google.cloud.automl.v1beta1.GcsSource getGcsSource() { if (sourceCase_ == 1) { return (com.google.cloud.automl.v1beta1.GcsSource) source_; } return com.google.cloud.automl.v1beta1.GcsSource.getDefaultInstance(); } /** * * *
   * The Google Cloud Storage location for the input content.
   * 
* * .google.cloud.automl.v1beta1.GcsSource gcs_source = 1; */ @java.lang.Override public com.google.cloud.automl.v1beta1.GcsSourceOrBuilder getGcsSourceOrBuilder() { if (sourceCase_ == 1) { return (com.google.cloud.automl.v1beta1.GcsSource) source_; } return com.google.cloud.automl.v1beta1.GcsSource.getDefaultInstance(); } public static final int BIGQUERY_SOURCE_FIELD_NUMBER = 2; /** * * *
   * The BigQuery location for the input content.
   * 
* * .google.cloud.automl.v1beta1.BigQuerySource bigquery_source = 2; * * @return Whether the bigquerySource field is set. */ @java.lang.Override public boolean hasBigquerySource() { return sourceCase_ == 2; } /** * * *
   * The BigQuery location for the input content.
   * 
* * .google.cloud.automl.v1beta1.BigQuerySource bigquery_source = 2; * * @return The bigquerySource. */ @java.lang.Override public com.google.cloud.automl.v1beta1.BigQuerySource getBigquerySource() { if (sourceCase_ == 2) { return (com.google.cloud.automl.v1beta1.BigQuerySource) source_; } return com.google.cloud.automl.v1beta1.BigQuerySource.getDefaultInstance(); } /** * * *
   * The BigQuery location for the input content.
   * 
* * .google.cloud.automl.v1beta1.BigQuerySource bigquery_source = 2; */ @java.lang.Override public com.google.cloud.automl.v1beta1.BigQuerySourceOrBuilder getBigquerySourceOrBuilder() { if (sourceCase_ == 2) { return (com.google.cloud.automl.v1beta1.BigQuerySource) source_; } return com.google.cloud.automl.v1beta1.BigQuerySource.getDefaultInstance(); } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (sourceCase_ == 1) { output.writeMessage(1, (com.google.cloud.automl.v1beta1.GcsSource) source_); } if (sourceCase_ == 2) { output.writeMessage(2, (com.google.cloud.automl.v1beta1.BigQuerySource) source_); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (sourceCase_ == 1) { size += com.google.protobuf.CodedOutputStream.computeMessageSize( 1, (com.google.cloud.automl.v1beta1.GcsSource) source_); } if (sourceCase_ == 2) { size += com.google.protobuf.CodedOutputStream.computeMessageSize( 2, (com.google.cloud.automl.v1beta1.BigQuerySource) source_); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof com.google.cloud.automl.v1beta1.BatchPredictInputConfig)) { return super.equals(obj); } com.google.cloud.automl.v1beta1.BatchPredictInputConfig other = (com.google.cloud.automl.v1beta1.BatchPredictInputConfig) obj; if (!getSourceCase().equals(other.getSourceCase())) return false; switch (sourceCase_) { case 1: if (!getGcsSource().equals(other.getGcsSource())) return false; break; case 2: if (!getBigquerySource().equals(other.getBigquerySource())) return false; break; case 0: default: } if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); switch (sourceCase_) { case 1: hash = (37 * hash) + GCS_SOURCE_FIELD_NUMBER; hash = (53 * hash) + getGcsSource().hashCode(); break; case 2: hash = (37 * hash) + BIGQUERY_SOURCE_FIELD_NUMBER; hash = (53 * hash) + getBigquerySource().hashCode(); break; case 0: default: } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static com.google.cloud.automl.v1beta1.BatchPredictInputConfig parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.BatchPredictInputConfig parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.BatchPredictInputConfig parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.BatchPredictInputConfig parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.BatchPredictInputConfig parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.BatchPredictInputConfig parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.BatchPredictInputConfig parseFrom( java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.BatchPredictInputConfig parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.BatchPredictInputConfig parseDelimitedFrom( java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.BatchPredictInputConfig parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.BatchPredictInputConfig parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.BatchPredictInputConfig parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder( com.google.cloud.automl.v1beta1.BatchPredictInputConfig prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * * *
   * Input configuration for BatchPredict Action.
   *
   * The format of input depends on the ML problem of the model used for
   * prediction. As input source the
   * [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source]
   * is expected, unless specified otherwise.
   *
   * The formats are represented in EBNF with commas being literal and with
   * non-terminal symbols defined near the end of this comment. The formats
   * are:
   *
   *  *  For Image Classification:
   *         CSV file(s) with each line having just a single column:
   *           GCS_FILE_PATH
   *           which leads to image of up to 30MB in size. Supported
   *           extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in
   *           the Batch predict output.
   *         Three sample rows:
   *           gs://folder/image1.jpeg
   *           gs://folder/image2.gif
   *           gs://folder/image3.png
   *
   *  *  For Image Object Detection:
   *         CSV file(s) with each line having just a single column:
   *           GCS_FILE_PATH
   *           which leads to image of up to 30MB in size. Supported
   *           extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in
   *           the Batch predict output.
   *         Three sample rows:
   *           gs://folder/image1.jpeg
   *           gs://folder/image2.gif
   *           gs://folder/image3.png
   *  *  For Video Classification:
   *         CSV file(s) with each line in format:
   *           GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END
   *           GCS_FILE_PATH leads to video of up to 50GB in size and up to 3h
   *           duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI.
   *           TIME_SEGMENT_START and TIME_SEGMENT_END must be within the
   *           length of the video, and end has to be after the start.
   *         Three sample rows:
   *           gs://folder/video1.mp4,10,40
   *           gs://folder/video1.mp4,20,60
   *           gs://folder/vid2.mov,0,inf
   *
   *  *  For Video Object Tracking:
   *         CSV file(s) with each line in format:
   *           GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END
   *           GCS_FILE_PATH leads to video of up to 50GB in size and up to 3h
   *           duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI.
   *           TIME_SEGMENT_START and TIME_SEGMENT_END must be within the
   *           length of the video, and end has to be after the start.
   *         Three sample rows:
   *           gs://folder/video1.mp4,10,240
   *           gs://folder/video1.mp4,300,360
   *           gs://folder/vid2.mov,0,inf
   *  *  For Text Classification:
   *         CSV file(s) with each line having just a single column:
   *           GCS_FILE_PATH | TEXT_SNIPPET
   *         Any given text file can have size upto 128kB.
   *         Any given text snippet content must have 60,000 characters or less.
   *         Three sample rows:
   *           gs://folder/text1.txt
   *           "Some text content to predict"
   *           gs://folder/text3.pdf
   *         Supported file extensions: .txt, .pdf
   *
   *  *  For Text Sentiment:
   *         CSV file(s) with each line having just a single column:
   *           GCS_FILE_PATH | TEXT_SNIPPET
   *         Any given text file can have size upto 128kB.
   *         Any given text snippet content must have 500 characters or less.
   *         Three sample rows:
   *           gs://folder/text1.txt
   *           "Some text content to predict"
   *           gs://folder/text3.pdf
   *         Supported file extensions: .txt, .pdf
   *
   *  * For Text Extraction
   *         .JSONL (i.e. JSON Lines) file(s) which either provide text in-line or
   *         as documents (for a single BatchPredict call only one of the these
   *         formats may be used).
   *         The in-line .JSONL file(s) contain per line a proto that
   *           wraps a temporary user-assigned TextSnippet ID (string up to 2000
   *           characters long) called "id", a TextSnippet proto (in
   *           json representation) and zero or more TextFeature protos. Any given
   *           text snippet content must have 30,000 characters or less, and also
   *           be UTF-8 NFC encoded (ASCII already is). The IDs provided should be
   *           unique.
   *         The document .JSONL file(s) contain, per line, a proto that wraps a
   *           Document proto with input_config set. Only PDF documents are
   *           supported now, and each document must be up to 2MB large.
   *         Any given .JSONL file must be 100MB or smaller, and no more than 20
   *         files may be given.
   *         Sample in-line JSON Lines file (presented here with artificial line
   *         breaks, but the only actual line break is denoted by \n):
   *           {
   *             "id": "my_first_id",
   *             "text_snippet": { "content": "dog car cat"},
   *             "text_features": [
   *               {
   *                 "text_segment": {"start_offset": 4, "end_offset": 6},
   *                 "structural_type": PARAGRAPH,
   *                 "bounding_poly": {
   *                   "normalized_vertices": [
   *                     {"x": 0.1, "y": 0.1},
   *                     {"x": 0.1, "y": 0.3},
   *                     {"x": 0.3, "y": 0.3},
   *                     {"x": 0.3, "y": 0.1},
   *                   ]
   *                 },
   *               }
   *             ],
   *           }\n
   *           {
   *             "id": "2",
   *             "text_snippet": {
   *               "content": "An elaborate content",
   *               "mime_type": "text/plain"
   *             }
   *           }
   *         Sample document JSON Lines file (presented here with artificial line
   *         breaks, but the only actual line break is denoted by \n).:
   *           {
   *             "document": {
   *               "input_config": {
   *                 "gcs_source": { "input_uris": [ "gs://folder/document1.pdf" ]
   *                 }
   *               }
   *             }
   *           }\n
   *           {
   *             "document": {
   *               "input_config": {
   *                 "gcs_source": { "input_uris": [ "gs://folder/document2.pdf" ]
   *                 }
   *               }
   *             }
   *           }
   *
   *  *  For Tables:
   *         Either
   *         [gcs_source][google.cloud.automl.v1beta1.InputConfig.gcs_source] or
   *
   * [bigquery_source][google.cloud.automl.v1beta1.InputConfig.bigquery_source].
   *         GCS case:
   *           CSV file(s), each by itself 10GB or smaller and total size must be
   *           100GB or smaller, where first file must have a header containing
   *           column names. If the first row of a subsequent file is the same as
   *           the header, then it is also treated as a header. All other rows
   *           contain values for the corresponding columns.
   *           The column names must contain the model's
   *
   * [input_feature_column_specs'][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
   *
   * [display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]
   *           (order doesn't matter). The columns corresponding to the model's
   *           input feature column specs must contain values compatible with the
   *           column spec's data types. Prediction on all the rows, i.e. the CSV
   *           lines, will be attempted. For FORECASTING
   *
   * [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:
   *           all columns having
   *
   * [TIME_SERIES_AVAILABLE_PAST_ONLY][google.cloud.automl.v1beta1.ColumnSpec.ForecastingMetadata.ColumnType]
   *           type will be ignored.
   *           First three sample rows of a CSV file:
   *             "First Name","Last Name","Dob","Addresses"
   *
   * "John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]"
   *
   * "Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]}
   *         BigQuery case:
   *           An URI of a BigQuery table. The user data size of the BigQuery
   *           table must be 100GB or smaller.
   *           The column names must contain the model's
   *
   * [input_feature_column_specs'][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
   *
   * [display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]
   *           (order doesn't matter). The columns corresponding to the model's
   *           input feature column specs must contain values compatible with the
   *           column spec's data types. Prediction on all the rows of the table
   *           will be attempted. For FORECASTING
   *
   * [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:
   *           all columns having
   *
   * [TIME_SERIES_AVAILABLE_PAST_ONLY][google.cloud.automl.v1beta1.ColumnSpec.ForecastingMetadata.ColumnType]
   *           type will be ignored.
   *
   *  Definitions:
   *  GCS_FILE_PATH = A path to file on GCS, e.g. "gs://folder/video.avi".
   *  TEXT_SNIPPET = A content of a text snippet, UTF-8 encoded, enclosed within
   *                 double quotes ("")
   *  TIME_SEGMENT_START = TIME_OFFSET
   *                       Expresses a beginning, inclusive, of a time segment
   *                       within an
   *                       example that has a time dimension (e.g. video).
   *  TIME_SEGMENT_END = TIME_OFFSET
   *                     Expresses an end, exclusive, of a time segment within
   *                     an example that has a time dimension (e.g. video).
   *  TIME_OFFSET = A number of seconds as measured from the start of an
   *                example (e.g. video). Fractions are allowed, up to a
   *                microsecond precision. "inf" is allowed and it means the end
   *                of the example.
   *
   *  Errors:
   *  If any of the provided CSV files can't be parsed or if more than certain
   *  percent of CSV rows cannot be processed then the operation fails and
   *  prediction does not happen. Regardless of overall success or failure the
   *  per-row failures, up to a certain count cap, will be listed in
   *  Operation.metadata.partial_failures.
   * 
* * Protobuf type {@code google.cloud.automl.v1beta1.BatchPredictInputConfig} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:google.cloud.automl.v1beta1.BatchPredictInputConfig) com.google.cloud.automl.v1beta1.BatchPredictInputConfigOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.Io .internal_static_google_cloud_automl_v1beta1_BatchPredictInputConfig_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.Io .internal_static_google_cloud_automl_v1beta1_BatchPredictInputConfig_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.BatchPredictInputConfig.class, com.google.cloud.automl.v1beta1.BatchPredictInputConfig.Builder.class); } // Construct using com.google.cloud.automl.v1beta1.BatchPredictInputConfig.newBuilder() private Builder() {} private Builder(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; if (gcsSourceBuilder_ != null) { gcsSourceBuilder_.clear(); } if (bigquerySourceBuilder_ != null) { bigquerySourceBuilder_.clear(); } sourceCase_ = 0; source_ = null; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return com.google.cloud.automl.v1beta1.Io .internal_static_google_cloud_automl_v1beta1_BatchPredictInputConfig_descriptor; } @java.lang.Override public com.google.cloud.automl.v1beta1.BatchPredictInputConfig getDefaultInstanceForType() { return com.google.cloud.automl.v1beta1.BatchPredictInputConfig.getDefaultInstance(); } @java.lang.Override public com.google.cloud.automl.v1beta1.BatchPredictInputConfig build() { com.google.cloud.automl.v1beta1.BatchPredictInputConfig result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public com.google.cloud.automl.v1beta1.BatchPredictInputConfig buildPartial() { com.google.cloud.automl.v1beta1.BatchPredictInputConfig result = new com.google.cloud.automl.v1beta1.BatchPredictInputConfig(this); if (bitField0_ != 0) { buildPartial0(result); } buildPartialOneofs(result); onBuilt(); return result; } private void buildPartial0(com.google.cloud.automl.v1beta1.BatchPredictInputConfig result) { int from_bitField0_ = bitField0_; } private void buildPartialOneofs( com.google.cloud.automl.v1beta1.BatchPredictInputConfig result) { result.sourceCase_ = sourceCase_; result.source_ = this.source_; if (sourceCase_ == 1 && gcsSourceBuilder_ != null) { result.source_ = gcsSourceBuilder_.build(); } if (sourceCase_ == 2 && bigquerySourceBuilder_ != null) { result.source_ = bigquerySourceBuilder_.build(); } } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof com.google.cloud.automl.v1beta1.BatchPredictInputConfig) { return mergeFrom((com.google.cloud.automl.v1beta1.BatchPredictInputConfig) other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(com.google.cloud.automl.v1beta1.BatchPredictInputConfig other) { if (other == com.google.cloud.automl.v1beta1.BatchPredictInputConfig.getDefaultInstance()) return this; switch (other.getSourceCase()) { case GCS_SOURCE: { mergeGcsSource(other.getGcsSource()); break; } case BIGQUERY_SOURCE: { mergeBigquerySource(other.getBigquerySource()); break; } case SOURCE_NOT_SET: { break; } } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { input.readMessage(getGcsSourceFieldBuilder().getBuilder(), extensionRegistry); sourceCase_ = 1; break; } // case 10 case 18: { input.readMessage(getBigquerySourceFieldBuilder().getBuilder(), extensionRegistry); sourceCase_ = 2; break; } // case 18 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int sourceCase_ = 0; private java.lang.Object source_; public SourceCase getSourceCase() { return SourceCase.forNumber(sourceCase_); } public Builder clearSource() { sourceCase_ = 0; source_ = null; onChanged(); return this; } private int bitField0_; private com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.GcsSource, com.google.cloud.automl.v1beta1.GcsSource.Builder, com.google.cloud.automl.v1beta1.GcsSourceOrBuilder> gcsSourceBuilder_; /** * * *
     * The Google Cloud Storage location for the input content.
     * 
* * .google.cloud.automl.v1beta1.GcsSource gcs_source = 1; * * @return Whether the gcsSource field is set. */ @java.lang.Override public boolean hasGcsSource() { return sourceCase_ == 1; } /** * * *
     * The Google Cloud Storage location for the input content.
     * 
* * .google.cloud.automl.v1beta1.GcsSource gcs_source = 1; * * @return The gcsSource. */ @java.lang.Override public com.google.cloud.automl.v1beta1.GcsSource getGcsSource() { if (gcsSourceBuilder_ == null) { if (sourceCase_ == 1) { return (com.google.cloud.automl.v1beta1.GcsSource) source_; } return com.google.cloud.automl.v1beta1.GcsSource.getDefaultInstance(); } else { if (sourceCase_ == 1) { return gcsSourceBuilder_.getMessage(); } return com.google.cloud.automl.v1beta1.GcsSource.getDefaultInstance(); } } /** * * *
     * The Google Cloud Storage location for the input content.
     * 
* * .google.cloud.automl.v1beta1.GcsSource gcs_source = 1; */ public Builder setGcsSource(com.google.cloud.automl.v1beta1.GcsSource value) { if (gcsSourceBuilder_ == null) { if (value == null) { throw new NullPointerException(); } source_ = value; onChanged(); } else { gcsSourceBuilder_.setMessage(value); } sourceCase_ = 1; return this; } /** * * *
     * The Google Cloud Storage location for the input content.
     * 
* * .google.cloud.automl.v1beta1.GcsSource gcs_source = 1; */ public Builder setGcsSource(com.google.cloud.automl.v1beta1.GcsSource.Builder builderForValue) { if (gcsSourceBuilder_ == null) { source_ = builderForValue.build(); onChanged(); } else { gcsSourceBuilder_.setMessage(builderForValue.build()); } sourceCase_ = 1; return this; } /** * * *
     * The Google Cloud Storage location for the input content.
     * 
* * .google.cloud.automl.v1beta1.GcsSource gcs_source = 1; */ public Builder mergeGcsSource(com.google.cloud.automl.v1beta1.GcsSource value) { if (gcsSourceBuilder_ == null) { if (sourceCase_ == 1 && source_ != com.google.cloud.automl.v1beta1.GcsSource.getDefaultInstance()) { source_ = com.google.cloud.automl.v1beta1.GcsSource.newBuilder( (com.google.cloud.automl.v1beta1.GcsSource) source_) .mergeFrom(value) .buildPartial(); } else { source_ = value; } onChanged(); } else { if (sourceCase_ == 1) { gcsSourceBuilder_.mergeFrom(value); } else { gcsSourceBuilder_.setMessage(value); } } sourceCase_ = 1; return this; } /** * * *
     * The Google Cloud Storage location for the input content.
     * 
* * .google.cloud.automl.v1beta1.GcsSource gcs_source = 1; */ public Builder clearGcsSource() { if (gcsSourceBuilder_ == null) { if (sourceCase_ == 1) { sourceCase_ = 0; source_ = null; onChanged(); } } else { if (sourceCase_ == 1) { sourceCase_ = 0; source_ = null; } gcsSourceBuilder_.clear(); } return this; } /** * * *
     * The Google Cloud Storage location for the input content.
     * 
* * .google.cloud.automl.v1beta1.GcsSource gcs_source = 1; */ public com.google.cloud.automl.v1beta1.GcsSource.Builder getGcsSourceBuilder() { return getGcsSourceFieldBuilder().getBuilder(); } /** * * *
     * The Google Cloud Storage location for the input content.
     * 
* * .google.cloud.automl.v1beta1.GcsSource gcs_source = 1; */ @java.lang.Override public com.google.cloud.automl.v1beta1.GcsSourceOrBuilder getGcsSourceOrBuilder() { if ((sourceCase_ == 1) && (gcsSourceBuilder_ != null)) { return gcsSourceBuilder_.getMessageOrBuilder(); } else { if (sourceCase_ == 1) { return (com.google.cloud.automl.v1beta1.GcsSource) source_; } return com.google.cloud.automl.v1beta1.GcsSource.getDefaultInstance(); } } /** * * *
     * The Google Cloud Storage location for the input content.
     * 
* * .google.cloud.automl.v1beta1.GcsSource gcs_source = 1; */ private com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.GcsSource, com.google.cloud.automl.v1beta1.GcsSource.Builder, com.google.cloud.automl.v1beta1.GcsSourceOrBuilder> getGcsSourceFieldBuilder() { if (gcsSourceBuilder_ == null) { if (!(sourceCase_ == 1)) { source_ = com.google.cloud.automl.v1beta1.GcsSource.getDefaultInstance(); } gcsSourceBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.GcsSource, com.google.cloud.automl.v1beta1.GcsSource.Builder, com.google.cloud.automl.v1beta1.GcsSourceOrBuilder>( (com.google.cloud.automl.v1beta1.GcsSource) source_, getParentForChildren(), isClean()); source_ = null; } sourceCase_ = 1; onChanged(); return gcsSourceBuilder_; } private com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.BigQuerySource, com.google.cloud.automl.v1beta1.BigQuerySource.Builder, com.google.cloud.automl.v1beta1.BigQuerySourceOrBuilder> bigquerySourceBuilder_; /** * * *
     * The BigQuery location for the input content.
     * 
* * .google.cloud.automl.v1beta1.BigQuerySource bigquery_source = 2; * * @return Whether the bigquerySource field is set. */ @java.lang.Override public boolean hasBigquerySource() { return sourceCase_ == 2; } /** * * *
     * The BigQuery location for the input content.
     * 
* * .google.cloud.automl.v1beta1.BigQuerySource bigquery_source = 2; * * @return The bigquerySource. */ @java.lang.Override public com.google.cloud.automl.v1beta1.BigQuerySource getBigquerySource() { if (bigquerySourceBuilder_ == null) { if (sourceCase_ == 2) { return (com.google.cloud.automl.v1beta1.BigQuerySource) source_; } return com.google.cloud.automl.v1beta1.BigQuerySource.getDefaultInstance(); } else { if (sourceCase_ == 2) { return bigquerySourceBuilder_.getMessage(); } return com.google.cloud.automl.v1beta1.BigQuerySource.getDefaultInstance(); } } /** * * *
     * The BigQuery location for the input content.
     * 
* * .google.cloud.automl.v1beta1.BigQuerySource bigquery_source = 2; */ public Builder setBigquerySource(com.google.cloud.automl.v1beta1.BigQuerySource value) { if (bigquerySourceBuilder_ == null) { if (value == null) { throw new NullPointerException(); } source_ = value; onChanged(); } else { bigquerySourceBuilder_.setMessage(value); } sourceCase_ = 2; return this; } /** * * *
     * The BigQuery location for the input content.
     * 
* * .google.cloud.automl.v1beta1.BigQuerySource bigquery_source = 2; */ public Builder setBigquerySource( com.google.cloud.automl.v1beta1.BigQuerySource.Builder builderForValue) { if (bigquerySourceBuilder_ == null) { source_ = builderForValue.build(); onChanged(); } else { bigquerySourceBuilder_.setMessage(builderForValue.build()); } sourceCase_ = 2; return this; } /** * * *
     * The BigQuery location for the input content.
     * 
* * .google.cloud.automl.v1beta1.BigQuerySource bigquery_source = 2; */ public Builder mergeBigquerySource(com.google.cloud.automl.v1beta1.BigQuerySource value) { if (bigquerySourceBuilder_ == null) { if (sourceCase_ == 2 && source_ != com.google.cloud.automl.v1beta1.BigQuerySource.getDefaultInstance()) { source_ = com.google.cloud.automl.v1beta1.BigQuerySource.newBuilder( (com.google.cloud.automl.v1beta1.BigQuerySource) source_) .mergeFrom(value) .buildPartial(); } else { source_ = value; } onChanged(); } else { if (sourceCase_ == 2) { bigquerySourceBuilder_.mergeFrom(value); } else { bigquerySourceBuilder_.setMessage(value); } } sourceCase_ = 2; return this; } /** * * *
     * The BigQuery location for the input content.
     * 
* * .google.cloud.automl.v1beta1.BigQuerySource bigquery_source = 2; */ public Builder clearBigquerySource() { if (bigquerySourceBuilder_ == null) { if (sourceCase_ == 2) { sourceCase_ = 0; source_ = null; onChanged(); } } else { if (sourceCase_ == 2) { sourceCase_ = 0; source_ = null; } bigquerySourceBuilder_.clear(); } return this; } /** * * *
     * The BigQuery location for the input content.
     * 
* * .google.cloud.automl.v1beta1.BigQuerySource bigquery_source = 2; */ public com.google.cloud.automl.v1beta1.BigQuerySource.Builder getBigquerySourceBuilder() { return getBigquerySourceFieldBuilder().getBuilder(); } /** * * *
     * The BigQuery location for the input content.
     * 
* * .google.cloud.automl.v1beta1.BigQuerySource bigquery_source = 2; */ @java.lang.Override public com.google.cloud.automl.v1beta1.BigQuerySourceOrBuilder getBigquerySourceOrBuilder() { if ((sourceCase_ == 2) && (bigquerySourceBuilder_ != null)) { return bigquerySourceBuilder_.getMessageOrBuilder(); } else { if (sourceCase_ == 2) { return (com.google.cloud.automl.v1beta1.BigQuerySource) source_; } return com.google.cloud.automl.v1beta1.BigQuerySource.getDefaultInstance(); } } /** * * *
     * The BigQuery location for the input content.
     * 
* * .google.cloud.automl.v1beta1.BigQuerySource bigquery_source = 2; */ private com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.BigQuerySource, com.google.cloud.automl.v1beta1.BigQuerySource.Builder, com.google.cloud.automl.v1beta1.BigQuerySourceOrBuilder> getBigquerySourceFieldBuilder() { if (bigquerySourceBuilder_ == null) { if (!(sourceCase_ == 2)) { source_ = com.google.cloud.automl.v1beta1.BigQuerySource.getDefaultInstance(); } bigquerySourceBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.BigQuerySource, com.google.cloud.automl.v1beta1.BigQuerySource.Builder, com.google.cloud.automl.v1beta1.BigQuerySourceOrBuilder>( (com.google.cloud.automl.v1beta1.BigQuerySource) source_, getParentForChildren(), isClean()); source_ = null; } sourceCase_ = 2; onChanged(); return bigquerySourceBuilder_; } @java.lang.Override public final Builder setUnknownFields(final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:google.cloud.automl.v1beta1.BatchPredictInputConfig) } // @@protoc_insertion_point(class_scope:google.cloud.automl.v1beta1.BatchPredictInputConfig) private static final com.google.cloud.automl.v1beta1.BatchPredictInputConfig DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new com.google.cloud.automl.v1beta1.BatchPredictInputConfig(); } public static com.google.cloud.automl.v1beta1.BatchPredictInputConfig getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public BatchPredictInputConfig parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public com.google.cloud.automl.v1beta1.BatchPredictInputConfig getDefaultInstanceForType() { return DEFAULT_INSTANCE; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy