All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.cloud.automl.v1beta1.TablesModelMetadata Maven / Gradle / Ivy

There is a newer version: 0.141.0
Show newest version
/*
 * Copyright 2024 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: google/cloud/automl/v1beta1/tables.proto

// Protobuf Java Version: 3.25.5
package com.google.cloud.automl.v1beta1;

/**
 *
 *
 * 
 * Model metadata specific to AutoML Tables.
 * 
* * Protobuf type {@code google.cloud.automl.v1beta1.TablesModelMetadata} */ public final class TablesModelMetadata extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:google.cloud.automl.v1beta1.TablesModelMetadata) TablesModelMetadataOrBuilder { private static final long serialVersionUID = 0L; // Use TablesModelMetadata.newBuilder() to construct. private TablesModelMetadata(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private TablesModelMetadata() { inputFeatureColumnSpecs_ = java.util.Collections.emptyList(); optimizationObjective_ = ""; tablesModelColumnInfo_ = java.util.Collections.emptyList(); } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance(UnusedPrivateParameter unused) { return new TablesModelMetadata(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.Tables .internal_static_google_cloud_automl_v1beta1_TablesModelMetadata_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.Tables .internal_static_google_cloud_automl_v1beta1_TablesModelMetadata_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.TablesModelMetadata.class, com.google.cloud.automl.v1beta1.TablesModelMetadata.Builder.class); } private int bitField0_; private int additionalOptimizationObjectiveConfigCase_ = 0; @SuppressWarnings("serial") private java.lang.Object additionalOptimizationObjectiveConfig_; public enum AdditionalOptimizationObjectiveConfigCase implements com.google.protobuf.Internal.EnumLite, com.google.protobuf.AbstractMessage.InternalOneOfEnum { OPTIMIZATION_OBJECTIVE_RECALL_VALUE(17), OPTIMIZATION_OBJECTIVE_PRECISION_VALUE(18), ADDITIONALOPTIMIZATIONOBJECTIVECONFIG_NOT_SET(0); private final int value; private AdditionalOptimizationObjectiveConfigCase(int value) { this.value = value; } /** * @param value The number of the enum to look for. * @return The enum associated with the given number. * @deprecated Use {@link #forNumber(int)} instead. */ @java.lang.Deprecated public static AdditionalOptimizationObjectiveConfigCase valueOf(int value) { return forNumber(value); } public static AdditionalOptimizationObjectiveConfigCase forNumber(int value) { switch (value) { case 17: return OPTIMIZATION_OBJECTIVE_RECALL_VALUE; case 18: return OPTIMIZATION_OBJECTIVE_PRECISION_VALUE; case 0: return ADDITIONALOPTIMIZATIONOBJECTIVECONFIG_NOT_SET; default: return null; } } public int getNumber() { return this.value; } }; public AdditionalOptimizationObjectiveConfigCase getAdditionalOptimizationObjectiveConfigCase() { return AdditionalOptimizationObjectiveConfigCase.forNumber( additionalOptimizationObjectiveConfigCase_); } public static final int OPTIMIZATION_OBJECTIVE_RECALL_VALUE_FIELD_NUMBER = 17; /** * * *
   * Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".
   * Must be between 0 and 1, inclusive.
   * 
* * float optimization_objective_recall_value = 17; * * @return Whether the optimizationObjectiveRecallValue field is set. */ @java.lang.Override public boolean hasOptimizationObjectiveRecallValue() { return additionalOptimizationObjectiveConfigCase_ == 17; } /** * * *
   * Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".
   * Must be between 0 and 1, inclusive.
   * 
* * float optimization_objective_recall_value = 17; * * @return The optimizationObjectiveRecallValue. */ @java.lang.Override public float getOptimizationObjectiveRecallValue() { if (additionalOptimizationObjectiveConfigCase_ == 17) { return (java.lang.Float) additionalOptimizationObjectiveConfig_; } return 0F; } public static final int OPTIMIZATION_OBJECTIVE_PRECISION_VALUE_FIELD_NUMBER = 18; /** * * *
   * Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".
   * Must be between 0 and 1, inclusive.
   * 
* * float optimization_objective_precision_value = 18; * * @return Whether the optimizationObjectivePrecisionValue field is set. */ @java.lang.Override public boolean hasOptimizationObjectivePrecisionValue() { return additionalOptimizationObjectiveConfigCase_ == 18; } /** * * *
   * Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".
   * Must be between 0 and 1, inclusive.
   * 
* * float optimization_objective_precision_value = 18; * * @return The optimizationObjectivePrecisionValue. */ @java.lang.Override public float getOptimizationObjectivePrecisionValue() { if (additionalOptimizationObjectiveConfigCase_ == 18) { return (java.lang.Float) additionalOptimizationObjectiveConfig_; } return 0F; } public static final int TARGET_COLUMN_SPEC_FIELD_NUMBER = 2; private com.google.cloud.automl.v1beta1.ColumnSpec targetColumnSpec_; /** * * *
   * Column spec of the dataset's primary table's column the model is
   * predicting. Snapshotted when model creation started.
   * Only 3 fields are used:
   * name - May be set on CreateModel, if it's not then the ColumnSpec
   *        corresponding to the current target_column_spec_id of the dataset
   *        the model is trained from is used.
   *        If neither is set, CreateModel will error.
   * display_name - Output only.
   * data_type - Output only.
   * 
* * .google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2; * * @return Whether the targetColumnSpec field is set. */ @java.lang.Override public boolean hasTargetColumnSpec() { return ((bitField0_ & 0x00000001) != 0); } /** * * *
   * Column spec of the dataset's primary table's column the model is
   * predicting. Snapshotted when model creation started.
   * Only 3 fields are used:
   * name - May be set on CreateModel, if it's not then the ColumnSpec
   *        corresponding to the current target_column_spec_id of the dataset
   *        the model is trained from is used.
   *        If neither is set, CreateModel will error.
   * display_name - Output only.
   * data_type - Output only.
   * 
* * .google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2; * * @return The targetColumnSpec. */ @java.lang.Override public com.google.cloud.automl.v1beta1.ColumnSpec getTargetColumnSpec() { return targetColumnSpec_ == null ? com.google.cloud.automl.v1beta1.ColumnSpec.getDefaultInstance() : targetColumnSpec_; } /** * * *
   * Column spec of the dataset's primary table's column the model is
   * predicting. Snapshotted when model creation started.
   * Only 3 fields are used:
   * name - May be set on CreateModel, if it's not then the ColumnSpec
   *        corresponding to the current target_column_spec_id of the dataset
   *        the model is trained from is used.
   *        If neither is set, CreateModel will error.
   * display_name - Output only.
   * data_type - Output only.
   * 
* * .google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2; */ @java.lang.Override public com.google.cloud.automl.v1beta1.ColumnSpecOrBuilder getTargetColumnSpecOrBuilder() { return targetColumnSpec_ == null ? com.google.cloud.automl.v1beta1.ColumnSpec.getDefaultInstance() : targetColumnSpec_; } public static final int INPUT_FEATURE_COLUMN_SPECS_FIELD_NUMBER = 3; @SuppressWarnings("serial") private java.util.List inputFeatureColumnSpecs_; /** * * *
   * Column specs of the dataset's primary table's columns, on which
   * the model is trained and which are used as the input for predictions.
   * The
   *
   * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
   * as well as, according to dataset's state upon model creation,
   *
   * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
   * and
   *
   * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
   * must never be included here.
   *
   * Only 3 fields are used:
   *
   * * name - May be set on CreateModel, if set only the columns specified are
   *   used, otherwise all primary table's columns (except the ones listed
   *   above) are used for the training and prediction input.
   *
   * * display_name - Output only.
   *
   * * data_type - Output only.
   * 
* * repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3; */ @java.lang.Override public java.util.List getInputFeatureColumnSpecsList() { return inputFeatureColumnSpecs_; } /** * * *
   * Column specs of the dataset's primary table's columns, on which
   * the model is trained and which are used as the input for predictions.
   * The
   *
   * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
   * as well as, according to dataset's state upon model creation,
   *
   * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
   * and
   *
   * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
   * must never be included here.
   *
   * Only 3 fields are used:
   *
   * * name - May be set on CreateModel, if set only the columns specified are
   *   used, otherwise all primary table's columns (except the ones listed
   *   above) are used for the training and prediction input.
   *
   * * display_name - Output only.
   *
   * * data_type - Output only.
   * 
* * repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3; */ @java.lang.Override public java.util.List getInputFeatureColumnSpecsOrBuilderList() { return inputFeatureColumnSpecs_; } /** * * *
   * Column specs of the dataset's primary table's columns, on which
   * the model is trained and which are used as the input for predictions.
   * The
   *
   * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
   * as well as, according to dataset's state upon model creation,
   *
   * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
   * and
   *
   * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
   * must never be included here.
   *
   * Only 3 fields are used:
   *
   * * name - May be set on CreateModel, if set only the columns specified are
   *   used, otherwise all primary table's columns (except the ones listed
   *   above) are used for the training and prediction input.
   *
   * * display_name - Output only.
   *
   * * data_type - Output only.
   * 
* * repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3; */ @java.lang.Override public int getInputFeatureColumnSpecsCount() { return inputFeatureColumnSpecs_.size(); } /** * * *
   * Column specs of the dataset's primary table's columns, on which
   * the model is trained and which are used as the input for predictions.
   * The
   *
   * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
   * as well as, according to dataset's state upon model creation,
   *
   * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
   * and
   *
   * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
   * must never be included here.
   *
   * Only 3 fields are used:
   *
   * * name - May be set on CreateModel, if set only the columns specified are
   *   used, otherwise all primary table's columns (except the ones listed
   *   above) are used for the training and prediction input.
   *
   * * display_name - Output only.
   *
   * * data_type - Output only.
   * 
* * repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3; */ @java.lang.Override public com.google.cloud.automl.v1beta1.ColumnSpec getInputFeatureColumnSpecs(int index) { return inputFeatureColumnSpecs_.get(index); } /** * * *
   * Column specs of the dataset's primary table's columns, on which
   * the model is trained and which are used as the input for predictions.
   * The
   *
   * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
   * as well as, according to dataset's state upon model creation,
   *
   * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
   * and
   *
   * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
   * must never be included here.
   *
   * Only 3 fields are used:
   *
   * * name - May be set on CreateModel, if set only the columns specified are
   *   used, otherwise all primary table's columns (except the ones listed
   *   above) are used for the training and prediction input.
   *
   * * display_name - Output only.
   *
   * * data_type - Output only.
   * 
* * repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3; */ @java.lang.Override public com.google.cloud.automl.v1beta1.ColumnSpecOrBuilder getInputFeatureColumnSpecsOrBuilder( int index) { return inputFeatureColumnSpecs_.get(index); } public static final int OPTIMIZATION_OBJECTIVE_FIELD_NUMBER = 4; @SuppressWarnings("serial") private volatile java.lang.Object optimizationObjective_ = ""; /** * * *
   * Objective function the model is optimizing towards. The training process
   * creates a model that maximizes/minimizes the value of the objective
   * function over the validation set.
   *
   * The supported optimization objectives depend on the prediction type.
   * If the field is not set, a default objective function is used.
   *
   * CLASSIFICATION_BINARY:
   *   "MAXIMIZE_AU_ROC" (default) - Maximize the area under the receiver
   *                                 operating characteristic (ROC) curve.
   *   "MINIMIZE_LOG_LOSS" - Minimize log loss.
   *   "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve.
   *   "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified
   *                                   recall value.
   *   "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified
   *                                    precision value.
   *
   * CLASSIFICATION_MULTI_CLASS :
   *   "MINIMIZE_LOG_LOSS" (default) - Minimize log loss.
   *
   *
   * REGRESSION:
   *   "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE).
   *   "MINIMIZE_MAE" - Minimize mean-absolute error (MAE).
   *   "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
   * 
* * string optimization_objective = 4; * * @return The optimizationObjective. */ @java.lang.Override public java.lang.String getOptimizationObjective() { java.lang.Object ref = optimizationObjective_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); optimizationObjective_ = s; return s; } } /** * * *
   * Objective function the model is optimizing towards. The training process
   * creates a model that maximizes/minimizes the value of the objective
   * function over the validation set.
   *
   * The supported optimization objectives depend on the prediction type.
   * If the field is not set, a default objective function is used.
   *
   * CLASSIFICATION_BINARY:
   *   "MAXIMIZE_AU_ROC" (default) - Maximize the area under the receiver
   *                                 operating characteristic (ROC) curve.
   *   "MINIMIZE_LOG_LOSS" - Minimize log loss.
   *   "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve.
   *   "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified
   *                                   recall value.
   *   "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified
   *                                    precision value.
   *
   * CLASSIFICATION_MULTI_CLASS :
   *   "MINIMIZE_LOG_LOSS" (default) - Minimize log loss.
   *
   *
   * REGRESSION:
   *   "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE).
   *   "MINIMIZE_MAE" - Minimize mean-absolute error (MAE).
   *   "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
   * 
* * string optimization_objective = 4; * * @return The bytes for optimizationObjective. */ @java.lang.Override public com.google.protobuf.ByteString getOptimizationObjectiveBytes() { java.lang.Object ref = optimizationObjective_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref); optimizationObjective_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int TABLES_MODEL_COLUMN_INFO_FIELD_NUMBER = 5; @SuppressWarnings("serial") private java.util.List tablesModelColumnInfo_; /** * * *
   * Output only. Auxiliary information for each of the
   * input_feature_column_specs with respect to this particular model.
   * 
* * repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5; * */ @java.lang.Override public java.util.List getTablesModelColumnInfoList() { return tablesModelColumnInfo_; } /** * * *
   * Output only. Auxiliary information for each of the
   * input_feature_column_specs with respect to this particular model.
   * 
* * repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5; * */ @java.lang.Override public java.util.List getTablesModelColumnInfoOrBuilderList() { return tablesModelColumnInfo_; } /** * * *
   * Output only. Auxiliary information for each of the
   * input_feature_column_specs with respect to this particular model.
   * 
* * repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5; * */ @java.lang.Override public int getTablesModelColumnInfoCount() { return tablesModelColumnInfo_.size(); } /** * * *
   * Output only. Auxiliary information for each of the
   * input_feature_column_specs with respect to this particular model.
   * 
* * repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5; * */ @java.lang.Override public com.google.cloud.automl.v1beta1.TablesModelColumnInfo getTablesModelColumnInfo(int index) { return tablesModelColumnInfo_.get(index); } /** * * *
   * Output only. Auxiliary information for each of the
   * input_feature_column_specs with respect to this particular model.
   * 
* * repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5; * */ @java.lang.Override public com.google.cloud.automl.v1beta1.TablesModelColumnInfoOrBuilder getTablesModelColumnInfoOrBuilder(int index) { return tablesModelColumnInfo_.get(index); } public static final int TRAIN_BUDGET_MILLI_NODE_HOURS_FIELD_NUMBER = 6; private long trainBudgetMilliNodeHours_ = 0L; /** * * *
   * Required. The train budget of creating this model, expressed in milli node
   * hours i.e. 1,000 value in this field means 1 node hour.
   *
   * The training cost of the model will not exceed this budget. The final cost
   * will be attempted to be close to the budget, though may end up being (even)
   * noticeably smaller - at the backend's discretion. This especially may
   * happen when further model training ceases to provide any improvements.
   *
   * If the budget is set to a value known to be insufficient to train a
   * model for the given dataset, the training won't be attempted and
   * will error.
   *
   * The train budget must be between 1,000 and 72,000 milli node hours,
   * inclusive.
   * 
* * int64 train_budget_milli_node_hours = 6; * * @return The trainBudgetMilliNodeHours. */ @java.lang.Override public long getTrainBudgetMilliNodeHours() { return trainBudgetMilliNodeHours_; } public static final int TRAIN_COST_MILLI_NODE_HOURS_FIELD_NUMBER = 7; private long trainCostMilliNodeHours_ = 0L; /** * * *
   * Output only. The actual training cost of the model, expressed in milli
   * node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed
   * to not exceed the train budget.
   * 
* * int64 train_cost_milli_node_hours = 7; * * @return The trainCostMilliNodeHours. */ @java.lang.Override public long getTrainCostMilliNodeHours() { return trainCostMilliNodeHours_; } public static final int DISABLE_EARLY_STOPPING_FIELD_NUMBER = 12; private boolean disableEarlyStopping_ = false; /** * * *
   * Use the entire training budget. This disables the early stopping feature.
   * By default, the early stopping feature is enabled, which means that AutoML
   * Tables might stop training before the entire training budget has been used.
   * 
* * bool disable_early_stopping = 12; * * @return The disableEarlyStopping. */ @java.lang.Override public boolean getDisableEarlyStopping() { return disableEarlyStopping_; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (((bitField0_ & 0x00000001) != 0)) { output.writeMessage(2, getTargetColumnSpec()); } for (int i = 0; i < inputFeatureColumnSpecs_.size(); i++) { output.writeMessage(3, inputFeatureColumnSpecs_.get(i)); } if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(optimizationObjective_)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 4, optimizationObjective_); } for (int i = 0; i < tablesModelColumnInfo_.size(); i++) { output.writeMessage(5, tablesModelColumnInfo_.get(i)); } if (trainBudgetMilliNodeHours_ != 0L) { output.writeInt64(6, trainBudgetMilliNodeHours_); } if (trainCostMilliNodeHours_ != 0L) { output.writeInt64(7, trainCostMilliNodeHours_); } if (disableEarlyStopping_ != false) { output.writeBool(12, disableEarlyStopping_); } if (additionalOptimizationObjectiveConfigCase_ == 17) { output.writeFloat(17, (float) ((java.lang.Float) additionalOptimizationObjectiveConfig_)); } if (additionalOptimizationObjectiveConfigCase_ == 18) { output.writeFloat(18, (float) ((java.lang.Float) additionalOptimizationObjectiveConfig_)); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.CodedOutputStream.computeMessageSize(2, getTargetColumnSpec()); } for (int i = 0; i < inputFeatureColumnSpecs_.size(); i++) { size += com.google.protobuf.CodedOutputStream.computeMessageSize( 3, inputFeatureColumnSpecs_.get(i)); } if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(optimizationObjective_)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(4, optimizationObjective_); } for (int i = 0; i < tablesModelColumnInfo_.size(); i++) { size += com.google.protobuf.CodedOutputStream.computeMessageSize( 5, tablesModelColumnInfo_.get(i)); } if (trainBudgetMilliNodeHours_ != 0L) { size += com.google.protobuf.CodedOutputStream.computeInt64Size(6, trainBudgetMilliNodeHours_); } if (trainCostMilliNodeHours_ != 0L) { size += com.google.protobuf.CodedOutputStream.computeInt64Size(7, trainCostMilliNodeHours_); } if (disableEarlyStopping_ != false) { size += com.google.protobuf.CodedOutputStream.computeBoolSize(12, disableEarlyStopping_); } if (additionalOptimizationObjectiveConfigCase_ == 17) { size += com.google.protobuf.CodedOutputStream.computeFloatSize( 17, (float) ((java.lang.Float) additionalOptimizationObjectiveConfig_)); } if (additionalOptimizationObjectiveConfigCase_ == 18) { size += com.google.protobuf.CodedOutputStream.computeFloatSize( 18, (float) ((java.lang.Float) additionalOptimizationObjectiveConfig_)); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof com.google.cloud.automl.v1beta1.TablesModelMetadata)) { return super.equals(obj); } com.google.cloud.automl.v1beta1.TablesModelMetadata other = (com.google.cloud.automl.v1beta1.TablesModelMetadata) obj; if (hasTargetColumnSpec() != other.hasTargetColumnSpec()) return false; if (hasTargetColumnSpec()) { if (!getTargetColumnSpec().equals(other.getTargetColumnSpec())) return false; } if (!getInputFeatureColumnSpecsList().equals(other.getInputFeatureColumnSpecsList())) return false; if (!getOptimizationObjective().equals(other.getOptimizationObjective())) return false; if (!getTablesModelColumnInfoList().equals(other.getTablesModelColumnInfoList())) return false; if (getTrainBudgetMilliNodeHours() != other.getTrainBudgetMilliNodeHours()) return false; if (getTrainCostMilliNodeHours() != other.getTrainCostMilliNodeHours()) return false; if (getDisableEarlyStopping() != other.getDisableEarlyStopping()) return false; if (!getAdditionalOptimizationObjectiveConfigCase() .equals(other.getAdditionalOptimizationObjectiveConfigCase())) return false; switch (additionalOptimizationObjectiveConfigCase_) { case 17: if (java.lang.Float.floatToIntBits(getOptimizationObjectiveRecallValue()) != java.lang.Float.floatToIntBits(other.getOptimizationObjectiveRecallValue())) return false; break; case 18: if (java.lang.Float.floatToIntBits(getOptimizationObjectivePrecisionValue()) != java.lang.Float.floatToIntBits(other.getOptimizationObjectivePrecisionValue())) return false; break; case 0: default: } if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (hasTargetColumnSpec()) { hash = (37 * hash) + TARGET_COLUMN_SPEC_FIELD_NUMBER; hash = (53 * hash) + getTargetColumnSpec().hashCode(); } if (getInputFeatureColumnSpecsCount() > 0) { hash = (37 * hash) + INPUT_FEATURE_COLUMN_SPECS_FIELD_NUMBER; hash = (53 * hash) + getInputFeatureColumnSpecsList().hashCode(); } hash = (37 * hash) + OPTIMIZATION_OBJECTIVE_FIELD_NUMBER; hash = (53 * hash) + getOptimizationObjective().hashCode(); if (getTablesModelColumnInfoCount() > 0) { hash = (37 * hash) + TABLES_MODEL_COLUMN_INFO_FIELD_NUMBER; hash = (53 * hash) + getTablesModelColumnInfoList().hashCode(); } hash = (37 * hash) + TRAIN_BUDGET_MILLI_NODE_HOURS_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong(getTrainBudgetMilliNodeHours()); hash = (37 * hash) + TRAIN_COST_MILLI_NODE_HOURS_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong(getTrainCostMilliNodeHours()); hash = (37 * hash) + DISABLE_EARLY_STOPPING_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean(getDisableEarlyStopping()); switch (additionalOptimizationObjectiveConfigCase_) { case 17: hash = (37 * hash) + OPTIMIZATION_OBJECTIVE_RECALL_VALUE_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits(getOptimizationObjectiveRecallValue()); break; case 18: hash = (37 * hash) + OPTIMIZATION_OBJECTIVE_PRECISION_VALUE_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits(getOptimizationObjectivePrecisionValue()); break; case 0: default: } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static com.google.cloud.automl.v1beta1.TablesModelMetadata parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.TablesModelMetadata parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.TablesModelMetadata parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.TablesModelMetadata parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.TablesModelMetadata parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.TablesModelMetadata parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.TablesModelMetadata parseFrom( java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.TablesModelMetadata parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.TablesModelMetadata parseDelimitedFrom( java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.TablesModelMetadata parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.TablesModelMetadata parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.TablesModelMetadata parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(com.google.cloud.automl.v1beta1.TablesModelMetadata prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * * *
   * Model metadata specific to AutoML Tables.
   * 
* * Protobuf type {@code google.cloud.automl.v1beta1.TablesModelMetadata} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:google.cloud.automl.v1beta1.TablesModelMetadata) com.google.cloud.automl.v1beta1.TablesModelMetadataOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.Tables .internal_static_google_cloud_automl_v1beta1_TablesModelMetadata_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.Tables .internal_static_google_cloud_automl_v1beta1_TablesModelMetadata_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.TablesModelMetadata.class, com.google.cloud.automl.v1beta1.TablesModelMetadata.Builder.class); } // Construct using com.google.cloud.automl.v1beta1.TablesModelMetadata.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders) { getTargetColumnSpecFieldBuilder(); getInputFeatureColumnSpecsFieldBuilder(); getTablesModelColumnInfoFieldBuilder(); } } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; targetColumnSpec_ = null; if (targetColumnSpecBuilder_ != null) { targetColumnSpecBuilder_.dispose(); targetColumnSpecBuilder_ = null; } if (inputFeatureColumnSpecsBuilder_ == null) { inputFeatureColumnSpecs_ = java.util.Collections.emptyList(); } else { inputFeatureColumnSpecs_ = null; inputFeatureColumnSpecsBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000008); optimizationObjective_ = ""; if (tablesModelColumnInfoBuilder_ == null) { tablesModelColumnInfo_ = java.util.Collections.emptyList(); } else { tablesModelColumnInfo_ = null; tablesModelColumnInfoBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000020); trainBudgetMilliNodeHours_ = 0L; trainCostMilliNodeHours_ = 0L; disableEarlyStopping_ = false; additionalOptimizationObjectiveConfigCase_ = 0; additionalOptimizationObjectiveConfig_ = null; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return com.google.cloud.automl.v1beta1.Tables .internal_static_google_cloud_automl_v1beta1_TablesModelMetadata_descriptor; } @java.lang.Override public com.google.cloud.automl.v1beta1.TablesModelMetadata getDefaultInstanceForType() { return com.google.cloud.automl.v1beta1.TablesModelMetadata.getDefaultInstance(); } @java.lang.Override public com.google.cloud.automl.v1beta1.TablesModelMetadata build() { com.google.cloud.automl.v1beta1.TablesModelMetadata result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public com.google.cloud.automl.v1beta1.TablesModelMetadata buildPartial() { com.google.cloud.automl.v1beta1.TablesModelMetadata result = new com.google.cloud.automl.v1beta1.TablesModelMetadata(this); buildPartialRepeatedFields(result); if (bitField0_ != 0) { buildPartial0(result); } buildPartialOneofs(result); onBuilt(); return result; } private void buildPartialRepeatedFields( com.google.cloud.automl.v1beta1.TablesModelMetadata result) { if (inputFeatureColumnSpecsBuilder_ == null) { if (((bitField0_ & 0x00000008) != 0)) { inputFeatureColumnSpecs_ = java.util.Collections.unmodifiableList(inputFeatureColumnSpecs_); bitField0_ = (bitField0_ & ~0x00000008); } result.inputFeatureColumnSpecs_ = inputFeatureColumnSpecs_; } else { result.inputFeatureColumnSpecs_ = inputFeatureColumnSpecsBuilder_.build(); } if (tablesModelColumnInfoBuilder_ == null) { if (((bitField0_ & 0x00000020) != 0)) { tablesModelColumnInfo_ = java.util.Collections.unmodifiableList(tablesModelColumnInfo_); bitField0_ = (bitField0_ & ~0x00000020); } result.tablesModelColumnInfo_ = tablesModelColumnInfo_; } else { result.tablesModelColumnInfo_ = tablesModelColumnInfoBuilder_.build(); } } private void buildPartial0(com.google.cloud.automl.v1beta1.TablesModelMetadata result) { int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000004) != 0)) { result.targetColumnSpec_ = targetColumnSpecBuilder_ == null ? targetColumnSpec_ : targetColumnSpecBuilder_.build(); to_bitField0_ |= 0x00000001; } if (((from_bitField0_ & 0x00000010) != 0)) { result.optimizationObjective_ = optimizationObjective_; } if (((from_bitField0_ & 0x00000040) != 0)) { result.trainBudgetMilliNodeHours_ = trainBudgetMilliNodeHours_; } if (((from_bitField0_ & 0x00000080) != 0)) { result.trainCostMilliNodeHours_ = trainCostMilliNodeHours_; } if (((from_bitField0_ & 0x00000100) != 0)) { result.disableEarlyStopping_ = disableEarlyStopping_; } result.bitField0_ |= to_bitField0_; } private void buildPartialOneofs(com.google.cloud.automl.v1beta1.TablesModelMetadata result) { result.additionalOptimizationObjectiveConfigCase_ = additionalOptimizationObjectiveConfigCase_; result.additionalOptimizationObjectiveConfig_ = this.additionalOptimizationObjectiveConfig_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof com.google.cloud.automl.v1beta1.TablesModelMetadata) { return mergeFrom((com.google.cloud.automl.v1beta1.TablesModelMetadata) other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(com.google.cloud.automl.v1beta1.TablesModelMetadata other) { if (other == com.google.cloud.automl.v1beta1.TablesModelMetadata.getDefaultInstance()) return this; if (other.hasTargetColumnSpec()) { mergeTargetColumnSpec(other.getTargetColumnSpec()); } if (inputFeatureColumnSpecsBuilder_ == null) { if (!other.inputFeatureColumnSpecs_.isEmpty()) { if (inputFeatureColumnSpecs_.isEmpty()) { inputFeatureColumnSpecs_ = other.inputFeatureColumnSpecs_; bitField0_ = (bitField0_ & ~0x00000008); } else { ensureInputFeatureColumnSpecsIsMutable(); inputFeatureColumnSpecs_.addAll(other.inputFeatureColumnSpecs_); } onChanged(); } } else { if (!other.inputFeatureColumnSpecs_.isEmpty()) { if (inputFeatureColumnSpecsBuilder_.isEmpty()) { inputFeatureColumnSpecsBuilder_.dispose(); inputFeatureColumnSpecsBuilder_ = null; inputFeatureColumnSpecs_ = other.inputFeatureColumnSpecs_; bitField0_ = (bitField0_ & ~0x00000008); inputFeatureColumnSpecsBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getInputFeatureColumnSpecsFieldBuilder() : null; } else { inputFeatureColumnSpecsBuilder_.addAllMessages(other.inputFeatureColumnSpecs_); } } } if (!other.getOptimizationObjective().isEmpty()) { optimizationObjective_ = other.optimizationObjective_; bitField0_ |= 0x00000010; onChanged(); } if (tablesModelColumnInfoBuilder_ == null) { if (!other.tablesModelColumnInfo_.isEmpty()) { if (tablesModelColumnInfo_.isEmpty()) { tablesModelColumnInfo_ = other.tablesModelColumnInfo_; bitField0_ = (bitField0_ & ~0x00000020); } else { ensureTablesModelColumnInfoIsMutable(); tablesModelColumnInfo_.addAll(other.tablesModelColumnInfo_); } onChanged(); } } else { if (!other.tablesModelColumnInfo_.isEmpty()) { if (tablesModelColumnInfoBuilder_.isEmpty()) { tablesModelColumnInfoBuilder_.dispose(); tablesModelColumnInfoBuilder_ = null; tablesModelColumnInfo_ = other.tablesModelColumnInfo_; bitField0_ = (bitField0_ & ~0x00000020); tablesModelColumnInfoBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getTablesModelColumnInfoFieldBuilder() : null; } else { tablesModelColumnInfoBuilder_.addAllMessages(other.tablesModelColumnInfo_); } } } if (other.getTrainBudgetMilliNodeHours() != 0L) { setTrainBudgetMilliNodeHours(other.getTrainBudgetMilliNodeHours()); } if (other.getTrainCostMilliNodeHours() != 0L) { setTrainCostMilliNodeHours(other.getTrainCostMilliNodeHours()); } if (other.getDisableEarlyStopping() != false) { setDisableEarlyStopping(other.getDisableEarlyStopping()); } switch (other.getAdditionalOptimizationObjectiveConfigCase()) { case OPTIMIZATION_OBJECTIVE_RECALL_VALUE: { setOptimizationObjectiveRecallValue(other.getOptimizationObjectiveRecallValue()); break; } case OPTIMIZATION_OBJECTIVE_PRECISION_VALUE: { setOptimizationObjectivePrecisionValue(other.getOptimizationObjectivePrecisionValue()); break; } case ADDITIONALOPTIMIZATIONOBJECTIVECONFIG_NOT_SET: { break; } } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 18: { input.readMessage( getTargetColumnSpecFieldBuilder().getBuilder(), extensionRegistry); bitField0_ |= 0x00000004; break; } // case 18 case 26: { com.google.cloud.automl.v1beta1.ColumnSpec m = input.readMessage( com.google.cloud.automl.v1beta1.ColumnSpec.parser(), extensionRegistry); if (inputFeatureColumnSpecsBuilder_ == null) { ensureInputFeatureColumnSpecsIsMutable(); inputFeatureColumnSpecs_.add(m); } else { inputFeatureColumnSpecsBuilder_.addMessage(m); } break; } // case 26 case 34: { optimizationObjective_ = input.readStringRequireUtf8(); bitField0_ |= 0x00000010; break; } // case 34 case 42: { com.google.cloud.automl.v1beta1.TablesModelColumnInfo m = input.readMessage( com.google.cloud.automl.v1beta1.TablesModelColumnInfo.parser(), extensionRegistry); if (tablesModelColumnInfoBuilder_ == null) { ensureTablesModelColumnInfoIsMutable(); tablesModelColumnInfo_.add(m); } else { tablesModelColumnInfoBuilder_.addMessage(m); } break; } // case 42 case 48: { trainBudgetMilliNodeHours_ = input.readInt64(); bitField0_ |= 0x00000040; break; } // case 48 case 56: { trainCostMilliNodeHours_ = input.readInt64(); bitField0_ |= 0x00000080; break; } // case 56 case 96: { disableEarlyStopping_ = input.readBool(); bitField0_ |= 0x00000100; break; } // case 96 case 141: { additionalOptimizationObjectiveConfig_ = input.readFloat(); additionalOptimizationObjectiveConfigCase_ = 17; break; } // case 141 case 149: { additionalOptimizationObjectiveConfig_ = input.readFloat(); additionalOptimizationObjectiveConfigCase_ = 18; break; } // case 149 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int additionalOptimizationObjectiveConfigCase_ = 0; private java.lang.Object additionalOptimizationObjectiveConfig_; public AdditionalOptimizationObjectiveConfigCase getAdditionalOptimizationObjectiveConfigCase() { return AdditionalOptimizationObjectiveConfigCase.forNumber( additionalOptimizationObjectiveConfigCase_); } public Builder clearAdditionalOptimizationObjectiveConfig() { additionalOptimizationObjectiveConfigCase_ = 0; additionalOptimizationObjectiveConfig_ = null; onChanged(); return this; } private int bitField0_; /** * * *
     * Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".
     * Must be between 0 and 1, inclusive.
     * 
* * float optimization_objective_recall_value = 17; * * @return Whether the optimizationObjectiveRecallValue field is set. */ public boolean hasOptimizationObjectiveRecallValue() { return additionalOptimizationObjectiveConfigCase_ == 17; } /** * * *
     * Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".
     * Must be between 0 and 1, inclusive.
     * 
* * float optimization_objective_recall_value = 17; * * @return The optimizationObjectiveRecallValue. */ public float getOptimizationObjectiveRecallValue() { if (additionalOptimizationObjectiveConfigCase_ == 17) { return (java.lang.Float) additionalOptimizationObjectiveConfig_; } return 0F; } /** * * *
     * Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".
     * Must be between 0 and 1, inclusive.
     * 
* * float optimization_objective_recall_value = 17; * * @param value The optimizationObjectiveRecallValue to set. * @return This builder for chaining. */ public Builder setOptimizationObjectiveRecallValue(float value) { additionalOptimizationObjectiveConfigCase_ = 17; additionalOptimizationObjectiveConfig_ = value; onChanged(); return this; } /** * * *
     * Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".
     * Must be between 0 and 1, inclusive.
     * 
* * float optimization_objective_recall_value = 17; * * @return This builder for chaining. */ public Builder clearOptimizationObjectiveRecallValue() { if (additionalOptimizationObjectiveConfigCase_ == 17) { additionalOptimizationObjectiveConfigCase_ = 0; additionalOptimizationObjectiveConfig_ = null; onChanged(); } return this; } /** * * *
     * Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".
     * Must be between 0 and 1, inclusive.
     * 
* * float optimization_objective_precision_value = 18; * * @return Whether the optimizationObjectivePrecisionValue field is set. */ public boolean hasOptimizationObjectivePrecisionValue() { return additionalOptimizationObjectiveConfigCase_ == 18; } /** * * *
     * Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".
     * Must be between 0 and 1, inclusive.
     * 
* * float optimization_objective_precision_value = 18; * * @return The optimizationObjectivePrecisionValue. */ public float getOptimizationObjectivePrecisionValue() { if (additionalOptimizationObjectiveConfigCase_ == 18) { return (java.lang.Float) additionalOptimizationObjectiveConfig_; } return 0F; } /** * * *
     * Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".
     * Must be between 0 and 1, inclusive.
     * 
* * float optimization_objective_precision_value = 18; * * @param value The optimizationObjectivePrecisionValue to set. * @return This builder for chaining. */ public Builder setOptimizationObjectivePrecisionValue(float value) { additionalOptimizationObjectiveConfigCase_ = 18; additionalOptimizationObjectiveConfig_ = value; onChanged(); return this; } /** * * *
     * Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".
     * Must be between 0 and 1, inclusive.
     * 
* * float optimization_objective_precision_value = 18; * * @return This builder for chaining. */ public Builder clearOptimizationObjectivePrecisionValue() { if (additionalOptimizationObjectiveConfigCase_ == 18) { additionalOptimizationObjectiveConfigCase_ = 0; additionalOptimizationObjectiveConfig_ = null; onChanged(); } return this; } private com.google.cloud.automl.v1beta1.ColumnSpec targetColumnSpec_; private com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.ColumnSpec, com.google.cloud.automl.v1beta1.ColumnSpec.Builder, com.google.cloud.automl.v1beta1.ColumnSpecOrBuilder> targetColumnSpecBuilder_; /** * * *
     * Column spec of the dataset's primary table's column the model is
     * predicting. Snapshotted when model creation started.
     * Only 3 fields are used:
     * name - May be set on CreateModel, if it's not then the ColumnSpec
     *        corresponding to the current target_column_spec_id of the dataset
     *        the model is trained from is used.
     *        If neither is set, CreateModel will error.
     * display_name - Output only.
     * data_type - Output only.
     * 
* * .google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2; * * @return Whether the targetColumnSpec field is set. */ public boolean hasTargetColumnSpec() { return ((bitField0_ & 0x00000004) != 0); } /** * * *
     * Column spec of the dataset's primary table's column the model is
     * predicting. Snapshotted when model creation started.
     * Only 3 fields are used:
     * name - May be set on CreateModel, if it's not then the ColumnSpec
     *        corresponding to the current target_column_spec_id of the dataset
     *        the model is trained from is used.
     *        If neither is set, CreateModel will error.
     * display_name - Output only.
     * data_type - Output only.
     * 
* * .google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2; * * @return The targetColumnSpec. */ public com.google.cloud.automl.v1beta1.ColumnSpec getTargetColumnSpec() { if (targetColumnSpecBuilder_ == null) { return targetColumnSpec_ == null ? com.google.cloud.automl.v1beta1.ColumnSpec.getDefaultInstance() : targetColumnSpec_; } else { return targetColumnSpecBuilder_.getMessage(); } } /** * * *
     * Column spec of the dataset's primary table's column the model is
     * predicting. Snapshotted when model creation started.
     * Only 3 fields are used:
     * name - May be set on CreateModel, if it's not then the ColumnSpec
     *        corresponding to the current target_column_spec_id of the dataset
     *        the model is trained from is used.
     *        If neither is set, CreateModel will error.
     * display_name - Output only.
     * data_type - Output only.
     * 
* * .google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2; */ public Builder setTargetColumnSpec(com.google.cloud.automl.v1beta1.ColumnSpec value) { if (targetColumnSpecBuilder_ == null) { if (value == null) { throw new NullPointerException(); } targetColumnSpec_ = value; } else { targetColumnSpecBuilder_.setMessage(value); } bitField0_ |= 0x00000004; onChanged(); return this; } /** * * *
     * Column spec of the dataset's primary table's column the model is
     * predicting. Snapshotted when model creation started.
     * Only 3 fields are used:
     * name - May be set on CreateModel, if it's not then the ColumnSpec
     *        corresponding to the current target_column_spec_id of the dataset
     *        the model is trained from is used.
     *        If neither is set, CreateModel will error.
     * display_name - Output only.
     * data_type - Output only.
     * 
* * .google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2; */ public Builder setTargetColumnSpec( com.google.cloud.automl.v1beta1.ColumnSpec.Builder builderForValue) { if (targetColumnSpecBuilder_ == null) { targetColumnSpec_ = builderForValue.build(); } else { targetColumnSpecBuilder_.setMessage(builderForValue.build()); } bitField0_ |= 0x00000004; onChanged(); return this; } /** * * *
     * Column spec of the dataset's primary table's column the model is
     * predicting. Snapshotted when model creation started.
     * Only 3 fields are used:
     * name - May be set on CreateModel, if it's not then the ColumnSpec
     *        corresponding to the current target_column_spec_id of the dataset
     *        the model is trained from is used.
     *        If neither is set, CreateModel will error.
     * display_name - Output only.
     * data_type - Output only.
     * 
* * .google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2; */ public Builder mergeTargetColumnSpec(com.google.cloud.automl.v1beta1.ColumnSpec value) { if (targetColumnSpecBuilder_ == null) { if (((bitField0_ & 0x00000004) != 0) && targetColumnSpec_ != null && targetColumnSpec_ != com.google.cloud.automl.v1beta1.ColumnSpec.getDefaultInstance()) { getTargetColumnSpecBuilder().mergeFrom(value); } else { targetColumnSpec_ = value; } } else { targetColumnSpecBuilder_.mergeFrom(value); } if (targetColumnSpec_ != null) { bitField0_ |= 0x00000004; onChanged(); } return this; } /** * * *
     * Column spec of the dataset's primary table's column the model is
     * predicting. Snapshotted when model creation started.
     * Only 3 fields are used:
     * name - May be set on CreateModel, if it's not then the ColumnSpec
     *        corresponding to the current target_column_spec_id of the dataset
     *        the model is trained from is used.
     *        If neither is set, CreateModel will error.
     * display_name - Output only.
     * data_type - Output only.
     * 
* * .google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2; */ public Builder clearTargetColumnSpec() { bitField0_ = (bitField0_ & ~0x00000004); targetColumnSpec_ = null; if (targetColumnSpecBuilder_ != null) { targetColumnSpecBuilder_.dispose(); targetColumnSpecBuilder_ = null; } onChanged(); return this; } /** * * *
     * Column spec of the dataset's primary table's column the model is
     * predicting. Snapshotted when model creation started.
     * Only 3 fields are used:
     * name - May be set on CreateModel, if it's not then the ColumnSpec
     *        corresponding to the current target_column_spec_id of the dataset
     *        the model is trained from is used.
     *        If neither is set, CreateModel will error.
     * display_name - Output only.
     * data_type - Output only.
     * 
* * .google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2; */ public com.google.cloud.automl.v1beta1.ColumnSpec.Builder getTargetColumnSpecBuilder() { bitField0_ |= 0x00000004; onChanged(); return getTargetColumnSpecFieldBuilder().getBuilder(); } /** * * *
     * Column spec of the dataset's primary table's column the model is
     * predicting. Snapshotted when model creation started.
     * Only 3 fields are used:
     * name - May be set on CreateModel, if it's not then the ColumnSpec
     *        corresponding to the current target_column_spec_id of the dataset
     *        the model is trained from is used.
     *        If neither is set, CreateModel will error.
     * display_name - Output only.
     * data_type - Output only.
     * 
* * .google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2; */ public com.google.cloud.automl.v1beta1.ColumnSpecOrBuilder getTargetColumnSpecOrBuilder() { if (targetColumnSpecBuilder_ != null) { return targetColumnSpecBuilder_.getMessageOrBuilder(); } else { return targetColumnSpec_ == null ? com.google.cloud.automl.v1beta1.ColumnSpec.getDefaultInstance() : targetColumnSpec_; } } /** * * *
     * Column spec of the dataset's primary table's column the model is
     * predicting. Snapshotted when model creation started.
     * Only 3 fields are used:
     * name - May be set on CreateModel, if it's not then the ColumnSpec
     *        corresponding to the current target_column_spec_id of the dataset
     *        the model is trained from is used.
     *        If neither is set, CreateModel will error.
     * display_name - Output only.
     * data_type - Output only.
     * 
* * .google.cloud.automl.v1beta1.ColumnSpec target_column_spec = 2; */ private com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.ColumnSpec, com.google.cloud.automl.v1beta1.ColumnSpec.Builder, com.google.cloud.automl.v1beta1.ColumnSpecOrBuilder> getTargetColumnSpecFieldBuilder() { if (targetColumnSpecBuilder_ == null) { targetColumnSpecBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.ColumnSpec, com.google.cloud.automl.v1beta1.ColumnSpec.Builder, com.google.cloud.automl.v1beta1.ColumnSpecOrBuilder>( getTargetColumnSpec(), getParentForChildren(), isClean()); targetColumnSpec_ = null; } return targetColumnSpecBuilder_; } private java.util.List inputFeatureColumnSpecs_ = java.util.Collections.emptyList(); private void ensureInputFeatureColumnSpecsIsMutable() { if (!((bitField0_ & 0x00000008) != 0)) { inputFeatureColumnSpecs_ = new java.util.ArrayList( inputFeatureColumnSpecs_); bitField0_ |= 0x00000008; } } private com.google.protobuf.RepeatedFieldBuilderV3< com.google.cloud.automl.v1beta1.ColumnSpec, com.google.cloud.automl.v1beta1.ColumnSpec.Builder, com.google.cloud.automl.v1beta1.ColumnSpecOrBuilder> inputFeatureColumnSpecsBuilder_; /** * * *
     * Column specs of the dataset's primary table's columns, on which
     * the model is trained and which are used as the input for predictions.
     * The
     *
     * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
     * as well as, according to dataset's state upon model creation,
     *
     * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
     * and
     *
     * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
     * must never be included here.
     *
     * Only 3 fields are used:
     *
     * * name - May be set on CreateModel, if set only the columns specified are
     *   used, otherwise all primary table's columns (except the ones listed
     *   above) are used for the training and prediction input.
     *
     * * display_name - Output only.
     *
     * * data_type - Output only.
     * 
* * repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3; */ public java.util.List getInputFeatureColumnSpecsList() { if (inputFeatureColumnSpecsBuilder_ == null) { return java.util.Collections.unmodifiableList(inputFeatureColumnSpecs_); } else { return inputFeatureColumnSpecsBuilder_.getMessageList(); } } /** * * *
     * Column specs of the dataset's primary table's columns, on which
     * the model is trained and which are used as the input for predictions.
     * The
     *
     * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
     * as well as, according to dataset's state upon model creation,
     *
     * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
     * and
     *
     * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
     * must never be included here.
     *
     * Only 3 fields are used:
     *
     * * name - May be set on CreateModel, if set only the columns specified are
     *   used, otherwise all primary table's columns (except the ones listed
     *   above) are used for the training and prediction input.
     *
     * * display_name - Output only.
     *
     * * data_type - Output only.
     * 
* * repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3; */ public int getInputFeatureColumnSpecsCount() { if (inputFeatureColumnSpecsBuilder_ == null) { return inputFeatureColumnSpecs_.size(); } else { return inputFeatureColumnSpecsBuilder_.getCount(); } } /** * * *
     * Column specs of the dataset's primary table's columns, on which
     * the model is trained and which are used as the input for predictions.
     * The
     *
     * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
     * as well as, according to dataset's state upon model creation,
     *
     * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
     * and
     *
     * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
     * must never be included here.
     *
     * Only 3 fields are used:
     *
     * * name - May be set on CreateModel, if set only the columns specified are
     *   used, otherwise all primary table's columns (except the ones listed
     *   above) are used for the training and prediction input.
     *
     * * display_name - Output only.
     *
     * * data_type - Output only.
     * 
* * repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3; */ public com.google.cloud.automl.v1beta1.ColumnSpec getInputFeatureColumnSpecs(int index) { if (inputFeatureColumnSpecsBuilder_ == null) { return inputFeatureColumnSpecs_.get(index); } else { return inputFeatureColumnSpecsBuilder_.getMessage(index); } } /** * * *
     * Column specs of the dataset's primary table's columns, on which
     * the model is trained and which are used as the input for predictions.
     * The
     *
     * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
     * as well as, according to dataset's state upon model creation,
     *
     * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
     * and
     *
     * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
     * must never be included here.
     *
     * Only 3 fields are used:
     *
     * * name - May be set on CreateModel, if set only the columns specified are
     *   used, otherwise all primary table's columns (except the ones listed
     *   above) are used for the training and prediction input.
     *
     * * display_name - Output only.
     *
     * * data_type - Output only.
     * 
* * repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3; */ public Builder setInputFeatureColumnSpecs( int index, com.google.cloud.automl.v1beta1.ColumnSpec value) { if (inputFeatureColumnSpecsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureInputFeatureColumnSpecsIsMutable(); inputFeatureColumnSpecs_.set(index, value); onChanged(); } else { inputFeatureColumnSpecsBuilder_.setMessage(index, value); } return this; } /** * * *
     * Column specs of the dataset's primary table's columns, on which
     * the model is trained and which are used as the input for predictions.
     * The
     *
     * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
     * as well as, according to dataset's state upon model creation,
     *
     * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
     * and
     *
     * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
     * must never be included here.
     *
     * Only 3 fields are used:
     *
     * * name - May be set on CreateModel, if set only the columns specified are
     *   used, otherwise all primary table's columns (except the ones listed
     *   above) are used for the training and prediction input.
     *
     * * display_name - Output only.
     *
     * * data_type - Output only.
     * 
* * repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3; */ public Builder setInputFeatureColumnSpecs( int index, com.google.cloud.automl.v1beta1.ColumnSpec.Builder builderForValue) { if (inputFeatureColumnSpecsBuilder_ == null) { ensureInputFeatureColumnSpecsIsMutable(); inputFeatureColumnSpecs_.set(index, builderForValue.build()); onChanged(); } else { inputFeatureColumnSpecsBuilder_.setMessage(index, builderForValue.build()); } return this; } /** * * *
     * Column specs of the dataset's primary table's columns, on which
     * the model is trained and which are used as the input for predictions.
     * The
     *
     * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
     * as well as, according to dataset's state upon model creation,
     *
     * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
     * and
     *
     * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
     * must never be included here.
     *
     * Only 3 fields are used:
     *
     * * name - May be set on CreateModel, if set only the columns specified are
     *   used, otherwise all primary table's columns (except the ones listed
     *   above) are used for the training and prediction input.
     *
     * * display_name - Output only.
     *
     * * data_type - Output only.
     * 
* * repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3; */ public Builder addInputFeatureColumnSpecs(com.google.cloud.automl.v1beta1.ColumnSpec value) { if (inputFeatureColumnSpecsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureInputFeatureColumnSpecsIsMutable(); inputFeatureColumnSpecs_.add(value); onChanged(); } else { inputFeatureColumnSpecsBuilder_.addMessage(value); } return this; } /** * * *
     * Column specs of the dataset's primary table's columns, on which
     * the model is trained and which are used as the input for predictions.
     * The
     *
     * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
     * as well as, according to dataset's state upon model creation,
     *
     * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
     * and
     *
     * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
     * must never be included here.
     *
     * Only 3 fields are used:
     *
     * * name - May be set on CreateModel, if set only the columns specified are
     *   used, otherwise all primary table's columns (except the ones listed
     *   above) are used for the training and prediction input.
     *
     * * display_name - Output only.
     *
     * * data_type - Output only.
     * 
* * repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3; */ public Builder addInputFeatureColumnSpecs( int index, com.google.cloud.automl.v1beta1.ColumnSpec value) { if (inputFeatureColumnSpecsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureInputFeatureColumnSpecsIsMutable(); inputFeatureColumnSpecs_.add(index, value); onChanged(); } else { inputFeatureColumnSpecsBuilder_.addMessage(index, value); } return this; } /** * * *
     * Column specs of the dataset's primary table's columns, on which
     * the model is trained and which are used as the input for predictions.
     * The
     *
     * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
     * as well as, according to dataset's state upon model creation,
     *
     * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
     * and
     *
     * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
     * must never be included here.
     *
     * Only 3 fields are used:
     *
     * * name - May be set on CreateModel, if set only the columns specified are
     *   used, otherwise all primary table's columns (except the ones listed
     *   above) are used for the training and prediction input.
     *
     * * display_name - Output only.
     *
     * * data_type - Output only.
     * 
* * repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3; */ public Builder addInputFeatureColumnSpecs( com.google.cloud.automl.v1beta1.ColumnSpec.Builder builderForValue) { if (inputFeatureColumnSpecsBuilder_ == null) { ensureInputFeatureColumnSpecsIsMutable(); inputFeatureColumnSpecs_.add(builderForValue.build()); onChanged(); } else { inputFeatureColumnSpecsBuilder_.addMessage(builderForValue.build()); } return this; } /** * * *
     * Column specs of the dataset's primary table's columns, on which
     * the model is trained and which are used as the input for predictions.
     * The
     *
     * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
     * as well as, according to dataset's state upon model creation,
     *
     * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
     * and
     *
     * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
     * must never be included here.
     *
     * Only 3 fields are used:
     *
     * * name - May be set on CreateModel, if set only the columns specified are
     *   used, otherwise all primary table's columns (except the ones listed
     *   above) are used for the training and prediction input.
     *
     * * display_name - Output only.
     *
     * * data_type - Output only.
     * 
* * repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3; */ public Builder addInputFeatureColumnSpecs( int index, com.google.cloud.automl.v1beta1.ColumnSpec.Builder builderForValue) { if (inputFeatureColumnSpecsBuilder_ == null) { ensureInputFeatureColumnSpecsIsMutable(); inputFeatureColumnSpecs_.add(index, builderForValue.build()); onChanged(); } else { inputFeatureColumnSpecsBuilder_.addMessage(index, builderForValue.build()); } return this; } /** * * *
     * Column specs of the dataset's primary table's columns, on which
     * the model is trained and which are used as the input for predictions.
     * The
     *
     * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
     * as well as, according to dataset's state upon model creation,
     *
     * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
     * and
     *
     * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
     * must never be included here.
     *
     * Only 3 fields are used:
     *
     * * name - May be set on CreateModel, if set only the columns specified are
     *   used, otherwise all primary table's columns (except the ones listed
     *   above) are used for the training and prediction input.
     *
     * * display_name - Output only.
     *
     * * data_type - Output only.
     * 
* * repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3; */ public Builder addAllInputFeatureColumnSpecs( java.lang.Iterable values) { if (inputFeatureColumnSpecsBuilder_ == null) { ensureInputFeatureColumnSpecsIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll(values, inputFeatureColumnSpecs_); onChanged(); } else { inputFeatureColumnSpecsBuilder_.addAllMessages(values); } return this; } /** * * *
     * Column specs of the dataset's primary table's columns, on which
     * the model is trained and which are used as the input for predictions.
     * The
     *
     * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
     * as well as, according to dataset's state upon model creation,
     *
     * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
     * and
     *
     * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
     * must never be included here.
     *
     * Only 3 fields are used:
     *
     * * name - May be set on CreateModel, if set only the columns specified are
     *   used, otherwise all primary table's columns (except the ones listed
     *   above) are used for the training and prediction input.
     *
     * * display_name - Output only.
     *
     * * data_type - Output only.
     * 
* * repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3; */ public Builder clearInputFeatureColumnSpecs() { if (inputFeatureColumnSpecsBuilder_ == null) { inputFeatureColumnSpecs_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000008); onChanged(); } else { inputFeatureColumnSpecsBuilder_.clear(); } return this; } /** * * *
     * Column specs of the dataset's primary table's columns, on which
     * the model is trained and which are used as the input for predictions.
     * The
     *
     * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
     * as well as, according to dataset's state upon model creation,
     *
     * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
     * and
     *
     * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
     * must never be included here.
     *
     * Only 3 fields are used:
     *
     * * name - May be set on CreateModel, if set only the columns specified are
     *   used, otherwise all primary table's columns (except the ones listed
     *   above) are used for the training and prediction input.
     *
     * * display_name - Output only.
     *
     * * data_type - Output only.
     * 
* * repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3; */ public Builder removeInputFeatureColumnSpecs(int index) { if (inputFeatureColumnSpecsBuilder_ == null) { ensureInputFeatureColumnSpecsIsMutable(); inputFeatureColumnSpecs_.remove(index); onChanged(); } else { inputFeatureColumnSpecsBuilder_.remove(index); } return this; } /** * * *
     * Column specs of the dataset's primary table's columns, on which
     * the model is trained and which are used as the input for predictions.
     * The
     *
     * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
     * as well as, according to dataset's state upon model creation,
     *
     * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
     * and
     *
     * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
     * must never be included here.
     *
     * Only 3 fields are used:
     *
     * * name - May be set on CreateModel, if set only the columns specified are
     *   used, otherwise all primary table's columns (except the ones listed
     *   above) are used for the training and prediction input.
     *
     * * display_name - Output only.
     *
     * * data_type - Output only.
     * 
* * repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3; */ public com.google.cloud.automl.v1beta1.ColumnSpec.Builder getInputFeatureColumnSpecsBuilder( int index) { return getInputFeatureColumnSpecsFieldBuilder().getBuilder(index); } /** * * *
     * Column specs of the dataset's primary table's columns, on which
     * the model is trained and which are used as the input for predictions.
     * The
     *
     * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
     * as well as, according to dataset's state upon model creation,
     *
     * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
     * and
     *
     * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
     * must never be included here.
     *
     * Only 3 fields are used:
     *
     * * name - May be set on CreateModel, if set only the columns specified are
     *   used, otherwise all primary table's columns (except the ones listed
     *   above) are used for the training and prediction input.
     *
     * * display_name - Output only.
     *
     * * data_type - Output only.
     * 
* * repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3; */ public com.google.cloud.automl.v1beta1.ColumnSpecOrBuilder getInputFeatureColumnSpecsOrBuilder( int index) { if (inputFeatureColumnSpecsBuilder_ == null) { return inputFeatureColumnSpecs_.get(index); } else { return inputFeatureColumnSpecsBuilder_.getMessageOrBuilder(index); } } /** * * *
     * Column specs of the dataset's primary table's columns, on which
     * the model is trained and which are used as the input for predictions.
     * The
     *
     * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
     * as well as, according to dataset's state upon model creation,
     *
     * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
     * and
     *
     * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
     * must never be included here.
     *
     * Only 3 fields are used:
     *
     * * name - May be set on CreateModel, if set only the columns specified are
     *   used, otherwise all primary table's columns (except the ones listed
     *   above) are used for the training and prediction input.
     *
     * * display_name - Output only.
     *
     * * data_type - Output only.
     * 
* * repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3; */ public java.util.List getInputFeatureColumnSpecsOrBuilderList() { if (inputFeatureColumnSpecsBuilder_ != null) { return inputFeatureColumnSpecsBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(inputFeatureColumnSpecs_); } } /** * * *
     * Column specs of the dataset's primary table's columns, on which
     * the model is trained and which are used as the input for predictions.
     * The
     *
     * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
     * as well as, according to dataset's state upon model creation,
     *
     * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
     * and
     *
     * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
     * must never be included here.
     *
     * Only 3 fields are used:
     *
     * * name - May be set on CreateModel, if set only the columns specified are
     *   used, otherwise all primary table's columns (except the ones listed
     *   above) are used for the training and prediction input.
     *
     * * display_name - Output only.
     *
     * * data_type - Output only.
     * 
* * repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3; */ public com.google.cloud.automl.v1beta1.ColumnSpec.Builder addInputFeatureColumnSpecsBuilder() { return getInputFeatureColumnSpecsFieldBuilder() .addBuilder(com.google.cloud.automl.v1beta1.ColumnSpec.getDefaultInstance()); } /** * * *
     * Column specs of the dataset's primary table's columns, on which
     * the model is trained and which are used as the input for predictions.
     * The
     *
     * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
     * as well as, according to dataset's state upon model creation,
     *
     * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
     * and
     *
     * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
     * must never be included here.
     *
     * Only 3 fields are used:
     *
     * * name - May be set on CreateModel, if set only the columns specified are
     *   used, otherwise all primary table's columns (except the ones listed
     *   above) are used for the training and prediction input.
     *
     * * display_name - Output only.
     *
     * * data_type - Output only.
     * 
* * repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3; */ public com.google.cloud.automl.v1beta1.ColumnSpec.Builder addInputFeatureColumnSpecsBuilder( int index) { return getInputFeatureColumnSpecsFieldBuilder() .addBuilder(index, com.google.cloud.automl.v1beta1.ColumnSpec.getDefaultInstance()); } /** * * *
     * Column specs of the dataset's primary table's columns, on which
     * the model is trained and which are used as the input for predictions.
     * The
     *
     * [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
     * as well as, according to dataset's state upon model creation,
     *
     * [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
     * and
     *
     * [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
     * must never be included here.
     *
     * Only 3 fields are used:
     *
     * * name - May be set on CreateModel, if set only the columns specified are
     *   used, otherwise all primary table's columns (except the ones listed
     *   above) are used for the training and prediction input.
     *
     * * display_name - Output only.
     *
     * * data_type - Output only.
     * 
* * repeated .google.cloud.automl.v1beta1.ColumnSpec input_feature_column_specs = 3; */ public java.util.List getInputFeatureColumnSpecsBuilderList() { return getInputFeatureColumnSpecsFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< com.google.cloud.automl.v1beta1.ColumnSpec, com.google.cloud.automl.v1beta1.ColumnSpec.Builder, com.google.cloud.automl.v1beta1.ColumnSpecOrBuilder> getInputFeatureColumnSpecsFieldBuilder() { if (inputFeatureColumnSpecsBuilder_ == null) { inputFeatureColumnSpecsBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< com.google.cloud.automl.v1beta1.ColumnSpec, com.google.cloud.automl.v1beta1.ColumnSpec.Builder, com.google.cloud.automl.v1beta1.ColumnSpecOrBuilder>( inputFeatureColumnSpecs_, ((bitField0_ & 0x00000008) != 0), getParentForChildren(), isClean()); inputFeatureColumnSpecs_ = null; } return inputFeatureColumnSpecsBuilder_; } private java.lang.Object optimizationObjective_ = ""; /** * * *
     * Objective function the model is optimizing towards. The training process
     * creates a model that maximizes/minimizes the value of the objective
     * function over the validation set.
     *
     * The supported optimization objectives depend on the prediction type.
     * If the field is not set, a default objective function is used.
     *
     * CLASSIFICATION_BINARY:
     *   "MAXIMIZE_AU_ROC" (default) - Maximize the area under the receiver
     *                                 operating characteristic (ROC) curve.
     *   "MINIMIZE_LOG_LOSS" - Minimize log loss.
     *   "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve.
     *   "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified
     *                                   recall value.
     *   "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified
     *                                    precision value.
     *
     * CLASSIFICATION_MULTI_CLASS :
     *   "MINIMIZE_LOG_LOSS" (default) - Minimize log loss.
     *
     *
     * REGRESSION:
     *   "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE).
     *   "MINIMIZE_MAE" - Minimize mean-absolute error (MAE).
     *   "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
     * 
* * string optimization_objective = 4; * * @return The optimizationObjective. */ public java.lang.String getOptimizationObjective() { java.lang.Object ref = optimizationObjective_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); optimizationObjective_ = s; return s; } else { return (java.lang.String) ref; } } /** * * *
     * Objective function the model is optimizing towards. The training process
     * creates a model that maximizes/minimizes the value of the objective
     * function over the validation set.
     *
     * The supported optimization objectives depend on the prediction type.
     * If the field is not set, a default objective function is used.
     *
     * CLASSIFICATION_BINARY:
     *   "MAXIMIZE_AU_ROC" (default) - Maximize the area under the receiver
     *                                 operating characteristic (ROC) curve.
     *   "MINIMIZE_LOG_LOSS" - Minimize log loss.
     *   "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve.
     *   "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified
     *                                   recall value.
     *   "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified
     *                                    precision value.
     *
     * CLASSIFICATION_MULTI_CLASS :
     *   "MINIMIZE_LOG_LOSS" (default) - Minimize log loss.
     *
     *
     * REGRESSION:
     *   "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE).
     *   "MINIMIZE_MAE" - Minimize mean-absolute error (MAE).
     *   "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
     * 
* * string optimization_objective = 4; * * @return The bytes for optimizationObjective. */ public com.google.protobuf.ByteString getOptimizationObjectiveBytes() { java.lang.Object ref = optimizationObjective_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref); optimizationObjective_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** * * *
     * Objective function the model is optimizing towards. The training process
     * creates a model that maximizes/minimizes the value of the objective
     * function over the validation set.
     *
     * The supported optimization objectives depend on the prediction type.
     * If the field is not set, a default objective function is used.
     *
     * CLASSIFICATION_BINARY:
     *   "MAXIMIZE_AU_ROC" (default) - Maximize the area under the receiver
     *                                 operating characteristic (ROC) curve.
     *   "MINIMIZE_LOG_LOSS" - Minimize log loss.
     *   "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve.
     *   "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified
     *                                   recall value.
     *   "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified
     *                                    precision value.
     *
     * CLASSIFICATION_MULTI_CLASS :
     *   "MINIMIZE_LOG_LOSS" (default) - Minimize log loss.
     *
     *
     * REGRESSION:
     *   "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE).
     *   "MINIMIZE_MAE" - Minimize mean-absolute error (MAE).
     *   "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
     * 
* * string optimization_objective = 4; * * @param value The optimizationObjective to set. * @return This builder for chaining. */ public Builder setOptimizationObjective(java.lang.String value) { if (value == null) { throw new NullPointerException(); } optimizationObjective_ = value; bitField0_ |= 0x00000010; onChanged(); return this; } /** * * *
     * Objective function the model is optimizing towards. The training process
     * creates a model that maximizes/minimizes the value of the objective
     * function over the validation set.
     *
     * The supported optimization objectives depend on the prediction type.
     * If the field is not set, a default objective function is used.
     *
     * CLASSIFICATION_BINARY:
     *   "MAXIMIZE_AU_ROC" (default) - Maximize the area under the receiver
     *                                 operating characteristic (ROC) curve.
     *   "MINIMIZE_LOG_LOSS" - Minimize log loss.
     *   "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve.
     *   "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified
     *                                   recall value.
     *   "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified
     *                                    precision value.
     *
     * CLASSIFICATION_MULTI_CLASS :
     *   "MINIMIZE_LOG_LOSS" (default) - Minimize log loss.
     *
     *
     * REGRESSION:
     *   "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE).
     *   "MINIMIZE_MAE" - Minimize mean-absolute error (MAE).
     *   "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
     * 
* * string optimization_objective = 4; * * @return This builder for chaining. */ public Builder clearOptimizationObjective() { optimizationObjective_ = getDefaultInstance().getOptimizationObjective(); bitField0_ = (bitField0_ & ~0x00000010); onChanged(); return this; } /** * * *
     * Objective function the model is optimizing towards. The training process
     * creates a model that maximizes/minimizes the value of the objective
     * function over the validation set.
     *
     * The supported optimization objectives depend on the prediction type.
     * If the field is not set, a default objective function is used.
     *
     * CLASSIFICATION_BINARY:
     *   "MAXIMIZE_AU_ROC" (default) - Maximize the area under the receiver
     *                                 operating characteristic (ROC) curve.
     *   "MINIMIZE_LOG_LOSS" - Minimize log loss.
     *   "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve.
     *   "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified
     *                                   recall value.
     *   "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified
     *                                    precision value.
     *
     * CLASSIFICATION_MULTI_CLASS :
     *   "MINIMIZE_LOG_LOSS" (default) - Minimize log loss.
     *
     *
     * REGRESSION:
     *   "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE).
     *   "MINIMIZE_MAE" - Minimize mean-absolute error (MAE).
     *   "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
     * 
* * string optimization_objective = 4; * * @param value The bytes for optimizationObjective to set. * @return This builder for chaining. */ public Builder setOptimizationObjectiveBytes(com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } checkByteStringIsUtf8(value); optimizationObjective_ = value; bitField0_ |= 0x00000010; onChanged(); return this; } private java.util.List tablesModelColumnInfo_ = java.util.Collections.emptyList(); private void ensureTablesModelColumnInfoIsMutable() { if (!((bitField0_ & 0x00000020) != 0)) { tablesModelColumnInfo_ = new java.util.ArrayList( tablesModelColumnInfo_); bitField0_ |= 0x00000020; } } private com.google.protobuf.RepeatedFieldBuilderV3< com.google.cloud.automl.v1beta1.TablesModelColumnInfo, com.google.cloud.automl.v1beta1.TablesModelColumnInfo.Builder, com.google.cloud.automl.v1beta1.TablesModelColumnInfoOrBuilder> tablesModelColumnInfoBuilder_; /** * * *
     * Output only. Auxiliary information for each of the
     * input_feature_column_specs with respect to this particular model.
     * 
* * * repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5; * */ public java.util.List getTablesModelColumnInfoList() { if (tablesModelColumnInfoBuilder_ == null) { return java.util.Collections.unmodifiableList(tablesModelColumnInfo_); } else { return tablesModelColumnInfoBuilder_.getMessageList(); } } /** * * *
     * Output only. Auxiliary information for each of the
     * input_feature_column_specs with respect to this particular model.
     * 
* * * repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5; * */ public int getTablesModelColumnInfoCount() { if (tablesModelColumnInfoBuilder_ == null) { return tablesModelColumnInfo_.size(); } else { return tablesModelColumnInfoBuilder_.getCount(); } } /** * * *
     * Output only. Auxiliary information for each of the
     * input_feature_column_specs with respect to this particular model.
     * 
* * * repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5; * */ public com.google.cloud.automl.v1beta1.TablesModelColumnInfo getTablesModelColumnInfo( int index) { if (tablesModelColumnInfoBuilder_ == null) { return tablesModelColumnInfo_.get(index); } else { return tablesModelColumnInfoBuilder_.getMessage(index); } } /** * * *
     * Output only. Auxiliary information for each of the
     * input_feature_column_specs with respect to this particular model.
     * 
* * * repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5; * */ public Builder setTablesModelColumnInfo( int index, com.google.cloud.automl.v1beta1.TablesModelColumnInfo value) { if (tablesModelColumnInfoBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureTablesModelColumnInfoIsMutable(); tablesModelColumnInfo_.set(index, value); onChanged(); } else { tablesModelColumnInfoBuilder_.setMessage(index, value); } return this; } /** * * *
     * Output only. Auxiliary information for each of the
     * input_feature_column_specs with respect to this particular model.
     * 
* * * repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5; * */ public Builder setTablesModelColumnInfo( int index, com.google.cloud.automl.v1beta1.TablesModelColumnInfo.Builder builderForValue) { if (tablesModelColumnInfoBuilder_ == null) { ensureTablesModelColumnInfoIsMutable(); tablesModelColumnInfo_.set(index, builderForValue.build()); onChanged(); } else { tablesModelColumnInfoBuilder_.setMessage(index, builderForValue.build()); } return this; } /** * * *
     * Output only. Auxiliary information for each of the
     * input_feature_column_specs with respect to this particular model.
     * 
* * * repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5; * */ public Builder addTablesModelColumnInfo( com.google.cloud.automl.v1beta1.TablesModelColumnInfo value) { if (tablesModelColumnInfoBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureTablesModelColumnInfoIsMutable(); tablesModelColumnInfo_.add(value); onChanged(); } else { tablesModelColumnInfoBuilder_.addMessage(value); } return this; } /** * * *
     * Output only. Auxiliary information for each of the
     * input_feature_column_specs with respect to this particular model.
     * 
* * * repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5; * */ public Builder addTablesModelColumnInfo( int index, com.google.cloud.automl.v1beta1.TablesModelColumnInfo value) { if (tablesModelColumnInfoBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureTablesModelColumnInfoIsMutable(); tablesModelColumnInfo_.add(index, value); onChanged(); } else { tablesModelColumnInfoBuilder_.addMessage(index, value); } return this; } /** * * *
     * Output only. Auxiliary information for each of the
     * input_feature_column_specs with respect to this particular model.
     * 
* * * repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5; * */ public Builder addTablesModelColumnInfo( com.google.cloud.automl.v1beta1.TablesModelColumnInfo.Builder builderForValue) { if (tablesModelColumnInfoBuilder_ == null) { ensureTablesModelColumnInfoIsMutable(); tablesModelColumnInfo_.add(builderForValue.build()); onChanged(); } else { tablesModelColumnInfoBuilder_.addMessage(builderForValue.build()); } return this; } /** * * *
     * Output only. Auxiliary information for each of the
     * input_feature_column_specs with respect to this particular model.
     * 
* * * repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5; * */ public Builder addTablesModelColumnInfo( int index, com.google.cloud.automl.v1beta1.TablesModelColumnInfo.Builder builderForValue) { if (tablesModelColumnInfoBuilder_ == null) { ensureTablesModelColumnInfoIsMutable(); tablesModelColumnInfo_.add(index, builderForValue.build()); onChanged(); } else { tablesModelColumnInfoBuilder_.addMessage(index, builderForValue.build()); } return this; } /** * * *
     * Output only. Auxiliary information for each of the
     * input_feature_column_specs with respect to this particular model.
     * 
* * * repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5; * */ public Builder addAllTablesModelColumnInfo( java.lang.Iterable values) { if (tablesModelColumnInfoBuilder_ == null) { ensureTablesModelColumnInfoIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll(values, tablesModelColumnInfo_); onChanged(); } else { tablesModelColumnInfoBuilder_.addAllMessages(values); } return this; } /** * * *
     * Output only. Auxiliary information for each of the
     * input_feature_column_specs with respect to this particular model.
     * 
* * * repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5; * */ public Builder clearTablesModelColumnInfo() { if (tablesModelColumnInfoBuilder_ == null) { tablesModelColumnInfo_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000020); onChanged(); } else { tablesModelColumnInfoBuilder_.clear(); } return this; } /** * * *
     * Output only. Auxiliary information for each of the
     * input_feature_column_specs with respect to this particular model.
     * 
* * * repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5; * */ public Builder removeTablesModelColumnInfo(int index) { if (tablesModelColumnInfoBuilder_ == null) { ensureTablesModelColumnInfoIsMutable(); tablesModelColumnInfo_.remove(index); onChanged(); } else { tablesModelColumnInfoBuilder_.remove(index); } return this; } /** * * *
     * Output only. Auxiliary information for each of the
     * input_feature_column_specs with respect to this particular model.
     * 
* * * repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5; * */ public com.google.cloud.automl.v1beta1.TablesModelColumnInfo.Builder getTablesModelColumnInfoBuilder(int index) { return getTablesModelColumnInfoFieldBuilder().getBuilder(index); } /** * * *
     * Output only. Auxiliary information for each of the
     * input_feature_column_specs with respect to this particular model.
     * 
* * * repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5; * */ public com.google.cloud.automl.v1beta1.TablesModelColumnInfoOrBuilder getTablesModelColumnInfoOrBuilder(int index) { if (tablesModelColumnInfoBuilder_ == null) { return tablesModelColumnInfo_.get(index); } else { return tablesModelColumnInfoBuilder_.getMessageOrBuilder(index); } } /** * * *
     * Output only. Auxiliary information for each of the
     * input_feature_column_specs with respect to this particular model.
     * 
* * * repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5; * */ public java.util.List getTablesModelColumnInfoOrBuilderList() { if (tablesModelColumnInfoBuilder_ != null) { return tablesModelColumnInfoBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(tablesModelColumnInfo_); } } /** * * *
     * Output only. Auxiliary information for each of the
     * input_feature_column_specs with respect to this particular model.
     * 
* * * repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5; * */ public com.google.cloud.automl.v1beta1.TablesModelColumnInfo.Builder addTablesModelColumnInfoBuilder() { return getTablesModelColumnInfoFieldBuilder() .addBuilder(com.google.cloud.automl.v1beta1.TablesModelColumnInfo.getDefaultInstance()); } /** * * *
     * Output only. Auxiliary information for each of the
     * input_feature_column_specs with respect to this particular model.
     * 
* * * repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5; * */ public com.google.cloud.automl.v1beta1.TablesModelColumnInfo.Builder addTablesModelColumnInfoBuilder(int index) { return getTablesModelColumnInfoFieldBuilder() .addBuilder( index, com.google.cloud.automl.v1beta1.TablesModelColumnInfo.getDefaultInstance()); } /** * * *
     * Output only. Auxiliary information for each of the
     * input_feature_column_specs with respect to this particular model.
     * 
* * * repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 5; * */ public java.util.List getTablesModelColumnInfoBuilderList() { return getTablesModelColumnInfoFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< com.google.cloud.automl.v1beta1.TablesModelColumnInfo, com.google.cloud.automl.v1beta1.TablesModelColumnInfo.Builder, com.google.cloud.automl.v1beta1.TablesModelColumnInfoOrBuilder> getTablesModelColumnInfoFieldBuilder() { if (tablesModelColumnInfoBuilder_ == null) { tablesModelColumnInfoBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< com.google.cloud.automl.v1beta1.TablesModelColumnInfo, com.google.cloud.automl.v1beta1.TablesModelColumnInfo.Builder, com.google.cloud.automl.v1beta1.TablesModelColumnInfoOrBuilder>( tablesModelColumnInfo_, ((bitField0_ & 0x00000020) != 0), getParentForChildren(), isClean()); tablesModelColumnInfo_ = null; } return tablesModelColumnInfoBuilder_; } private long trainBudgetMilliNodeHours_; /** * * *
     * Required. The train budget of creating this model, expressed in milli node
     * hours i.e. 1,000 value in this field means 1 node hour.
     *
     * The training cost of the model will not exceed this budget. The final cost
     * will be attempted to be close to the budget, though may end up being (even)
     * noticeably smaller - at the backend's discretion. This especially may
     * happen when further model training ceases to provide any improvements.
     *
     * If the budget is set to a value known to be insufficient to train a
     * model for the given dataset, the training won't be attempted and
     * will error.
     *
     * The train budget must be between 1,000 and 72,000 milli node hours,
     * inclusive.
     * 
* * int64 train_budget_milli_node_hours = 6; * * @return The trainBudgetMilliNodeHours. */ @java.lang.Override public long getTrainBudgetMilliNodeHours() { return trainBudgetMilliNodeHours_; } /** * * *
     * Required. The train budget of creating this model, expressed in milli node
     * hours i.e. 1,000 value in this field means 1 node hour.
     *
     * The training cost of the model will not exceed this budget. The final cost
     * will be attempted to be close to the budget, though may end up being (even)
     * noticeably smaller - at the backend's discretion. This especially may
     * happen when further model training ceases to provide any improvements.
     *
     * If the budget is set to a value known to be insufficient to train a
     * model for the given dataset, the training won't be attempted and
     * will error.
     *
     * The train budget must be between 1,000 and 72,000 milli node hours,
     * inclusive.
     * 
* * int64 train_budget_milli_node_hours = 6; * * @param value The trainBudgetMilliNodeHours to set. * @return This builder for chaining. */ public Builder setTrainBudgetMilliNodeHours(long value) { trainBudgetMilliNodeHours_ = value; bitField0_ |= 0x00000040; onChanged(); return this; } /** * * *
     * Required. The train budget of creating this model, expressed in milli node
     * hours i.e. 1,000 value in this field means 1 node hour.
     *
     * The training cost of the model will not exceed this budget. The final cost
     * will be attempted to be close to the budget, though may end up being (even)
     * noticeably smaller - at the backend's discretion. This especially may
     * happen when further model training ceases to provide any improvements.
     *
     * If the budget is set to a value known to be insufficient to train a
     * model for the given dataset, the training won't be attempted and
     * will error.
     *
     * The train budget must be between 1,000 and 72,000 milli node hours,
     * inclusive.
     * 
* * int64 train_budget_milli_node_hours = 6; * * @return This builder for chaining. */ public Builder clearTrainBudgetMilliNodeHours() { bitField0_ = (bitField0_ & ~0x00000040); trainBudgetMilliNodeHours_ = 0L; onChanged(); return this; } private long trainCostMilliNodeHours_; /** * * *
     * Output only. The actual training cost of the model, expressed in milli
     * node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed
     * to not exceed the train budget.
     * 
* * int64 train_cost_milli_node_hours = 7; * * @return The trainCostMilliNodeHours. */ @java.lang.Override public long getTrainCostMilliNodeHours() { return trainCostMilliNodeHours_; } /** * * *
     * Output only. The actual training cost of the model, expressed in milli
     * node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed
     * to not exceed the train budget.
     * 
* * int64 train_cost_milli_node_hours = 7; * * @param value The trainCostMilliNodeHours to set. * @return This builder for chaining. */ public Builder setTrainCostMilliNodeHours(long value) { trainCostMilliNodeHours_ = value; bitField0_ |= 0x00000080; onChanged(); return this; } /** * * *
     * Output only. The actual training cost of the model, expressed in milli
     * node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed
     * to not exceed the train budget.
     * 
* * int64 train_cost_milli_node_hours = 7; * * @return This builder for chaining. */ public Builder clearTrainCostMilliNodeHours() { bitField0_ = (bitField0_ & ~0x00000080); trainCostMilliNodeHours_ = 0L; onChanged(); return this; } private boolean disableEarlyStopping_; /** * * *
     * Use the entire training budget. This disables the early stopping feature.
     * By default, the early stopping feature is enabled, which means that AutoML
     * Tables might stop training before the entire training budget has been used.
     * 
* * bool disable_early_stopping = 12; * * @return The disableEarlyStopping. */ @java.lang.Override public boolean getDisableEarlyStopping() { return disableEarlyStopping_; } /** * * *
     * Use the entire training budget. This disables the early stopping feature.
     * By default, the early stopping feature is enabled, which means that AutoML
     * Tables might stop training before the entire training budget has been used.
     * 
* * bool disable_early_stopping = 12; * * @param value The disableEarlyStopping to set. * @return This builder for chaining. */ public Builder setDisableEarlyStopping(boolean value) { disableEarlyStopping_ = value; bitField0_ |= 0x00000100; onChanged(); return this; } /** * * *
     * Use the entire training budget. This disables the early stopping feature.
     * By default, the early stopping feature is enabled, which means that AutoML
     * Tables might stop training before the entire training budget has been used.
     * 
* * bool disable_early_stopping = 12; * * @return This builder for chaining. */ public Builder clearDisableEarlyStopping() { bitField0_ = (bitField0_ & ~0x00000100); disableEarlyStopping_ = false; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields(final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:google.cloud.automl.v1beta1.TablesModelMetadata) } // @@protoc_insertion_point(class_scope:google.cloud.automl.v1beta1.TablesModelMetadata) private static final com.google.cloud.automl.v1beta1.TablesModelMetadata DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new com.google.cloud.automl.v1beta1.TablesModelMetadata(); } public static com.google.cloud.automl.v1beta1.TablesModelMetadata getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public TablesModelMetadata parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public com.google.cloud.automl.v1beta1.TablesModelMetadata getDefaultInstanceForType() { return DEFAULT_INSTANCE; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy