All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.cloud.automl.v1beta1.PredictResponse Maven / Gradle / Ivy

There is a newer version: 0.141.0
Show newest version
/*
 * Copyright 2024 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: google/cloud/automl/v1beta1/prediction_service.proto

// Protobuf Java Version: 3.25.5
package com.google.cloud.automl.v1beta1;

/**
 *
 *
 * 
 * Response message for [PredictionService.Predict][google.cloud.automl.v1beta1.PredictionService.Predict].
 * 
* * Protobuf type {@code google.cloud.automl.v1beta1.PredictResponse} */ public final class PredictResponse extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:google.cloud.automl.v1beta1.PredictResponse) PredictResponseOrBuilder { private static final long serialVersionUID = 0L; // Use PredictResponse.newBuilder() to construct. private PredictResponse(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private PredictResponse() { payload_ = java.util.Collections.emptyList(); } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance(UnusedPrivateParameter unused) { return new PredictResponse(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.PredictionServiceProto .internal_static_google_cloud_automl_v1beta1_PredictResponse_descriptor; } @SuppressWarnings({"rawtypes"}) @java.lang.Override protected com.google.protobuf.MapFieldReflectionAccessor internalGetMapFieldReflection( int number) { switch (number) { case 2: return internalGetMetadata(); default: throw new RuntimeException("Invalid map field number: " + number); } } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.PredictionServiceProto .internal_static_google_cloud_automl_v1beta1_PredictResponse_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.PredictResponse.class, com.google.cloud.automl.v1beta1.PredictResponse.Builder.class); } private int bitField0_; public static final int PAYLOAD_FIELD_NUMBER = 1; @SuppressWarnings("serial") private java.util.List payload_; /** * * *
   * Prediction result.
   * Translation and Text Sentiment will return precisely one payload.
   * 
* * repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1; */ @java.lang.Override public java.util.List getPayloadList() { return payload_; } /** * * *
   * Prediction result.
   * Translation and Text Sentiment will return precisely one payload.
   * 
* * repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1; */ @java.lang.Override public java.util.List getPayloadOrBuilderList() { return payload_; } /** * * *
   * Prediction result.
   * Translation and Text Sentiment will return precisely one payload.
   * 
* * repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1; */ @java.lang.Override public int getPayloadCount() { return payload_.size(); } /** * * *
   * Prediction result.
   * Translation and Text Sentiment will return precisely one payload.
   * 
* * repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1; */ @java.lang.Override public com.google.cloud.automl.v1beta1.AnnotationPayload getPayload(int index) { return payload_.get(index); } /** * * *
   * Prediction result.
   * Translation and Text Sentiment will return precisely one payload.
   * 
* * repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1; */ @java.lang.Override public com.google.cloud.automl.v1beta1.AnnotationPayloadOrBuilder getPayloadOrBuilder(int index) { return payload_.get(index); } public static final int PREPROCESSED_INPUT_FIELD_NUMBER = 3; private com.google.cloud.automl.v1beta1.ExamplePayload preprocessedInput_; /** * * *
   * The preprocessed example that AutoML actually makes prediction on.
   * Empty if AutoML does not preprocess the input example.
   * * For Text Extraction:
   *   If the input is a .pdf file, the OCR'ed text will be provided in
   *   [document_text][google.cloud.automl.v1beta1.Document.document_text].
   * 
* * .google.cloud.automl.v1beta1.ExamplePayload preprocessed_input = 3; * * @return Whether the preprocessedInput field is set. */ @java.lang.Override public boolean hasPreprocessedInput() { return ((bitField0_ & 0x00000001) != 0); } /** * * *
   * The preprocessed example that AutoML actually makes prediction on.
   * Empty if AutoML does not preprocess the input example.
   * * For Text Extraction:
   *   If the input is a .pdf file, the OCR'ed text will be provided in
   *   [document_text][google.cloud.automl.v1beta1.Document.document_text].
   * 
* * .google.cloud.automl.v1beta1.ExamplePayload preprocessed_input = 3; * * @return The preprocessedInput. */ @java.lang.Override public com.google.cloud.automl.v1beta1.ExamplePayload getPreprocessedInput() { return preprocessedInput_ == null ? com.google.cloud.automl.v1beta1.ExamplePayload.getDefaultInstance() : preprocessedInput_; } /** * * *
   * The preprocessed example that AutoML actually makes prediction on.
   * Empty if AutoML does not preprocess the input example.
   * * For Text Extraction:
   *   If the input is a .pdf file, the OCR'ed text will be provided in
   *   [document_text][google.cloud.automl.v1beta1.Document.document_text].
   * 
* * .google.cloud.automl.v1beta1.ExamplePayload preprocessed_input = 3; */ @java.lang.Override public com.google.cloud.automl.v1beta1.ExamplePayloadOrBuilder getPreprocessedInputOrBuilder() { return preprocessedInput_ == null ? com.google.cloud.automl.v1beta1.ExamplePayload.getDefaultInstance() : preprocessedInput_; } public static final int METADATA_FIELD_NUMBER = 2; private static final class MetadataDefaultEntryHolder { static final com.google.protobuf.MapEntry defaultEntry = com.google.protobuf.MapEntry.newDefaultInstance( com.google.cloud.automl.v1beta1.PredictionServiceProto .internal_static_google_cloud_automl_v1beta1_PredictResponse_MetadataEntry_descriptor, com.google.protobuf.WireFormat.FieldType.STRING, "", com.google.protobuf.WireFormat.FieldType.STRING, ""); } @SuppressWarnings("serial") private com.google.protobuf.MapField metadata_; private com.google.protobuf.MapField internalGetMetadata() { if (metadata_ == null) { return com.google.protobuf.MapField.emptyMapField(MetadataDefaultEntryHolder.defaultEntry); } return metadata_; } public int getMetadataCount() { return internalGetMetadata().getMap().size(); } /** * * *
   * Additional domain-specific prediction response metadata.
   *
   * * For Image Object Detection:
   *  `max_bounding_box_count` - (int64) At most that many bounding boxes per
   *      image could have been returned.
   *
   * * For Text Sentiment:
   *  `sentiment_score` - (float, deprecated) A value between -1 and 1,
   *      -1 maps to least positive sentiment, while 1 maps to the most positive
   *      one and the higher the score, the more positive the sentiment in the
   *      document is. Yet these values are relative to the training data, so
   *      e.g. if all data was positive then -1 will be also positive (though
   *      the least).
   *      The sentiment_score shouldn't be confused with "score" or "magnitude"
   *      from the previous Natural Language Sentiment Analysis API.
   * 
* * map<string, string> metadata = 2; */ @java.lang.Override public boolean containsMetadata(java.lang.String key) { if (key == null) { throw new NullPointerException("map key"); } return internalGetMetadata().getMap().containsKey(key); } /** Use {@link #getMetadataMap()} instead. */ @java.lang.Override @java.lang.Deprecated public java.util.Map getMetadata() { return getMetadataMap(); } /** * * *
   * Additional domain-specific prediction response metadata.
   *
   * * For Image Object Detection:
   *  `max_bounding_box_count` - (int64) At most that many bounding boxes per
   *      image could have been returned.
   *
   * * For Text Sentiment:
   *  `sentiment_score` - (float, deprecated) A value between -1 and 1,
   *      -1 maps to least positive sentiment, while 1 maps to the most positive
   *      one and the higher the score, the more positive the sentiment in the
   *      document is. Yet these values are relative to the training data, so
   *      e.g. if all data was positive then -1 will be also positive (though
   *      the least).
   *      The sentiment_score shouldn't be confused with "score" or "magnitude"
   *      from the previous Natural Language Sentiment Analysis API.
   * 
* * map<string, string> metadata = 2; */ @java.lang.Override public java.util.Map getMetadataMap() { return internalGetMetadata().getMap(); } /** * * *
   * Additional domain-specific prediction response metadata.
   *
   * * For Image Object Detection:
   *  `max_bounding_box_count` - (int64) At most that many bounding boxes per
   *      image could have been returned.
   *
   * * For Text Sentiment:
   *  `sentiment_score` - (float, deprecated) A value between -1 and 1,
   *      -1 maps to least positive sentiment, while 1 maps to the most positive
   *      one and the higher the score, the more positive the sentiment in the
   *      document is. Yet these values are relative to the training data, so
   *      e.g. if all data was positive then -1 will be also positive (though
   *      the least).
   *      The sentiment_score shouldn't be confused with "score" or "magnitude"
   *      from the previous Natural Language Sentiment Analysis API.
   * 
* * map<string, string> metadata = 2; */ @java.lang.Override public /* nullable */ java.lang.String getMetadataOrDefault( java.lang.String key, /* nullable */ java.lang.String defaultValue) { if (key == null) { throw new NullPointerException("map key"); } java.util.Map map = internalGetMetadata().getMap(); return map.containsKey(key) ? map.get(key) : defaultValue; } /** * * *
   * Additional domain-specific prediction response metadata.
   *
   * * For Image Object Detection:
   *  `max_bounding_box_count` - (int64) At most that many bounding boxes per
   *      image could have been returned.
   *
   * * For Text Sentiment:
   *  `sentiment_score` - (float, deprecated) A value between -1 and 1,
   *      -1 maps to least positive sentiment, while 1 maps to the most positive
   *      one and the higher the score, the more positive the sentiment in the
   *      document is. Yet these values are relative to the training data, so
   *      e.g. if all data was positive then -1 will be also positive (though
   *      the least).
   *      The sentiment_score shouldn't be confused with "score" or "magnitude"
   *      from the previous Natural Language Sentiment Analysis API.
   * 
* * map<string, string> metadata = 2; */ @java.lang.Override public java.lang.String getMetadataOrThrow(java.lang.String key) { if (key == null) { throw new NullPointerException("map key"); } java.util.Map map = internalGetMetadata().getMap(); if (!map.containsKey(key)) { throw new java.lang.IllegalArgumentException(); } return map.get(key); } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { for (int i = 0; i < payload_.size(); i++) { output.writeMessage(1, payload_.get(i)); } com.google.protobuf.GeneratedMessageV3.serializeStringMapTo( output, internalGetMetadata(), MetadataDefaultEntryHolder.defaultEntry, 2); if (((bitField0_ & 0x00000001) != 0)) { output.writeMessage(3, getPreprocessedInput()); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; for (int i = 0; i < payload_.size(); i++) { size += com.google.protobuf.CodedOutputStream.computeMessageSize(1, payload_.get(i)); } for (java.util.Map.Entry entry : internalGetMetadata().getMap().entrySet()) { com.google.protobuf.MapEntry metadata__ = MetadataDefaultEntryHolder.defaultEntry .newBuilderForType() .setKey(entry.getKey()) .setValue(entry.getValue()) .build(); size += com.google.protobuf.CodedOutputStream.computeMessageSize(2, metadata__); } if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.CodedOutputStream.computeMessageSize(3, getPreprocessedInput()); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof com.google.cloud.automl.v1beta1.PredictResponse)) { return super.equals(obj); } com.google.cloud.automl.v1beta1.PredictResponse other = (com.google.cloud.automl.v1beta1.PredictResponse) obj; if (!getPayloadList().equals(other.getPayloadList())) return false; if (hasPreprocessedInput() != other.hasPreprocessedInput()) return false; if (hasPreprocessedInput()) { if (!getPreprocessedInput().equals(other.getPreprocessedInput())) return false; } if (!internalGetMetadata().equals(other.internalGetMetadata())) return false; if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (getPayloadCount() > 0) { hash = (37 * hash) + PAYLOAD_FIELD_NUMBER; hash = (53 * hash) + getPayloadList().hashCode(); } if (hasPreprocessedInput()) { hash = (37 * hash) + PREPROCESSED_INPUT_FIELD_NUMBER; hash = (53 * hash) + getPreprocessedInput().hashCode(); } if (!internalGetMetadata().getMap().isEmpty()) { hash = (37 * hash) + METADATA_FIELD_NUMBER; hash = (53 * hash) + internalGetMetadata().hashCode(); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static com.google.cloud.automl.v1beta1.PredictResponse parseFrom(java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.PredictResponse parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.PredictResponse parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.PredictResponse parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.PredictResponse parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.PredictResponse parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.PredictResponse parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.PredictResponse parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.PredictResponse parseDelimitedFrom( java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.PredictResponse parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.PredictResponse parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.PredictResponse parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(com.google.cloud.automl.v1beta1.PredictResponse prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * * *
   * Response message for [PredictionService.Predict][google.cloud.automl.v1beta1.PredictionService.Predict].
   * 
* * Protobuf type {@code google.cloud.automl.v1beta1.PredictResponse} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:google.cloud.automl.v1beta1.PredictResponse) com.google.cloud.automl.v1beta1.PredictResponseOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.PredictionServiceProto .internal_static_google_cloud_automl_v1beta1_PredictResponse_descriptor; } @SuppressWarnings({"rawtypes"}) protected com.google.protobuf.MapFieldReflectionAccessor internalGetMapFieldReflection( int number) { switch (number) { case 2: return internalGetMetadata(); default: throw new RuntimeException("Invalid map field number: " + number); } } @SuppressWarnings({"rawtypes"}) protected com.google.protobuf.MapFieldReflectionAccessor internalGetMutableMapFieldReflection( int number) { switch (number) { case 2: return internalGetMutableMetadata(); default: throw new RuntimeException("Invalid map field number: " + number); } } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.PredictionServiceProto .internal_static_google_cloud_automl_v1beta1_PredictResponse_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.PredictResponse.class, com.google.cloud.automl.v1beta1.PredictResponse.Builder.class); } // Construct using com.google.cloud.automl.v1beta1.PredictResponse.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders) { getPayloadFieldBuilder(); getPreprocessedInputFieldBuilder(); } } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; if (payloadBuilder_ == null) { payload_ = java.util.Collections.emptyList(); } else { payload_ = null; payloadBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000001); preprocessedInput_ = null; if (preprocessedInputBuilder_ != null) { preprocessedInputBuilder_.dispose(); preprocessedInputBuilder_ = null; } internalGetMutableMetadata().clear(); return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return com.google.cloud.automl.v1beta1.PredictionServiceProto .internal_static_google_cloud_automl_v1beta1_PredictResponse_descriptor; } @java.lang.Override public com.google.cloud.automl.v1beta1.PredictResponse getDefaultInstanceForType() { return com.google.cloud.automl.v1beta1.PredictResponse.getDefaultInstance(); } @java.lang.Override public com.google.cloud.automl.v1beta1.PredictResponse build() { com.google.cloud.automl.v1beta1.PredictResponse result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public com.google.cloud.automl.v1beta1.PredictResponse buildPartial() { com.google.cloud.automl.v1beta1.PredictResponse result = new com.google.cloud.automl.v1beta1.PredictResponse(this); buildPartialRepeatedFields(result); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartialRepeatedFields( com.google.cloud.automl.v1beta1.PredictResponse result) { if (payloadBuilder_ == null) { if (((bitField0_ & 0x00000001) != 0)) { payload_ = java.util.Collections.unmodifiableList(payload_); bitField0_ = (bitField0_ & ~0x00000001); } result.payload_ = payload_; } else { result.payload_ = payloadBuilder_.build(); } } private void buildPartial0(com.google.cloud.automl.v1beta1.PredictResponse result) { int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000002) != 0)) { result.preprocessedInput_ = preprocessedInputBuilder_ == null ? preprocessedInput_ : preprocessedInputBuilder_.build(); to_bitField0_ |= 0x00000001; } if (((from_bitField0_ & 0x00000004) != 0)) { result.metadata_ = internalGetMetadata(); result.metadata_.makeImmutable(); } result.bitField0_ |= to_bitField0_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof com.google.cloud.automl.v1beta1.PredictResponse) { return mergeFrom((com.google.cloud.automl.v1beta1.PredictResponse) other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(com.google.cloud.automl.v1beta1.PredictResponse other) { if (other == com.google.cloud.automl.v1beta1.PredictResponse.getDefaultInstance()) return this; if (payloadBuilder_ == null) { if (!other.payload_.isEmpty()) { if (payload_.isEmpty()) { payload_ = other.payload_; bitField0_ = (bitField0_ & ~0x00000001); } else { ensurePayloadIsMutable(); payload_.addAll(other.payload_); } onChanged(); } } else { if (!other.payload_.isEmpty()) { if (payloadBuilder_.isEmpty()) { payloadBuilder_.dispose(); payloadBuilder_ = null; payload_ = other.payload_; bitField0_ = (bitField0_ & ~0x00000001); payloadBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getPayloadFieldBuilder() : null; } else { payloadBuilder_.addAllMessages(other.payload_); } } } if (other.hasPreprocessedInput()) { mergePreprocessedInput(other.getPreprocessedInput()); } internalGetMutableMetadata().mergeFrom(other.internalGetMetadata()); bitField0_ |= 0x00000004; this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { com.google.cloud.automl.v1beta1.AnnotationPayload m = input.readMessage( com.google.cloud.automl.v1beta1.AnnotationPayload.parser(), extensionRegistry); if (payloadBuilder_ == null) { ensurePayloadIsMutable(); payload_.add(m); } else { payloadBuilder_.addMessage(m); } break; } // case 10 case 18: { com.google.protobuf.MapEntry metadata__ = input.readMessage( MetadataDefaultEntryHolder.defaultEntry.getParserForType(), extensionRegistry); internalGetMutableMetadata() .getMutableMap() .put(metadata__.getKey(), metadata__.getValue()); bitField0_ |= 0x00000004; break; } // case 18 case 26: { input.readMessage( getPreprocessedInputFieldBuilder().getBuilder(), extensionRegistry); bitField0_ |= 0x00000002; break; } // case 26 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private java.util.List payload_ = java.util.Collections.emptyList(); private void ensurePayloadIsMutable() { if (!((bitField0_ & 0x00000001) != 0)) { payload_ = new java.util.ArrayList(payload_); bitField0_ |= 0x00000001; } } private com.google.protobuf.RepeatedFieldBuilderV3< com.google.cloud.automl.v1beta1.AnnotationPayload, com.google.cloud.automl.v1beta1.AnnotationPayload.Builder, com.google.cloud.automl.v1beta1.AnnotationPayloadOrBuilder> payloadBuilder_; /** * * *
     * Prediction result.
     * Translation and Text Sentiment will return precisely one payload.
     * 
* * repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1; */ public java.util.List getPayloadList() { if (payloadBuilder_ == null) { return java.util.Collections.unmodifiableList(payload_); } else { return payloadBuilder_.getMessageList(); } } /** * * *
     * Prediction result.
     * Translation and Text Sentiment will return precisely one payload.
     * 
* * repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1; */ public int getPayloadCount() { if (payloadBuilder_ == null) { return payload_.size(); } else { return payloadBuilder_.getCount(); } } /** * * *
     * Prediction result.
     * Translation and Text Sentiment will return precisely one payload.
     * 
* * repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1; */ public com.google.cloud.automl.v1beta1.AnnotationPayload getPayload(int index) { if (payloadBuilder_ == null) { return payload_.get(index); } else { return payloadBuilder_.getMessage(index); } } /** * * *
     * Prediction result.
     * Translation and Text Sentiment will return precisely one payload.
     * 
* * repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1; */ public Builder setPayload(int index, com.google.cloud.automl.v1beta1.AnnotationPayload value) { if (payloadBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensurePayloadIsMutable(); payload_.set(index, value); onChanged(); } else { payloadBuilder_.setMessage(index, value); } return this; } /** * * *
     * Prediction result.
     * Translation and Text Sentiment will return precisely one payload.
     * 
* * repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1; */ public Builder setPayload( int index, com.google.cloud.automl.v1beta1.AnnotationPayload.Builder builderForValue) { if (payloadBuilder_ == null) { ensurePayloadIsMutable(); payload_.set(index, builderForValue.build()); onChanged(); } else { payloadBuilder_.setMessage(index, builderForValue.build()); } return this; } /** * * *
     * Prediction result.
     * Translation and Text Sentiment will return precisely one payload.
     * 
* * repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1; */ public Builder addPayload(com.google.cloud.automl.v1beta1.AnnotationPayload value) { if (payloadBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensurePayloadIsMutable(); payload_.add(value); onChanged(); } else { payloadBuilder_.addMessage(value); } return this; } /** * * *
     * Prediction result.
     * Translation and Text Sentiment will return precisely one payload.
     * 
* * repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1; */ public Builder addPayload(int index, com.google.cloud.automl.v1beta1.AnnotationPayload value) { if (payloadBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensurePayloadIsMutable(); payload_.add(index, value); onChanged(); } else { payloadBuilder_.addMessage(index, value); } return this; } /** * * *
     * Prediction result.
     * Translation and Text Sentiment will return precisely one payload.
     * 
* * repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1; */ public Builder addPayload( com.google.cloud.automl.v1beta1.AnnotationPayload.Builder builderForValue) { if (payloadBuilder_ == null) { ensurePayloadIsMutable(); payload_.add(builderForValue.build()); onChanged(); } else { payloadBuilder_.addMessage(builderForValue.build()); } return this; } /** * * *
     * Prediction result.
     * Translation and Text Sentiment will return precisely one payload.
     * 
* * repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1; */ public Builder addPayload( int index, com.google.cloud.automl.v1beta1.AnnotationPayload.Builder builderForValue) { if (payloadBuilder_ == null) { ensurePayloadIsMutable(); payload_.add(index, builderForValue.build()); onChanged(); } else { payloadBuilder_.addMessage(index, builderForValue.build()); } return this; } /** * * *
     * Prediction result.
     * Translation and Text Sentiment will return precisely one payload.
     * 
* * repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1; */ public Builder addAllPayload( java.lang.Iterable values) { if (payloadBuilder_ == null) { ensurePayloadIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll(values, payload_); onChanged(); } else { payloadBuilder_.addAllMessages(values); } return this; } /** * * *
     * Prediction result.
     * Translation and Text Sentiment will return precisely one payload.
     * 
* * repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1; */ public Builder clearPayload() { if (payloadBuilder_ == null) { payload_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000001); onChanged(); } else { payloadBuilder_.clear(); } return this; } /** * * *
     * Prediction result.
     * Translation and Text Sentiment will return precisely one payload.
     * 
* * repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1; */ public Builder removePayload(int index) { if (payloadBuilder_ == null) { ensurePayloadIsMutable(); payload_.remove(index); onChanged(); } else { payloadBuilder_.remove(index); } return this; } /** * * *
     * Prediction result.
     * Translation and Text Sentiment will return precisely one payload.
     * 
* * repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1; */ public com.google.cloud.automl.v1beta1.AnnotationPayload.Builder getPayloadBuilder(int index) { return getPayloadFieldBuilder().getBuilder(index); } /** * * *
     * Prediction result.
     * Translation and Text Sentiment will return precisely one payload.
     * 
* * repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1; */ public com.google.cloud.automl.v1beta1.AnnotationPayloadOrBuilder getPayloadOrBuilder( int index) { if (payloadBuilder_ == null) { return payload_.get(index); } else { return payloadBuilder_.getMessageOrBuilder(index); } } /** * * *
     * Prediction result.
     * Translation and Text Sentiment will return precisely one payload.
     * 
* * repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1; */ public java.util.List getPayloadOrBuilderList() { if (payloadBuilder_ != null) { return payloadBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(payload_); } } /** * * *
     * Prediction result.
     * Translation and Text Sentiment will return precisely one payload.
     * 
* * repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1; */ public com.google.cloud.automl.v1beta1.AnnotationPayload.Builder addPayloadBuilder() { return getPayloadFieldBuilder() .addBuilder(com.google.cloud.automl.v1beta1.AnnotationPayload.getDefaultInstance()); } /** * * *
     * Prediction result.
     * Translation and Text Sentiment will return precisely one payload.
     * 
* * repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1; */ public com.google.cloud.automl.v1beta1.AnnotationPayload.Builder addPayloadBuilder(int index) { return getPayloadFieldBuilder() .addBuilder( index, com.google.cloud.automl.v1beta1.AnnotationPayload.getDefaultInstance()); } /** * * *
     * Prediction result.
     * Translation and Text Sentiment will return precisely one payload.
     * 
* * repeated .google.cloud.automl.v1beta1.AnnotationPayload payload = 1; */ public java.util.List getPayloadBuilderList() { return getPayloadFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< com.google.cloud.automl.v1beta1.AnnotationPayload, com.google.cloud.automl.v1beta1.AnnotationPayload.Builder, com.google.cloud.automl.v1beta1.AnnotationPayloadOrBuilder> getPayloadFieldBuilder() { if (payloadBuilder_ == null) { payloadBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< com.google.cloud.automl.v1beta1.AnnotationPayload, com.google.cloud.automl.v1beta1.AnnotationPayload.Builder, com.google.cloud.automl.v1beta1.AnnotationPayloadOrBuilder>( payload_, ((bitField0_ & 0x00000001) != 0), getParentForChildren(), isClean()); payload_ = null; } return payloadBuilder_; } private com.google.cloud.automl.v1beta1.ExamplePayload preprocessedInput_; private com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.ExamplePayload, com.google.cloud.automl.v1beta1.ExamplePayload.Builder, com.google.cloud.automl.v1beta1.ExamplePayloadOrBuilder> preprocessedInputBuilder_; /** * * *
     * The preprocessed example that AutoML actually makes prediction on.
     * Empty if AutoML does not preprocess the input example.
     * * For Text Extraction:
     *   If the input is a .pdf file, the OCR'ed text will be provided in
     *   [document_text][google.cloud.automl.v1beta1.Document.document_text].
     * 
* * .google.cloud.automl.v1beta1.ExamplePayload preprocessed_input = 3; * * @return Whether the preprocessedInput field is set. */ public boolean hasPreprocessedInput() { return ((bitField0_ & 0x00000002) != 0); } /** * * *
     * The preprocessed example that AutoML actually makes prediction on.
     * Empty if AutoML does not preprocess the input example.
     * * For Text Extraction:
     *   If the input is a .pdf file, the OCR'ed text will be provided in
     *   [document_text][google.cloud.automl.v1beta1.Document.document_text].
     * 
* * .google.cloud.automl.v1beta1.ExamplePayload preprocessed_input = 3; * * @return The preprocessedInput. */ public com.google.cloud.automl.v1beta1.ExamplePayload getPreprocessedInput() { if (preprocessedInputBuilder_ == null) { return preprocessedInput_ == null ? com.google.cloud.automl.v1beta1.ExamplePayload.getDefaultInstance() : preprocessedInput_; } else { return preprocessedInputBuilder_.getMessage(); } } /** * * *
     * The preprocessed example that AutoML actually makes prediction on.
     * Empty if AutoML does not preprocess the input example.
     * * For Text Extraction:
     *   If the input is a .pdf file, the OCR'ed text will be provided in
     *   [document_text][google.cloud.automl.v1beta1.Document.document_text].
     * 
* * .google.cloud.automl.v1beta1.ExamplePayload preprocessed_input = 3; */ public Builder setPreprocessedInput(com.google.cloud.automl.v1beta1.ExamplePayload value) { if (preprocessedInputBuilder_ == null) { if (value == null) { throw new NullPointerException(); } preprocessedInput_ = value; } else { preprocessedInputBuilder_.setMessage(value); } bitField0_ |= 0x00000002; onChanged(); return this; } /** * * *
     * The preprocessed example that AutoML actually makes prediction on.
     * Empty if AutoML does not preprocess the input example.
     * * For Text Extraction:
     *   If the input is a .pdf file, the OCR'ed text will be provided in
     *   [document_text][google.cloud.automl.v1beta1.Document.document_text].
     * 
* * .google.cloud.automl.v1beta1.ExamplePayload preprocessed_input = 3; */ public Builder setPreprocessedInput( com.google.cloud.automl.v1beta1.ExamplePayload.Builder builderForValue) { if (preprocessedInputBuilder_ == null) { preprocessedInput_ = builderForValue.build(); } else { preprocessedInputBuilder_.setMessage(builderForValue.build()); } bitField0_ |= 0x00000002; onChanged(); return this; } /** * * *
     * The preprocessed example that AutoML actually makes prediction on.
     * Empty if AutoML does not preprocess the input example.
     * * For Text Extraction:
     *   If the input is a .pdf file, the OCR'ed text will be provided in
     *   [document_text][google.cloud.automl.v1beta1.Document.document_text].
     * 
* * .google.cloud.automl.v1beta1.ExamplePayload preprocessed_input = 3; */ public Builder mergePreprocessedInput(com.google.cloud.automl.v1beta1.ExamplePayload value) { if (preprocessedInputBuilder_ == null) { if (((bitField0_ & 0x00000002) != 0) && preprocessedInput_ != null && preprocessedInput_ != com.google.cloud.automl.v1beta1.ExamplePayload.getDefaultInstance()) { getPreprocessedInputBuilder().mergeFrom(value); } else { preprocessedInput_ = value; } } else { preprocessedInputBuilder_.mergeFrom(value); } if (preprocessedInput_ != null) { bitField0_ |= 0x00000002; onChanged(); } return this; } /** * * *
     * The preprocessed example that AutoML actually makes prediction on.
     * Empty if AutoML does not preprocess the input example.
     * * For Text Extraction:
     *   If the input is a .pdf file, the OCR'ed text will be provided in
     *   [document_text][google.cloud.automl.v1beta1.Document.document_text].
     * 
* * .google.cloud.automl.v1beta1.ExamplePayload preprocessed_input = 3; */ public Builder clearPreprocessedInput() { bitField0_ = (bitField0_ & ~0x00000002); preprocessedInput_ = null; if (preprocessedInputBuilder_ != null) { preprocessedInputBuilder_.dispose(); preprocessedInputBuilder_ = null; } onChanged(); return this; } /** * * *
     * The preprocessed example that AutoML actually makes prediction on.
     * Empty if AutoML does not preprocess the input example.
     * * For Text Extraction:
     *   If the input is a .pdf file, the OCR'ed text will be provided in
     *   [document_text][google.cloud.automl.v1beta1.Document.document_text].
     * 
* * .google.cloud.automl.v1beta1.ExamplePayload preprocessed_input = 3; */ public com.google.cloud.automl.v1beta1.ExamplePayload.Builder getPreprocessedInputBuilder() { bitField0_ |= 0x00000002; onChanged(); return getPreprocessedInputFieldBuilder().getBuilder(); } /** * * *
     * The preprocessed example that AutoML actually makes prediction on.
     * Empty if AutoML does not preprocess the input example.
     * * For Text Extraction:
     *   If the input is a .pdf file, the OCR'ed text will be provided in
     *   [document_text][google.cloud.automl.v1beta1.Document.document_text].
     * 
* * .google.cloud.automl.v1beta1.ExamplePayload preprocessed_input = 3; */ public com.google.cloud.automl.v1beta1.ExamplePayloadOrBuilder getPreprocessedInputOrBuilder() { if (preprocessedInputBuilder_ != null) { return preprocessedInputBuilder_.getMessageOrBuilder(); } else { return preprocessedInput_ == null ? com.google.cloud.automl.v1beta1.ExamplePayload.getDefaultInstance() : preprocessedInput_; } } /** * * *
     * The preprocessed example that AutoML actually makes prediction on.
     * Empty if AutoML does not preprocess the input example.
     * * For Text Extraction:
     *   If the input is a .pdf file, the OCR'ed text will be provided in
     *   [document_text][google.cloud.automl.v1beta1.Document.document_text].
     * 
* * .google.cloud.automl.v1beta1.ExamplePayload preprocessed_input = 3; */ private com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.ExamplePayload, com.google.cloud.automl.v1beta1.ExamplePayload.Builder, com.google.cloud.automl.v1beta1.ExamplePayloadOrBuilder> getPreprocessedInputFieldBuilder() { if (preprocessedInputBuilder_ == null) { preprocessedInputBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.ExamplePayload, com.google.cloud.automl.v1beta1.ExamplePayload.Builder, com.google.cloud.automl.v1beta1.ExamplePayloadOrBuilder>( getPreprocessedInput(), getParentForChildren(), isClean()); preprocessedInput_ = null; } return preprocessedInputBuilder_; } private com.google.protobuf.MapField metadata_; private com.google.protobuf.MapField internalGetMetadata() { if (metadata_ == null) { return com.google.protobuf.MapField.emptyMapField(MetadataDefaultEntryHolder.defaultEntry); } return metadata_; } private com.google.protobuf.MapField internalGetMutableMetadata() { if (metadata_ == null) { metadata_ = com.google.protobuf.MapField.newMapField(MetadataDefaultEntryHolder.defaultEntry); } if (!metadata_.isMutable()) { metadata_ = metadata_.copy(); } bitField0_ |= 0x00000004; onChanged(); return metadata_; } public int getMetadataCount() { return internalGetMetadata().getMap().size(); } /** * * *
     * Additional domain-specific prediction response metadata.
     *
     * * For Image Object Detection:
     *  `max_bounding_box_count` - (int64) At most that many bounding boxes per
     *      image could have been returned.
     *
     * * For Text Sentiment:
     *  `sentiment_score` - (float, deprecated) A value between -1 and 1,
     *      -1 maps to least positive sentiment, while 1 maps to the most positive
     *      one and the higher the score, the more positive the sentiment in the
     *      document is. Yet these values are relative to the training data, so
     *      e.g. if all data was positive then -1 will be also positive (though
     *      the least).
     *      The sentiment_score shouldn't be confused with "score" or "magnitude"
     *      from the previous Natural Language Sentiment Analysis API.
     * 
* * map<string, string> metadata = 2; */ @java.lang.Override public boolean containsMetadata(java.lang.String key) { if (key == null) { throw new NullPointerException("map key"); } return internalGetMetadata().getMap().containsKey(key); } /** Use {@link #getMetadataMap()} instead. */ @java.lang.Override @java.lang.Deprecated public java.util.Map getMetadata() { return getMetadataMap(); } /** * * *
     * Additional domain-specific prediction response metadata.
     *
     * * For Image Object Detection:
     *  `max_bounding_box_count` - (int64) At most that many bounding boxes per
     *      image could have been returned.
     *
     * * For Text Sentiment:
     *  `sentiment_score` - (float, deprecated) A value between -1 and 1,
     *      -1 maps to least positive sentiment, while 1 maps to the most positive
     *      one and the higher the score, the more positive the sentiment in the
     *      document is. Yet these values are relative to the training data, so
     *      e.g. if all data was positive then -1 will be also positive (though
     *      the least).
     *      The sentiment_score shouldn't be confused with "score" or "magnitude"
     *      from the previous Natural Language Sentiment Analysis API.
     * 
* * map<string, string> metadata = 2; */ @java.lang.Override public java.util.Map getMetadataMap() { return internalGetMetadata().getMap(); } /** * * *
     * Additional domain-specific prediction response metadata.
     *
     * * For Image Object Detection:
     *  `max_bounding_box_count` - (int64) At most that many bounding boxes per
     *      image could have been returned.
     *
     * * For Text Sentiment:
     *  `sentiment_score` - (float, deprecated) A value between -1 and 1,
     *      -1 maps to least positive sentiment, while 1 maps to the most positive
     *      one and the higher the score, the more positive the sentiment in the
     *      document is. Yet these values are relative to the training data, so
     *      e.g. if all data was positive then -1 will be also positive (though
     *      the least).
     *      The sentiment_score shouldn't be confused with "score" or "magnitude"
     *      from the previous Natural Language Sentiment Analysis API.
     * 
* * map<string, string> metadata = 2; */ @java.lang.Override public /* nullable */ java.lang.String getMetadataOrDefault( java.lang.String key, /* nullable */ java.lang.String defaultValue) { if (key == null) { throw new NullPointerException("map key"); } java.util.Map map = internalGetMetadata().getMap(); return map.containsKey(key) ? map.get(key) : defaultValue; } /** * * *
     * Additional domain-specific prediction response metadata.
     *
     * * For Image Object Detection:
     *  `max_bounding_box_count` - (int64) At most that many bounding boxes per
     *      image could have been returned.
     *
     * * For Text Sentiment:
     *  `sentiment_score` - (float, deprecated) A value between -1 and 1,
     *      -1 maps to least positive sentiment, while 1 maps to the most positive
     *      one and the higher the score, the more positive the sentiment in the
     *      document is. Yet these values are relative to the training data, so
     *      e.g. if all data was positive then -1 will be also positive (though
     *      the least).
     *      The sentiment_score shouldn't be confused with "score" or "magnitude"
     *      from the previous Natural Language Sentiment Analysis API.
     * 
* * map<string, string> metadata = 2; */ @java.lang.Override public java.lang.String getMetadataOrThrow(java.lang.String key) { if (key == null) { throw new NullPointerException("map key"); } java.util.Map map = internalGetMetadata().getMap(); if (!map.containsKey(key)) { throw new java.lang.IllegalArgumentException(); } return map.get(key); } public Builder clearMetadata() { bitField0_ = (bitField0_ & ~0x00000004); internalGetMutableMetadata().getMutableMap().clear(); return this; } /** * * *
     * Additional domain-specific prediction response metadata.
     *
     * * For Image Object Detection:
     *  `max_bounding_box_count` - (int64) At most that many bounding boxes per
     *      image could have been returned.
     *
     * * For Text Sentiment:
     *  `sentiment_score` - (float, deprecated) A value between -1 and 1,
     *      -1 maps to least positive sentiment, while 1 maps to the most positive
     *      one and the higher the score, the more positive the sentiment in the
     *      document is. Yet these values are relative to the training data, so
     *      e.g. if all data was positive then -1 will be also positive (though
     *      the least).
     *      The sentiment_score shouldn't be confused with "score" or "magnitude"
     *      from the previous Natural Language Sentiment Analysis API.
     * 
* * map<string, string> metadata = 2; */ public Builder removeMetadata(java.lang.String key) { if (key == null) { throw new NullPointerException("map key"); } internalGetMutableMetadata().getMutableMap().remove(key); return this; } /** Use alternate mutation accessors instead. */ @java.lang.Deprecated public java.util.Map getMutableMetadata() { bitField0_ |= 0x00000004; return internalGetMutableMetadata().getMutableMap(); } /** * * *
     * Additional domain-specific prediction response metadata.
     *
     * * For Image Object Detection:
     *  `max_bounding_box_count` - (int64) At most that many bounding boxes per
     *      image could have been returned.
     *
     * * For Text Sentiment:
     *  `sentiment_score` - (float, deprecated) A value between -1 and 1,
     *      -1 maps to least positive sentiment, while 1 maps to the most positive
     *      one and the higher the score, the more positive the sentiment in the
     *      document is. Yet these values are relative to the training data, so
     *      e.g. if all data was positive then -1 will be also positive (though
     *      the least).
     *      The sentiment_score shouldn't be confused with "score" or "magnitude"
     *      from the previous Natural Language Sentiment Analysis API.
     * 
* * map<string, string> metadata = 2; */ public Builder putMetadata(java.lang.String key, java.lang.String value) { if (key == null) { throw new NullPointerException("map key"); } if (value == null) { throw new NullPointerException("map value"); } internalGetMutableMetadata().getMutableMap().put(key, value); bitField0_ |= 0x00000004; return this; } /** * * *
     * Additional domain-specific prediction response metadata.
     *
     * * For Image Object Detection:
     *  `max_bounding_box_count` - (int64) At most that many bounding boxes per
     *      image could have been returned.
     *
     * * For Text Sentiment:
     *  `sentiment_score` - (float, deprecated) A value between -1 and 1,
     *      -1 maps to least positive sentiment, while 1 maps to the most positive
     *      one and the higher the score, the more positive the sentiment in the
     *      document is. Yet these values are relative to the training data, so
     *      e.g. if all data was positive then -1 will be also positive (though
     *      the least).
     *      The sentiment_score shouldn't be confused with "score" or "magnitude"
     *      from the previous Natural Language Sentiment Analysis API.
     * 
* * map<string, string> metadata = 2; */ public Builder putAllMetadata(java.util.Map values) { internalGetMutableMetadata().getMutableMap().putAll(values); bitField0_ |= 0x00000004; return this; } @java.lang.Override public final Builder setUnknownFields(final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:google.cloud.automl.v1beta1.PredictResponse) } // @@protoc_insertion_point(class_scope:google.cloud.automl.v1beta1.PredictResponse) private static final com.google.cloud.automl.v1beta1.PredictResponse DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new com.google.cloud.automl.v1beta1.PredictResponse(); } public static com.google.cloud.automl.v1beta1.PredictResponse getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public PredictResponse parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public com.google.cloud.automl.v1beta1.PredictResponse getDefaultInstanceForType() { return DEFAULT_INSTANCE; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy