google.cloud.automl.v1beta1.tables.proto Maven / Gradle / Ivy
// Copyright 2020 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax = "proto3";
package google.cloud.automl.v1beta1;
import "google/cloud/automl/v1beta1/classification.proto";
import "google/cloud/automl/v1beta1/column_spec.proto";
import "google/cloud/automl/v1beta1/data_items.proto";
import "google/cloud/automl/v1beta1/data_stats.proto";
import "google/cloud/automl/v1beta1/ranges.proto";
import "google/cloud/automl/v1beta1/regression.proto";
import "google/cloud/automl/v1beta1/temporal.proto";
import "google/protobuf/struct.proto";
import "google/protobuf/timestamp.proto";
import "google/api/annotations.proto";
option go_package = "google.golang.org/genproto/googleapis/cloud/automl/v1beta1;automl";
option java_multiple_files = true;
option java_package = "com.google.cloud.automl.v1beta1";
option php_namespace = "Google\\Cloud\\AutoMl\\V1beta1";
option ruby_package = "Google::Cloud::AutoML::V1beta1";
// Metadata for a dataset used for AutoML Tables.
message TablesDatasetMetadata {
// Output only. The table_spec_id of the primary table of this dataset.
string primary_table_spec_id = 1;
// column_spec_id of the primary table's column that should be used as the
// training & prediction target.
// This column must be non-nullable and have one of following data types
// (otherwise model creation will error):
//
// * CATEGORY
//
// * FLOAT64
//
// If the type is CATEGORY , only up to
// 100 unique values may exist in that column across all rows.
//
// NOTE: Updates of this field will instantly affect any other users
// concurrently working with the dataset.
string target_column_spec_id = 2;
// column_spec_id of the primary table's column that should be used as the
// weight column, i.e. the higher the value the more important the row will be
// during model training.
// Required type: FLOAT64.
// Allowed values: 0 to 10000, inclusive on both ends; 0 means the row is
// ignored for training.
// If not set all rows are assumed to have equal weight of 1.
// NOTE: Updates of this field will instantly affect any other users
// concurrently working with the dataset.
string weight_column_spec_id = 3;
// column_spec_id of the primary table column which specifies a possible ML
// use of the row, i.e. the column will be used to split the rows into TRAIN,
// VALIDATE and TEST sets.
// Required type: STRING.
// This column, if set, must either have all of `TRAIN`, `VALIDATE`, `TEST`
// among its values, or only have `TEST`, `UNASSIGNED` values. In the latter
// case the rows with `UNASSIGNED` value will be assigned by AutoML. Note
// that if a given ml use distribution makes it impossible to create a "good"
// model, that call will error describing the issue.
// If both this column_spec_id and primary table's time_column_spec_id are not
// set, then all rows are treated as `UNASSIGNED`.
// NOTE: Updates of this field will instantly affect any other users
// concurrently working with the dataset.
string ml_use_column_spec_id = 4;
// Output only. Correlations between
//
// [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
// and other columns of the
//
// [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
// Only set if the target column is set. Mapping from other column spec id to
// its CorrelationStats with the target column.
// This field may be stale, see the stats_update_time field for
// for the timestamp at which these stats were last updated.
map target_column_correlations = 6;
// Output only. The most recent timestamp when target_column_correlations
// field and all descendant ColumnSpec.data_stats and
// ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
// changes that happened to the dataset afterwards are not reflected in these
// fields values. The regeneration happens in the background on a best effort
// basis.
google.protobuf.Timestamp stats_update_time = 7;
}
// Model metadata specific to AutoML Tables.
message TablesModelMetadata {
// Additional optimization objective configuration. Required for
// `MAXIMIZE_PRECISION_AT_RECALL` and `MAXIMIZE_RECALL_AT_PRECISION`,
// otherwise unused.
oneof additional_optimization_objective_config {
// Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL".
// Must be between 0 and 1, inclusive.
float optimization_objective_recall_value = 17;
// Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION".
// Must be between 0 and 1, inclusive.
float optimization_objective_precision_value = 18;
}
// Column spec of the dataset's primary table's column the model is
// predicting. Snapshotted when model creation started.
// Only 3 fields are used:
// name - May be set on CreateModel, if it's not then the ColumnSpec
// corresponding to the current target_column_spec_id of the dataset
// the model is trained from is used.
// If neither is set, CreateModel will error.
// display_name - Output only.
// data_type - Output only.
ColumnSpec target_column_spec = 2;
// Column specs of the dataset's primary table's columns, on which
// the model is trained and which are used as the input for predictions.
// The
//
// [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
// as well as, according to dataset's state upon model creation,
//
// [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id],
// and
//
// [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id]
// must never be included here.
//
// Only 3 fields are used:
//
// * name - May be set on CreateModel, if set only the columns specified are
// used, otherwise all primary table's columns (except the ones listed
// above) are used for the training and prediction input.
//
// * display_name - Output only.
//
// * data_type - Output only.
repeated ColumnSpec input_feature_column_specs = 3;
// Objective function the model is optimizing towards. The training process
// creates a model that maximizes/minimizes the value of the objective
// function over the validation set.
//
// The supported optimization objectives depend on the prediction type.
// If the field is not set, a default objective function is used.
//
// CLASSIFICATION_BINARY:
// "MAXIMIZE_AU_ROC" (default) - Maximize the area under the receiver
// operating characteristic (ROC) curve.
// "MINIMIZE_LOG_LOSS" - Minimize log loss.
// "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve.
// "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified
// recall value.
// "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified
// precision value.
//
// CLASSIFICATION_MULTI_CLASS :
// "MINIMIZE_LOG_LOSS" (default) - Minimize log loss.
//
//
// REGRESSION:
// "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE).
// "MINIMIZE_MAE" - Minimize mean-absolute error (MAE).
// "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE).
string optimization_objective = 4;
// Output only. Auxiliary information for each of the
// input_feature_column_specs with respect to this particular model.
repeated TablesModelColumnInfo tables_model_column_info = 5;
// Required. The train budget of creating this model, expressed in milli node
// hours i.e. 1,000 value in this field means 1 node hour.
//
// The training cost of the model will not exceed this budget. The final cost
// will be attempted to be close to the budget, though may end up being (even)
// noticeably smaller - at the backend's discretion. This especially may
// happen when further model training ceases to provide any improvements.
//
// If the budget is set to a value known to be insufficient to train a
// model for the given dataset, the training won't be attempted and
// will error.
//
// The train budget must be between 1,000 and 72,000 milli node hours,
// inclusive.
int64 train_budget_milli_node_hours = 6;
// Output only. The actual training cost of the model, expressed in milli
// node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed
// to not exceed the train budget.
int64 train_cost_milli_node_hours = 7;
// Use the entire training budget. This disables the early stopping feature.
// By default, the early stopping feature is enabled, which means that AutoML
// Tables might stop training before the entire training budget has been used.
bool disable_early_stopping = 12;
}
// Contains annotation details specific to Tables.
message TablesAnnotation {
// Output only. A confidence estimate between 0.0 and 1.0, inclusive. A higher
// value means greater confidence in the returned value.
// For
//
// [target_column_spec][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
// of FLOAT64 data type the score is not populated.
float score = 1;
// Output only. Only populated when
//
// [target_column_spec][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
// has FLOAT64 data type. An interval in which the exactly correct target
// value has 95% chance to be in.
DoubleRange prediction_interval = 4;
// The predicted value of the row's
//
// [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec].
// The value depends on the column's DataType:
//
// * CATEGORY - the predicted (with the above confidence `score`) CATEGORY
// value.
//
// * FLOAT64 - the predicted (with above `prediction_interval`) FLOAT64 value.
google.protobuf.Value value = 2;
// Output only. Auxiliary information for each of the model's
//
// [input_feature_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
// with respect to this particular prediction.
// If no other fields than
//
// [column_spec_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_spec_name]
// and
//
// [column_display_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_display_name]
// would be populated, then this whole field is not.
repeated TablesModelColumnInfo tables_model_column_info = 3;
// Output only. Stores the prediction score for the baseline example, which
// is defined as the example with all values set to their baseline values.
// This is used as part of the Sampled Shapley explanation of the model's
// prediction. This field is populated only when feature importance is
// requested. For regression models, this holds the baseline prediction for
// the baseline example. For classification models, this holds the baseline
// prediction for the baseline example for the argmax class.
float baseline_score = 5;
}
// An information specific to given column and Tables Model, in context
// of the Model and the predictions created by it.
message TablesModelColumnInfo {
// Output only. The name of the ColumnSpec describing the column. Not
// populated when this proto is outputted to BigQuery.
string column_spec_name = 1;
// Output only. The display name of the column (same as the display_name of
// its ColumnSpec).
string column_display_name = 2;
// Output only. When given as part of a Model (always populated):
// Measurement of how much model predictions correctness on the TEST data
// depend on values in this column. A value between 0 and 1, higher means
// higher influence. These values are normalized - for all input feature
// columns of a given model they add to 1.
//
// When given back by Predict (populated iff
// [feature_importance
// param][google.cloud.automl.v1beta1.PredictRequest.params] is set) or Batch
// Predict (populated iff
// [feature_importance][google.cloud.automl.v1beta1.PredictRequest.params]
// param is set):
// Measurement of how impactful for the prediction returned for the given row
// the value in this column was. Specifically, the feature importance
// specifies the marginal contribution that the feature made to the prediction
// score compared to the baseline score. These values are computed using the
// Sampled Shapley method.
float feature_importance = 3;
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy