All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.cloud.automl.v1beta1.TablesDatasetMetadata Maven / Gradle / Ivy

/*
 * Copyright 2020 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: google/cloud/automl/v1beta1/tables.proto

package com.google.cloud.automl.v1beta1;

/**
 *
 *
 * 
 * Metadata for a dataset used for AutoML Tables.
 * 
* * Protobuf type {@code google.cloud.automl.v1beta1.TablesDatasetMetadata} */ public final class TablesDatasetMetadata extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:google.cloud.automl.v1beta1.TablesDatasetMetadata) TablesDatasetMetadataOrBuilder { private static final long serialVersionUID = 0L; // Use TablesDatasetMetadata.newBuilder() to construct. private TablesDatasetMetadata(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private TablesDatasetMetadata() { primaryTableSpecId_ = ""; targetColumnSpecId_ = ""; weightColumnSpecId_ = ""; mlUseColumnSpecId_ = ""; } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance(UnusedPrivateParameter unused) { return new TablesDatasetMetadata(); } @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } private TablesDatasetMetadata( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { this(); if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } int mutable_bitField0_ = 0; com.google.protobuf.UnknownFieldSet.Builder unknownFields = com.google.protobuf.UnknownFieldSet.newBuilder(); try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { java.lang.String s = input.readStringRequireUtf8(); primaryTableSpecId_ = s; break; } case 18: { java.lang.String s = input.readStringRequireUtf8(); targetColumnSpecId_ = s; break; } case 26: { java.lang.String s = input.readStringRequireUtf8(); weightColumnSpecId_ = s; break; } case 34: { java.lang.String s = input.readStringRequireUtf8(); mlUseColumnSpecId_ = s; break; } case 50: { if (!((mutable_bitField0_ & 0x00000001) != 0)) { targetColumnCorrelations_ = com.google.protobuf.MapField.newMapField( TargetColumnCorrelationsDefaultEntryHolder.defaultEntry); mutable_bitField0_ |= 0x00000001; } com.google.protobuf.MapEntry< java.lang.String, com.google.cloud.automl.v1beta1.CorrelationStats> targetColumnCorrelations__ = input.readMessage( TargetColumnCorrelationsDefaultEntryHolder.defaultEntry .getParserForType(), extensionRegistry); targetColumnCorrelations_ .getMutableMap() .put(targetColumnCorrelations__.getKey(), targetColumnCorrelations__.getValue()); break; } case 58: { com.google.protobuf.Timestamp.Builder subBuilder = null; if (statsUpdateTime_ != null) { subBuilder = statsUpdateTime_.toBuilder(); } statsUpdateTime_ = input.readMessage(com.google.protobuf.Timestamp.parser(), extensionRegistry); if (subBuilder != null) { subBuilder.mergeFrom(statsUpdateTime_); statsUpdateTime_ = subBuilder.buildPartial(); } break; } default: { if (!parseUnknownField(input, unknownFields, extensionRegistry, tag)) { done = true; } break; } } } } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(this); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(this); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e).setUnfinishedMessage(this); } finally { this.unknownFields = unknownFields.build(); makeExtensionsImmutable(); } } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.Tables .internal_static_google_cloud_automl_v1beta1_TablesDatasetMetadata_descriptor; } @SuppressWarnings({"rawtypes"}) @java.lang.Override protected com.google.protobuf.MapField internalGetMapField(int number) { switch (number) { case 6: return internalGetTargetColumnCorrelations(); default: throw new RuntimeException("Invalid map field number: " + number); } } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.Tables .internal_static_google_cloud_automl_v1beta1_TablesDatasetMetadata_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.TablesDatasetMetadata.class, com.google.cloud.automl.v1beta1.TablesDatasetMetadata.Builder.class); } public static final int PRIMARY_TABLE_SPEC_ID_FIELD_NUMBER = 1; private volatile java.lang.Object primaryTableSpecId_; /** * * *
   * Output only. The table_spec_id of the primary table of this dataset.
   * 
* * string primary_table_spec_id = 1; * * @return The primaryTableSpecId. */ @java.lang.Override public java.lang.String getPrimaryTableSpecId() { java.lang.Object ref = primaryTableSpecId_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); primaryTableSpecId_ = s; return s; } } /** * * *
   * Output only. The table_spec_id of the primary table of this dataset.
   * 
* * string primary_table_spec_id = 1; * * @return The bytes for primaryTableSpecId. */ @java.lang.Override public com.google.protobuf.ByteString getPrimaryTableSpecIdBytes() { java.lang.Object ref = primaryTableSpecId_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref); primaryTableSpecId_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int TARGET_COLUMN_SPEC_ID_FIELD_NUMBER = 2; private volatile java.lang.Object targetColumnSpecId_; /** * * *
   * column_spec_id of the primary table's column that should be used as the
   * training & prediction target.
   * This column must be non-nullable and have one of following data types
   * (otherwise model creation will error):
   * * CATEGORY
   * * FLOAT64
   * If the type is CATEGORY , only up to
   * 100 unique values may exist in that column across all rows.
   * NOTE: Updates of this field will instantly affect any other users
   * concurrently working with the dataset.
   * 
* * string target_column_spec_id = 2; * * @return The targetColumnSpecId. */ @java.lang.Override public java.lang.String getTargetColumnSpecId() { java.lang.Object ref = targetColumnSpecId_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); targetColumnSpecId_ = s; return s; } } /** * * *
   * column_spec_id of the primary table's column that should be used as the
   * training & prediction target.
   * This column must be non-nullable and have one of following data types
   * (otherwise model creation will error):
   * * CATEGORY
   * * FLOAT64
   * If the type is CATEGORY , only up to
   * 100 unique values may exist in that column across all rows.
   * NOTE: Updates of this field will instantly affect any other users
   * concurrently working with the dataset.
   * 
* * string target_column_spec_id = 2; * * @return The bytes for targetColumnSpecId. */ @java.lang.Override public com.google.protobuf.ByteString getTargetColumnSpecIdBytes() { java.lang.Object ref = targetColumnSpecId_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref); targetColumnSpecId_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int WEIGHT_COLUMN_SPEC_ID_FIELD_NUMBER = 3; private volatile java.lang.Object weightColumnSpecId_; /** * * *
   * column_spec_id of the primary table's column that should be used as the
   * weight column, i.e. the higher the value the more important the row will be
   * during model training.
   * Required type: FLOAT64.
   * Allowed values: 0 to 10000, inclusive on both ends; 0 means the row is
   *                 ignored for training.
   * If not set all rows are assumed to have equal weight of 1.
   * NOTE: Updates of this field will instantly affect any other users
   * concurrently working with the dataset.
   * 
* * string weight_column_spec_id = 3; * * @return The weightColumnSpecId. */ @java.lang.Override public java.lang.String getWeightColumnSpecId() { java.lang.Object ref = weightColumnSpecId_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); weightColumnSpecId_ = s; return s; } } /** * * *
   * column_spec_id of the primary table's column that should be used as the
   * weight column, i.e. the higher the value the more important the row will be
   * during model training.
   * Required type: FLOAT64.
   * Allowed values: 0 to 10000, inclusive on both ends; 0 means the row is
   *                 ignored for training.
   * If not set all rows are assumed to have equal weight of 1.
   * NOTE: Updates of this field will instantly affect any other users
   * concurrently working with the dataset.
   * 
* * string weight_column_spec_id = 3; * * @return The bytes for weightColumnSpecId. */ @java.lang.Override public com.google.protobuf.ByteString getWeightColumnSpecIdBytes() { java.lang.Object ref = weightColumnSpecId_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref); weightColumnSpecId_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int ML_USE_COLUMN_SPEC_ID_FIELD_NUMBER = 4; private volatile java.lang.Object mlUseColumnSpecId_; /** * * *
   * column_spec_id of the primary table column which specifies a possible ML
   * use of the row, i.e. the column will be used to split the rows into TRAIN,
   * VALIDATE and TEST sets.
   * Required type: STRING.
   * This column, if set, must either have all of `TRAIN`, `VALIDATE`, `TEST`
   * among its values, or only have `TEST`, `UNASSIGNED` values. In the latter
   * case the rows with `UNASSIGNED` value will be assigned by AutoML. Note
   * that if a given ml use distribution makes it impossible to create a "good"
   * model, that call will error describing the issue.
   * If both this column_spec_id and primary table's time_column_spec_id are not
   * set, then all rows are treated as `UNASSIGNED`.
   * NOTE: Updates of this field will instantly affect any other users
   * concurrently working with the dataset.
   * 
* * string ml_use_column_spec_id = 4; * * @return The mlUseColumnSpecId. */ @java.lang.Override public java.lang.String getMlUseColumnSpecId() { java.lang.Object ref = mlUseColumnSpecId_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); mlUseColumnSpecId_ = s; return s; } } /** * * *
   * column_spec_id of the primary table column which specifies a possible ML
   * use of the row, i.e. the column will be used to split the rows into TRAIN,
   * VALIDATE and TEST sets.
   * Required type: STRING.
   * This column, if set, must either have all of `TRAIN`, `VALIDATE`, `TEST`
   * among its values, or only have `TEST`, `UNASSIGNED` values. In the latter
   * case the rows with `UNASSIGNED` value will be assigned by AutoML. Note
   * that if a given ml use distribution makes it impossible to create a "good"
   * model, that call will error describing the issue.
   * If both this column_spec_id and primary table's time_column_spec_id are not
   * set, then all rows are treated as `UNASSIGNED`.
   * NOTE: Updates of this field will instantly affect any other users
   * concurrently working with the dataset.
   * 
* * string ml_use_column_spec_id = 4; * * @return The bytes for mlUseColumnSpecId. */ @java.lang.Override public com.google.protobuf.ByteString getMlUseColumnSpecIdBytes() { java.lang.Object ref = mlUseColumnSpecId_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref); mlUseColumnSpecId_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int TARGET_COLUMN_CORRELATIONS_FIELD_NUMBER = 6; private static final class TargetColumnCorrelationsDefaultEntryHolder { static final com.google.protobuf.MapEntry< java.lang.String, com.google.cloud.automl.v1beta1.CorrelationStats> defaultEntry = com.google.protobuf.MapEntry . newDefaultInstance( com.google.cloud.automl.v1beta1.Tables .internal_static_google_cloud_automl_v1beta1_TablesDatasetMetadata_TargetColumnCorrelationsEntry_descriptor, com.google.protobuf.WireFormat.FieldType.STRING, "", com.google.protobuf.WireFormat.FieldType.MESSAGE, com.google.cloud.automl.v1beta1.CorrelationStats.getDefaultInstance()); } private com.google.protobuf.MapField< java.lang.String, com.google.cloud.automl.v1beta1.CorrelationStats> targetColumnCorrelations_; private com.google.protobuf.MapField< java.lang.String, com.google.cloud.automl.v1beta1.CorrelationStats> internalGetTargetColumnCorrelations() { if (targetColumnCorrelations_ == null) { return com.google.protobuf.MapField.emptyMapField( TargetColumnCorrelationsDefaultEntryHolder.defaultEntry); } return targetColumnCorrelations_; } public int getTargetColumnCorrelationsCount() { return internalGetTargetColumnCorrelations().getMap().size(); } /** * * *
   * Output only. Correlations between
   * [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
   * and other columns of the
   * [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
   * Only set if the target column is set. Mapping from other column spec id to
   * its CorrelationStats with the target column.
   * This field may be stale, see the stats_update_time field for
   * for the timestamp at which these stats were last updated.
   * 
* * * map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6; * */ @java.lang.Override public boolean containsTargetColumnCorrelations(java.lang.String key) { if (key == null) { throw new NullPointerException("map key"); } return internalGetTargetColumnCorrelations().getMap().containsKey(key); } /** Use {@link #getTargetColumnCorrelationsMap()} instead. */ @java.lang.Override @java.lang.Deprecated public java.util.Map getTargetColumnCorrelations() { return getTargetColumnCorrelationsMap(); } /** * * *
   * Output only. Correlations between
   * [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
   * and other columns of the
   * [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
   * Only set if the target column is set. Mapping from other column spec id to
   * its CorrelationStats with the target column.
   * This field may be stale, see the stats_update_time field for
   * for the timestamp at which these stats were last updated.
   * 
* * * map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6; * */ @java.lang.Override public java.util.Map getTargetColumnCorrelationsMap() { return internalGetTargetColumnCorrelations().getMap(); } /** * * *
   * Output only. Correlations between
   * [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
   * and other columns of the
   * [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
   * Only set if the target column is set. Mapping from other column spec id to
   * its CorrelationStats with the target column.
   * This field may be stale, see the stats_update_time field for
   * for the timestamp at which these stats were last updated.
   * 
* * * map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6; * */ @java.lang.Override public com.google.cloud.automl.v1beta1.CorrelationStats getTargetColumnCorrelationsOrDefault( java.lang.String key, com.google.cloud.automl.v1beta1.CorrelationStats defaultValue) { if (key == null) { throw new NullPointerException("map key"); } java.util.Map map = internalGetTargetColumnCorrelations().getMap(); return map.containsKey(key) ? map.get(key) : defaultValue; } /** * * *
   * Output only. Correlations between
   * [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
   * and other columns of the
   * [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
   * Only set if the target column is set. Mapping from other column spec id to
   * its CorrelationStats with the target column.
   * This field may be stale, see the stats_update_time field for
   * for the timestamp at which these stats were last updated.
   * 
* * * map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6; * */ @java.lang.Override public com.google.cloud.automl.v1beta1.CorrelationStats getTargetColumnCorrelationsOrThrow( java.lang.String key) { if (key == null) { throw new NullPointerException("map key"); } java.util.Map map = internalGetTargetColumnCorrelations().getMap(); if (!map.containsKey(key)) { throw new java.lang.IllegalArgumentException(); } return map.get(key); } public static final int STATS_UPDATE_TIME_FIELD_NUMBER = 7; private com.google.protobuf.Timestamp statsUpdateTime_; /** * * *
   * Output only. The most recent timestamp when target_column_correlations
   * field and all descendant ColumnSpec.data_stats and
   * ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
   * changes that happened to the dataset afterwards are not reflected in these
   * fields values. The regeneration happens in the background on a best effort
   * basis.
   * 
* * .google.protobuf.Timestamp stats_update_time = 7; * * @return Whether the statsUpdateTime field is set. */ @java.lang.Override public boolean hasStatsUpdateTime() { return statsUpdateTime_ != null; } /** * * *
   * Output only. The most recent timestamp when target_column_correlations
   * field and all descendant ColumnSpec.data_stats and
   * ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
   * changes that happened to the dataset afterwards are not reflected in these
   * fields values. The regeneration happens in the background on a best effort
   * basis.
   * 
* * .google.protobuf.Timestamp stats_update_time = 7; * * @return The statsUpdateTime. */ @java.lang.Override public com.google.protobuf.Timestamp getStatsUpdateTime() { return statsUpdateTime_ == null ? com.google.protobuf.Timestamp.getDefaultInstance() : statsUpdateTime_; } /** * * *
   * Output only. The most recent timestamp when target_column_correlations
   * field and all descendant ColumnSpec.data_stats and
   * ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
   * changes that happened to the dataset afterwards are not reflected in these
   * fields values. The regeneration happens in the background on a best effort
   * basis.
   * 
* * .google.protobuf.Timestamp stats_update_time = 7; */ @java.lang.Override public com.google.protobuf.TimestampOrBuilder getStatsUpdateTimeOrBuilder() { return getStatsUpdateTime(); } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(primaryTableSpecId_)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 1, primaryTableSpecId_); } if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(targetColumnSpecId_)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 2, targetColumnSpecId_); } if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(weightColumnSpecId_)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 3, weightColumnSpecId_); } if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(mlUseColumnSpecId_)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 4, mlUseColumnSpecId_); } com.google.protobuf.GeneratedMessageV3.serializeStringMapTo( output, internalGetTargetColumnCorrelations(), TargetColumnCorrelationsDefaultEntryHolder.defaultEntry, 6); if (statsUpdateTime_ != null) { output.writeMessage(7, getStatsUpdateTime()); } unknownFields.writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(primaryTableSpecId_)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(1, primaryTableSpecId_); } if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(targetColumnSpecId_)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(2, targetColumnSpecId_); } if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(weightColumnSpecId_)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(3, weightColumnSpecId_); } if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(mlUseColumnSpecId_)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(4, mlUseColumnSpecId_); } for (java.util.Map.Entry entry : internalGetTargetColumnCorrelations().getMap().entrySet()) { com.google.protobuf.MapEntry< java.lang.String, com.google.cloud.automl.v1beta1.CorrelationStats> targetColumnCorrelations__ = TargetColumnCorrelationsDefaultEntryHolder.defaultEntry .newBuilderForType() .setKey(entry.getKey()) .setValue(entry.getValue()) .build(); size += com.google.protobuf.CodedOutputStream.computeMessageSize(6, targetColumnCorrelations__); } if (statsUpdateTime_ != null) { size += com.google.protobuf.CodedOutputStream.computeMessageSize(7, getStatsUpdateTime()); } size += unknownFields.getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof com.google.cloud.automl.v1beta1.TablesDatasetMetadata)) { return super.equals(obj); } com.google.cloud.automl.v1beta1.TablesDatasetMetadata other = (com.google.cloud.automl.v1beta1.TablesDatasetMetadata) obj; if (!getPrimaryTableSpecId().equals(other.getPrimaryTableSpecId())) return false; if (!getTargetColumnSpecId().equals(other.getTargetColumnSpecId())) return false; if (!getWeightColumnSpecId().equals(other.getWeightColumnSpecId())) return false; if (!getMlUseColumnSpecId().equals(other.getMlUseColumnSpecId())) return false; if (!internalGetTargetColumnCorrelations().equals(other.internalGetTargetColumnCorrelations())) return false; if (hasStatsUpdateTime() != other.hasStatsUpdateTime()) return false; if (hasStatsUpdateTime()) { if (!getStatsUpdateTime().equals(other.getStatsUpdateTime())) return false; } if (!unknownFields.equals(other.unknownFields)) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); hash = (37 * hash) + PRIMARY_TABLE_SPEC_ID_FIELD_NUMBER; hash = (53 * hash) + getPrimaryTableSpecId().hashCode(); hash = (37 * hash) + TARGET_COLUMN_SPEC_ID_FIELD_NUMBER; hash = (53 * hash) + getTargetColumnSpecId().hashCode(); hash = (37 * hash) + WEIGHT_COLUMN_SPEC_ID_FIELD_NUMBER; hash = (53 * hash) + getWeightColumnSpecId().hashCode(); hash = (37 * hash) + ML_USE_COLUMN_SPEC_ID_FIELD_NUMBER; hash = (53 * hash) + getMlUseColumnSpecId().hashCode(); if (!internalGetTargetColumnCorrelations().getMap().isEmpty()) { hash = (37 * hash) + TARGET_COLUMN_CORRELATIONS_FIELD_NUMBER; hash = (53 * hash) + internalGetTargetColumnCorrelations().hashCode(); } if (hasStatsUpdateTime()) { hash = (37 * hash) + STATS_UPDATE_TIME_FIELD_NUMBER; hash = (53 * hash) + getStatsUpdateTime().hashCode(); } hash = (29 * hash) + unknownFields.hashCode(); memoizedHashCode = hash; return hash; } public static com.google.cloud.automl.v1beta1.TablesDatasetMetadata parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.TablesDatasetMetadata parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.TablesDatasetMetadata parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.TablesDatasetMetadata parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.TablesDatasetMetadata parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.TablesDatasetMetadata parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.TablesDatasetMetadata parseFrom( java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.TablesDatasetMetadata parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.TablesDatasetMetadata parseDelimitedFrom( java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.TablesDatasetMetadata parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.TablesDatasetMetadata parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.TablesDatasetMetadata parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder( com.google.cloud.automl.v1beta1.TablesDatasetMetadata prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * * *
   * Metadata for a dataset used for AutoML Tables.
   * 
* * Protobuf type {@code google.cloud.automl.v1beta1.TablesDatasetMetadata} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:google.cloud.automl.v1beta1.TablesDatasetMetadata) com.google.cloud.automl.v1beta1.TablesDatasetMetadataOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.Tables .internal_static_google_cloud_automl_v1beta1_TablesDatasetMetadata_descriptor; } @SuppressWarnings({"rawtypes"}) protected com.google.protobuf.MapField internalGetMapField(int number) { switch (number) { case 6: return internalGetTargetColumnCorrelations(); default: throw new RuntimeException("Invalid map field number: " + number); } } @SuppressWarnings({"rawtypes"}) protected com.google.protobuf.MapField internalGetMutableMapField(int number) { switch (number) { case 6: return internalGetMutableTargetColumnCorrelations(); default: throw new RuntimeException("Invalid map field number: " + number); } } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.Tables .internal_static_google_cloud_automl_v1beta1_TablesDatasetMetadata_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.TablesDatasetMetadata.class, com.google.cloud.automl.v1beta1.TablesDatasetMetadata.Builder.class); } // Construct using com.google.cloud.automl.v1beta1.TablesDatasetMetadata.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders) {} } @java.lang.Override public Builder clear() { super.clear(); primaryTableSpecId_ = ""; targetColumnSpecId_ = ""; weightColumnSpecId_ = ""; mlUseColumnSpecId_ = ""; internalGetMutableTargetColumnCorrelations().clear(); if (statsUpdateTimeBuilder_ == null) { statsUpdateTime_ = null; } else { statsUpdateTime_ = null; statsUpdateTimeBuilder_ = null; } return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return com.google.cloud.automl.v1beta1.Tables .internal_static_google_cloud_automl_v1beta1_TablesDatasetMetadata_descriptor; } @java.lang.Override public com.google.cloud.automl.v1beta1.TablesDatasetMetadata getDefaultInstanceForType() { return com.google.cloud.automl.v1beta1.TablesDatasetMetadata.getDefaultInstance(); } @java.lang.Override public com.google.cloud.automl.v1beta1.TablesDatasetMetadata build() { com.google.cloud.automl.v1beta1.TablesDatasetMetadata result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public com.google.cloud.automl.v1beta1.TablesDatasetMetadata buildPartial() { com.google.cloud.automl.v1beta1.TablesDatasetMetadata result = new com.google.cloud.automl.v1beta1.TablesDatasetMetadata(this); int from_bitField0_ = bitField0_; result.primaryTableSpecId_ = primaryTableSpecId_; result.targetColumnSpecId_ = targetColumnSpecId_; result.weightColumnSpecId_ = weightColumnSpecId_; result.mlUseColumnSpecId_ = mlUseColumnSpecId_; result.targetColumnCorrelations_ = internalGetTargetColumnCorrelations(); result.targetColumnCorrelations_.makeImmutable(); if (statsUpdateTimeBuilder_ == null) { result.statsUpdateTime_ = statsUpdateTime_; } else { result.statsUpdateTime_ = statsUpdateTimeBuilder_.build(); } onBuilt(); return result; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof com.google.cloud.automl.v1beta1.TablesDatasetMetadata) { return mergeFrom((com.google.cloud.automl.v1beta1.TablesDatasetMetadata) other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(com.google.cloud.automl.v1beta1.TablesDatasetMetadata other) { if (other == com.google.cloud.automl.v1beta1.TablesDatasetMetadata.getDefaultInstance()) return this; if (!other.getPrimaryTableSpecId().isEmpty()) { primaryTableSpecId_ = other.primaryTableSpecId_; onChanged(); } if (!other.getTargetColumnSpecId().isEmpty()) { targetColumnSpecId_ = other.targetColumnSpecId_; onChanged(); } if (!other.getWeightColumnSpecId().isEmpty()) { weightColumnSpecId_ = other.weightColumnSpecId_; onChanged(); } if (!other.getMlUseColumnSpecId().isEmpty()) { mlUseColumnSpecId_ = other.mlUseColumnSpecId_; onChanged(); } internalGetMutableTargetColumnCorrelations() .mergeFrom(other.internalGetTargetColumnCorrelations()); if (other.hasStatsUpdateTime()) { mergeStatsUpdateTime(other.getStatsUpdateTime()); } this.mergeUnknownFields(other.unknownFields); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { com.google.cloud.automl.v1beta1.TablesDatasetMetadata parsedMessage = null; try { parsedMessage = PARSER.parsePartialFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { parsedMessage = (com.google.cloud.automl.v1beta1.TablesDatasetMetadata) e.getUnfinishedMessage(); throw e.unwrapIOException(); } finally { if (parsedMessage != null) { mergeFrom(parsedMessage); } } return this; } private int bitField0_; private java.lang.Object primaryTableSpecId_ = ""; /** * * *
     * Output only. The table_spec_id of the primary table of this dataset.
     * 
* * string primary_table_spec_id = 1; * * @return The primaryTableSpecId. */ public java.lang.String getPrimaryTableSpecId() { java.lang.Object ref = primaryTableSpecId_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); primaryTableSpecId_ = s; return s; } else { return (java.lang.String) ref; } } /** * * *
     * Output only. The table_spec_id of the primary table of this dataset.
     * 
* * string primary_table_spec_id = 1; * * @return The bytes for primaryTableSpecId. */ public com.google.protobuf.ByteString getPrimaryTableSpecIdBytes() { java.lang.Object ref = primaryTableSpecId_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref); primaryTableSpecId_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** * * *
     * Output only. The table_spec_id of the primary table of this dataset.
     * 
* * string primary_table_spec_id = 1; * * @param value The primaryTableSpecId to set. * @return This builder for chaining. */ public Builder setPrimaryTableSpecId(java.lang.String value) { if (value == null) { throw new NullPointerException(); } primaryTableSpecId_ = value; onChanged(); return this; } /** * * *
     * Output only. The table_spec_id of the primary table of this dataset.
     * 
* * string primary_table_spec_id = 1; * * @return This builder for chaining. */ public Builder clearPrimaryTableSpecId() { primaryTableSpecId_ = getDefaultInstance().getPrimaryTableSpecId(); onChanged(); return this; } /** * * *
     * Output only. The table_spec_id of the primary table of this dataset.
     * 
* * string primary_table_spec_id = 1; * * @param value The bytes for primaryTableSpecId to set. * @return This builder for chaining. */ public Builder setPrimaryTableSpecIdBytes(com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } checkByteStringIsUtf8(value); primaryTableSpecId_ = value; onChanged(); return this; } private java.lang.Object targetColumnSpecId_ = ""; /** * * *
     * column_spec_id of the primary table's column that should be used as the
     * training & prediction target.
     * This column must be non-nullable and have one of following data types
     * (otherwise model creation will error):
     * * CATEGORY
     * * FLOAT64
     * If the type is CATEGORY , only up to
     * 100 unique values may exist in that column across all rows.
     * NOTE: Updates of this field will instantly affect any other users
     * concurrently working with the dataset.
     * 
* * string target_column_spec_id = 2; * * @return The targetColumnSpecId. */ public java.lang.String getTargetColumnSpecId() { java.lang.Object ref = targetColumnSpecId_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); targetColumnSpecId_ = s; return s; } else { return (java.lang.String) ref; } } /** * * *
     * column_spec_id of the primary table's column that should be used as the
     * training & prediction target.
     * This column must be non-nullable and have one of following data types
     * (otherwise model creation will error):
     * * CATEGORY
     * * FLOAT64
     * If the type is CATEGORY , only up to
     * 100 unique values may exist in that column across all rows.
     * NOTE: Updates of this field will instantly affect any other users
     * concurrently working with the dataset.
     * 
* * string target_column_spec_id = 2; * * @return The bytes for targetColumnSpecId. */ public com.google.protobuf.ByteString getTargetColumnSpecIdBytes() { java.lang.Object ref = targetColumnSpecId_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref); targetColumnSpecId_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** * * *
     * column_spec_id of the primary table's column that should be used as the
     * training & prediction target.
     * This column must be non-nullable and have one of following data types
     * (otherwise model creation will error):
     * * CATEGORY
     * * FLOAT64
     * If the type is CATEGORY , only up to
     * 100 unique values may exist in that column across all rows.
     * NOTE: Updates of this field will instantly affect any other users
     * concurrently working with the dataset.
     * 
* * string target_column_spec_id = 2; * * @param value The targetColumnSpecId to set. * @return This builder for chaining. */ public Builder setTargetColumnSpecId(java.lang.String value) { if (value == null) { throw new NullPointerException(); } targetColumnSpecId_ = value; onChanged(); return this; } /** * * *
     * column_spec_id of the primary table's column that should be used as the
     * training & prediction target.
     * This column must be non-nullable and have one of following data types
     * (otherwise model creation will error):
     * * CATEGORY
     * * FLOAT64
     * If the type is CATEGORY , only up to
     * 100 unique values may exist in that column across all rows.
     * NOTE: Updates of this field will instantly affect any other users
     * concurrently working with the dataset.
     * 
* * string target_column_spec_id = 2; * * @return This builder for chaining. */ public Builder clearTargetColumnSpecId() { targetColumnSpecId_ = getDefaultInstance().getTargetColumnSpecId(); onChanged(); return this; } /** * * *
     * column_spec_id of the primary table's column that should be used as the
     * training & prediction target.
     * This column must be non-nullable and have one of following data types
     * (otherwise model creation will error):
     * * CATEGORY
     * * FLOAT64
     * If the type is CATEGORY , only up to
     * 100 unique values may exist in that column across all rows.
     * NOTE: Updates of this field will instantly affect any other users
     * concurrently working with the dataset.
     * 
* * string target_column_spec_id = 2; * * @param value The bytes for targetColumnSpecId to set. * @return This builder for chaining. */ public Builder setTargetColumnSpecIdBytes(com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } checkByteStringIsUtf8(value); targetColumnSpecId_ = value; onChanged(); return this; } private java.lang.Object weightColumnSpecId_ = ""; /** * * *
     * column_spec_id of the primary table's column that should be used as the
     * weight column, i.e. the higher the value the more important the row will be
     * during model training.
     * Required type: FLOAT64.
     * Allowed values: 0 to 10000, inclusive on both ends; 0 means the row is
     *                 ignored for training.
     * If not set all rows are assumed to have equal weight of 1.
     * NOTE: Updates of this field will instantly affect any other users
     * concurrently working with the dataset.
     * 
* * string weight_column_spec_id = 3; * * @return The weightColumnSpecId. */ public java.lang.String getWeightColumnSpecId() { java.lang.Object ref = weightColumnSpecId_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); weightColumnSpecId_ = s; return s; } else { return (java.lang.String) ref; } } /** * * *
     * column_spec_id of the primary table's column that should be used as the
     * weight column, i.e. the higher the value the more important the row will be
     * during model training.
     * Required type: FLOAT64.
     * Allowed values: 0 to 10000, inclusive on both ends; 0 means the row is
     *                 ignored for training.
     * If not set all rows are assumed to have equal weight of 1.
     * NOTE: Updates of this field will instantly affect any other users
     * concurrently working with the dataset.
     * 
* * string weight_column_spec_id = 3; * * @return The bytes for weightColumnSpecId. */ public com.google.protobuf.ByteString getWeightColumnSpecIdBytes() { java.lang.Object ref = weightColumnSpecId_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref); weightColumnSpecId_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** * * *
     * column_spec_id of the primary table's column that should be used as the
     * weight column, i.e. the higher the value the more important the row will be
     * during model training.
     * Required type: FLOAT64.
     * Allowed values: 0 to 10000, inclusive on both ends; 0 means the row is
     *                 ignored for training.
     * If not set all rows are assumed to have equal weight of 1.
     * NOTE: Updates of this field will instantly affect any other users
     * concurrently working with the dataset.
     * 
* * string weight_column_spec_id = 3; * * @param value The weightColumnSpecId to set. * @return This builder for chaining. */ public Builder setWeightColumnSpecId(java.lang.String value) { if (value == null) { throw new NullPointerException(); } weightColumnSpecId_ = value; onChanged(); return this; } /** * * *
     * column_spec_id of the primary table's column that should be used as the
     * weight column, i.e. the higher the value the more important the row will be
     * during model training.
     * Required type: FLOAT64.
     * Allowed values: 0 to 10000, inclusive on both ends; 0 means the row is
     *                 ignored for training.
     * If not set all rows are assumed to have equal weight of 1.
     * NOTE: Updates of this field will instantly affect any other users
     * concurrently working with the dataset.
     * 
* * string weight_column_spec_id = 3; * * @return This builder for chaining. */ public Builder clearWeightColumnSpecId() { weightColumnSpecId_ = getDefaultInstance().getWeightColumnSpecId(); onChanged(); return this; } /** * * *
     * column_spec_id of the primary table's column that should be used as the
     * weight column, i.e. the higher the value the more important the row will be
     * during model training.
     * Required type: FLOAT64.
     * Allowed values: 0 to 10000, inclusive on both ends; 0 means the row is
     *                 ignored for training.
     * If not set all rows are assumed to have equal weight of 1.
     * NOTE: Updates of this field will instantly affect any other users
     * concurrently working with the dataset.
     * 
* * string weight_column_spec_id = 3; * * @param value The bytes for weightColumnSpecId to set. * @return This builder for chaining. */ public Builder setWeightColumnSpecIdBytes(com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } checkByteStringIsUtf8(value); weightColumnSpecId_ = value; onChanged(); return this; } private java.lang.Object mlUseColumnSpecId_ = ""; /** * * *
     * column_spec_id of the primary table column which specifies a possible ML
     * use of the row, i.e. the column will be used to split the rows into TRAIN,
     * VALIDATE and TEST sets.
     * Required type: STRING.
     * This column, if set, must either have all of `TRAIN`, `VALIDATE`, `TEST`
     * among its values, or only have `TEST`, `UNASSIGNED` values. In the latter
     * case the rows with `UNASSIGNED` value will be assigned by AutoML. Note
     * that if a given ml use distribution makes it impossible to create a "good"
     * model, that call will error describing the issue.
     * If both this column_spec_id and primary table's time_column_spec_id are not
     * set, then all rows are treated as `UNASSIGNED`.
     * NOTE: Updates of this field will instantly affect any other users
     * concurrently working with the dataset.
     * 
* * string ml_use_column_spec_id = 4; * * @return The mlUseColumnSpecId. */ public java.lang.String getMlUseColumnSpecId() { java.lang.Object ref = mlUseColumnSpecId_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); mlUseColumnSpecId_ = s; return s; } else { return (java.lang.String) ref; } } /** * * *
     * column_spec_id of the primary table column which specifies a possible ML
     * use of the row, i.e. the column will be used to split the rows into TRAIN,
     * VALIDATE and TEST sets.
     * Required type: STRING.
     * This column, if set, must either have all of `TRAIN`, `VALIDATE`, `TEST`
     * among its values, or only have `TEST`, `UNASSIGNED` values. In the latter
     * case the rows with `UNASSIGNED` value will be assigned by AutoML. Note
     * that if a given ml use distribution makes it impossible to create a "good"
     * model, that call will error describing the issue.
     * If both this column_spec_id and primary table's time_column_spec_id are not
     * set, then all rows are treated as `UNASSIGNED`.
     * NOTE: Updates of this field will instantly affect any other users
     * concurrently working with the dataset.
     * 
* * string ml_use_column_spec_id = 4; * * @return The bytes for mlUseColumnSpecId. */ public com.google.protobuf.ByteString getMlUseColumnSpecIdBytes() { java.lang.Object ref = mlUseColumnSpecId_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref); mlUseColumnSpecId_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** * * *
     * column_spec_id of the primary table column which specifies a possible ML
     * use of the row, i.e. the column will be used to split the rows into TRAIN,
     * VALIDATE and TEST sets.
     * Required type: STRING.
     * This column, if set, must either have all of `TRAIN`, `VALIDATE`, `TEST`
     * among its values, or only have `TEST`, `UNASSIGNED` values. In the latter
     * case the rows with `UNASSIGNED` value will be assigned by AutoML. Note
     * that if a given ml use distribution makes it impossible to create a "good"
     * model, that call will error describing the issue.
     * If both this column_spec_id and primary table's time_column_spec_id are not
     * set, then all rows are treated as `UNASSIGNED`.
     * NOTE: Updates of this field will instantly affect any other users
     * concurrently working with the dataset.
     * 
* * string ml_use_column_spec_id = 4; * * @param value The mlUseColumnSpecId to set. * @return This builder for chaining. */ public Builder setMlUseColumnSpecId(java.lang.String value) { if (value == null) { throw new NullPointerException(); } mlUseColumnSpecId_ = value; onChanged(); return this; } /** * * *
     * column_spec_id of the primary table column which specifies a possible ML
     * use of the row, i.e. the column will be used to split the rows into TRAIN,
     * VALIDATE and TEST sets.
     * Required type: STRING.
     * This column, if set, must either have all of `TRAIN`, `VALIDATE`, `TEST`
     * among its values, or only have `TEST`, `UNASSIGNED` values. In the latter
     * case the rows with `UNASSIGNED` value will be assigned by AutoML. Note
     * that if a given ml use distribution makes it impossible to create a "good"
     * model, that call will error describing the issue.
     * If both this column_spec_id and primary table's time_column_spec_id are not
     * set, then all rows are treated as `UNASSIGNED`.
     * NOTE: Updates of this field will instantly affect any other users
     * concurrently working with the dataset.
     * 
* * string ml_use_column_spec_id = 4; * * @return This builder for chaining. */ public Builder clearMlUseColumnSpecId() { mlUseColumnSpecId_ = getDefaultInstance().getMlUseColumnSpecId(); onChanged(); return this; } /** * * *
     * column_spec_id of the primary table column which specifies a possible ML
     * use of the row, i.e. the column will be used to split the rows into TRAIN,
     * VALIDATE and TEST sets.
     * Required type: STRING.
     * This column, if set, must either have all of `TRAIN`, `VALIDATE`, `TEST`
     * among its values, or only have `TEST`, `UNASSIGNED` values. In the latter
     * case the rows with `UNASSIGNED` value will be assigned by AutoML. Note
     * that if a given ml use distribution makes it impossible to create a "good"
     * model, that call will error describing the issue.
     * If both this column_spec_id and primary table's time_column_spec_id are not
     * set, then all rows are treated as `UNASSIGNED`.
     * NOTE: Updates of this field will instantly affect any other users
     * concurrently working with the dataset.
     * 
* * string ml_use_column_spec_id = 4; * * @param value The bytes for mlUseColumnSpecId to set. * @return This builder for chaining. */ public Builder setMlUseColumnSpecIdBytes(com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } checkByteStringIsUtf8(value); mlUseColumnSpecId_ = value; onChanged(); return this; } private com.google.protobuf.MapField< java.lang.String, com.google.cloud.automl.v1beta1.CorrelationStats> targetColumnCorrelations_; private com.google.protobuf.MapField< java.lang.String, com.google.cloud.automl.v1beta1.CorrelationStats> internalGetTargetColumnCorrelations() { if (targetColumnCorrelations_ == null) { return com.google.protobuf.MapField.emptyMapField( TargetColumnCorrelationsDefaultEntryHolder.defaultEntry); } return targetColumnCorrelations_; } private com.google.protobuf.MapField< java.lang.String, com.google.cloud.automl.v1beta1.CorrelationStats> internalGetMutableTargetColumnCorrelations() { onChanged(); ; if (targetColumnCorrelations_ == null) { targetColumnCorrelations_ = com.google.protobuf.MapField.newMapField( TargetColumnCorrelationsDefaultEntryHolder.defaultEntry); } if (!targetColumnCorrelations_.isMutable()) { targetColumnCorrelations_ = targetColumnCorrelations_.copy(); } return targetColumnCorrelations_; } public int getTargetColumnCorrelationsCount() { return internalGetTargetColumnCorrelations().getMap().size(); } /** * * *
     * Output only. Correlations between
     * [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
     * and other columns of the
     * [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
     * Only set if the target column is set. Mapping from other column spec id to
     * its CorrelationStats with the target column.
     * This field may be stale, see the stats_update_time field for
     * for the timestamp at which these stats were last updated.
     * 
* * * map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6; * */ @java.lang.Override public boolean containsTargetColumnCorrelations(java.lang.String key) { if (key == null) { throw new NullPointerException("map key"); } return internalGetTargetColumnCorrelations().getMap().containsKey(key); } /** Use {@link #getTargetColumnCorrelationsMap()} instead. */ @java.lang.Override @java.lang.Deprecated public java.util.Map getTargetColumnCorrelations() { return getTargetColumnCorrelationsMap(); } /** * * *
     * Output only. Correlations between
     * [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
     * and other columns of the
     * [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
     * Only set if the target column is set. Mapping from other column spec id to
     * its CorrelationStats with the target column.
     * This field may be stale, see the stats_update_time field for
     * for the timestamp at which these stats were last updated.
     * 
* * * map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6; * */ @java.lang.Override public java.util.Map getTargetColumnCorrelationsMap() { return internalGetTargetColumnCorrelations().getMap(); } /** * * *
     * Output only. Correlations between
     * [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
     * and other columns of the
     * [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
     * Only set if the target column is set. Mapping from other column spec id to
     * its CorrelationStats with the target column.
     * This field may be stale, see the stats_update_time field for
     * for the timestamp at which these stats were last updated.
     * 
* * * map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6; * */ @java.lang.Override public com.google.cloud.automl.v1beta1.CorrelationStats getTargetColumnCorrelationsOrDefault( java.lang.String key, com.google.cloud.automl.v1beta1.CorrelationStats defaultValue) { if (key == null) { throw new NullPointerException("map key"); } java.util.Map map = internalGetTargetColumnCorrelations().getMap(); return map.containsKey(key) ? map.get(key) : defaultValue; } /** * * *
     * Output only. Correlations between
     * [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
     * and other columns of the
     * [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
     * Only set if the target column is set. Mapping from other column spec id to
     * its CorrelationStats with the target column.
     * This field may be stale, see the stats_update_time field for
     * for the timestamp at which these stats were last updated.
     * 
* * * map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6; * */ @java.lang.Override public com.google.cloud.automl.v1beta1.CorrelationStats getTargetColumnCorrelationsOrThrow( java.lang.String key) { if (key == null) { throw new NullPointerException("map key"); } java.util.Map map = internalGetTargetColumnCorrelations().getMap(); if (!map.containsKey(key)) { throw new java.lang.IllegalArgumentException(); } return map.get(key); } public Builder clearTargetColumnCorrelations() { internalGetMutableTargetColumnCorrelations().getMutableMap().clear(); return this; } /** * * *
     * Output only. Correlations between
     * [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
     * and other columns of the
     * [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
     * Only set if the target column is set. Mapping from other column spec id to
     * its CorrelationStats with the target column.
     * This field may be stale, see the stats_update_time field for
     * for the timestamp at which these stats were last updated.
     * 
* * * map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6; * */ public Builder removeTargetColumnCorrelations(java.lang.String key) { if (key == null) { throw new NullPointerException("map key"); } internalGetMutableTargetColumnCorrelations().getMutableMap().remove(key); return this; } /** Use alternate mutation accessors instead. */ @java.lang.Deprecated public java.util.Map getMutableTargetColumnCorrelations() { return internalGetMutableTargetColumnCorrelations().getMutableMap(); } /** * * *
     * Output only. Correlations between
     * [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
     * and other columns of the
     * [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
     * Only set if the target column is set. Mapping from other column spec id to
     * its CorrelationStats with the target column.
     * This field may be stale, see the stats_update_time field for
     * for the timestamp at which these stats were last updated.
     * 
* * * map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6; * */ public Builder putTargetColumnCorrelations( java.lang.String key, com.google.cloud.automl.v1beta1.CorrelationStats value) { if (key == null) { throw new NullPointerException("map key"); } if (value == null) { throw new NullPointerException("map value"); } internalGetMutableTargetColumnCorrelations().getMutableMap().put(key, value); return this; } /** * * *
     * Output only. Correlations between
     * [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
     * and other columns of the
     * [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
     * Only set if the target column is set. Mapping from other column spec id to
     * its CorrelationStats with the target column.
     * This field may be stale, see the stats_update_time field for
     * for the timestamp at which these stats were last updated.
     * 
* * * map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6; * */ public Builder putAllTargetColumnCorrelations( java.util.Map values) { internalGetMutableTargetColumnCorrelations().getMutableMap().putAll(values); return this; } private com.google.protobuf.Timestamp statsUpdateTime_; private com.google.protobuf.SingleFieldBuilderV3< com.google.protobuf.Timestamp, com.google.protobuf.Timestamp.Builder, com.google.protobuf.TimestampOrBuilder> statsUpdateTimeBuilder_; /** * * *
     * Output only. The most recent timestamp when target_column_correlations
     * field and all descendant ColumnSpec.data_stats and
     * ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
     * changes that happened to the dataset afterwards are not reflected in these
     * fields values. The regeneration happens in the background on a best effort
     * basis.
     * 
* * .google.protobuf.Timestamp stats_update_time = 7; * * @return Whether the statsUpdateTime field is set. */ public boolean hasStatsUpdateTime() { return statsUpdateTimeBuilder_ != null || statsUpdateTime_ != null; } /** * * *
     * Output only. The most recent timestamp when target_column_correlations
     * field and all descendant ColumnSpec.data_stats and
     * ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
     * changes that happened to the dataset afterwards are not reflected in these
     * fields values. The regeneration happens in the background on a best effort
     * basis.
     * 
* * .google.protobuf.Timestamp stats_update_time = 7; * * @return The statsUpdateTime. */ public com.google.protobuf.Timestamp getStatsUpdateTime() { if (statsUpdateTimeBuilder_ == null) { return statsUpdateTime_ == null ? com.google.protobuf.Timestamp.getDefaultInstance() : statsUpdateTime_; } else { return statsUpdateTimeBuilder_.getMessage(); } } /** * * *
     * Output only. The most recent timestamp when target_column_correlations
     * field and all descendant ColumnSpec.data_stats and
     * ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
     * changes that happened to the dataset afterwards are not reflected in these
     * fields values. The regeneration happens in the background on a best effort
     * basis.
     * 
* * .google.protobuf.Timestamp stats_update_time = 7; */ public Builder setStatsUpdateTime(com.google.protobuf.Timestamp value) { if (statsUpdateTimeBuilder_ == null) { if (value == null) { throw new NullPointerException(); } statsUpdateTime_ = value; onChanged(); } else { statsUpdateTimeBuilder_.setMessage(value); } return this; } /** * * *
     * Output only. The most recent timestamp when target_column_correlations
     * field and all descendant ColumnSpec.data_stats and
     * ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
     * changes that happened to the dataset afterwards are not reflected in these
     * fields values. The regeneration happens in the background on a best effort
     * basis.
     * 
* * .google.protobuf.Timestamp stats_update_time = 7; */ public Builder setStatsUpdateTime(com.google.protobuf.Timestamp.Builder builderForValue) { if (statsUpdateTimeBuilder_ == null) { statsUpdateTime_ = builderForValue.build(); onChanged(); } else { statsUpdateTimeBuilder_.setMessage(builderForValue.build()); } return this; } /** * * *
     * Output only. The most recent timestamp when target_column_correlations
     * field and all descendant ColumnSpec.data_stats and
     * ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
     * changes that happened to the dataset afterwards are not reflected in these
     * fields values. The regeneration happens in the background on a best effort
     * basis.
     * 
* * .google.protobuf.Timestamp stats_update_time = 7; */ public Builder mergeStatsUpdateTime(com.google.protobuf.Timestamp value) { if (statsUpdateTimeBuilder_ == null) { if (statsUpdateTime_ != null) { statsUpdateTime_ = com.google.protobuf.Timestamp.newBuilder(statsUpdateTime_) .mergeFrom(value) .buildPartial(); } else { statsUpdateTime_ = value; } onChanged(); } else { statsUpdateTimeBuilder_.mergeFrom(value); } return this; } /** * * *
     * Output only. The most recent timestamp when target_column_correlations
     * field and all descendant ColumnSpec.data_stats and
     * ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
     * changes that happened to the dataset afterwards are not reflected in these
     * fields values. The regeneration happens in the background on a best effort
     * basis.
     * 
* * .google.protobuf.Timestamp stats_update_time = 7; */ public Builder clearStatsUpdateTime() { if (statsUpdateTimeBuilder_ == null) { statsUpdateTime_ = null; onChanged(); } else { statsUpdateTime_ = null; statsUpdateTimeBuilder_ = null; } return this; } /** * * *
     * Output only. The most recent timestamp when target_column_correlations
     * field and all descendant ColumnSpec.data_stats and
     * ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
     * changes that happened to the dataset afterwards are not reflected in these
     * fields values. The regeneration happens in the background on a best effort
     * basis.
     * 
* * .google.protobuf.Timestamp stats_update_time = 7; */ public com.google.protobuf.Timestamp.Builder getStatsUpdateTimeBuilder() { onChanged(); return getStatsUpdateTimeFieldBuilder().getBuilder(); } /** * * *
     * Output only. The most recent timestamp when target_column_correlations
     * field and all descendant ColumnSpec.data_stats and
     * ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
     * changes that happened to the dataset afterwards are not reflected in these
     * fields values. The regeneration happens in the background on a best effort
     * basis.
     * 
* * .google.protobuf.Timestamp stats_update_time = 7; */ public com.google.protobuf.TimestampOrBuilder getStatsUpdateTimeOrBuilder() { if (statsUpdateTimeBuilder_ != null) { return statsUpdateTimeBuilder_.getMessageOrBuilder(); } else { return statsUpdateTime_ == null ? com.google.protobuf.Timestamp.getDefaultInstance() : statsUpdateTime_; } } /** * * *
     * Output only. The most recent timestamp when target_column_correlations
     * field and all descendant ColumnSpec.data_stats and
     * ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
     * changes that happened to the dataset afterwards are not reflected in these
     * fields values. The regeneration happens in the background on a best effort
     * basis.
     * 
* * .google.protobuf.Timestamp stats_update_time = 7; */ private com.google.protobuf.SingleFieldBuilderV3< com.google.protobuf.Timestamp, com.google.protobuf.Timestamp.Builder, com.google.protobuf.TimestampOrBuilder> getStatsUpdateTimeFieldBuilder() { if (statsUpdateTimeBuilder_ == null) { statsUpdateTimeBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< com.google.protobuf.Timestamp, com.google.protobuf.Timestamp.Builder, com.google.protobuf.TimestampOrBuilder>( getStatsUpdateTime(), getParentForChildren(), isClean()); statsUpdateTime_ = null; } return statsUpdateTimeBuilder_; } @java.lang.Override public final Builder setUnknownFields(final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:google.cloud.automl.v1beta1.TablesDatasetMetadata) } // @@protoc_insertion_point(class_scope:google.cloud.automl.v1beta1.TablesDatasetMetadata) private static final com.google.cloud.automl.v1beta1.TablesDatasetMetadata DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new com.google.cloud.automl.v1beta1.TablesDatasetMetadata(); } public static com.google.cloud.automl.v1beta1.TablesDatasetMetadata getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public TablesDatasetMetadata parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return new TablesDatasetMetadata(input, extensionRegistry); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public com.google.cloud.automl.v1beta1.TablesDatasetMetadata getDefaultInstanceForType() { return DEFAULT_INSTANCE; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy