All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.cloud.automl.v1beta1.BatchPredictOutputConfig Maven / Gradle / Ivy

There is a newer version: 0.142.0
Show newest version
/*
 * Copyright 2020 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: google/cloud/automl/v1beta1/io.proto

package com.google.cloud.automl.v1beta1;

/**
 *
 *
 * 
 * Output configuration for BatchPredict Action.
 * As destination the
 * [gcs_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.gcs_destination]
 * must be set unless specified otherwise for a domain. If gcs_destination is
 * set then in the given directory a new directory is created. Its name
 * will be
 * "prediction-<model-display-name>-<timestamp-of-prediction-call>",
 * where timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format. The contents
 * of it depends on the ML problem the predictions are made for.
 *  *  For Image Classification:
 *         In the created directory files `image_classification_1.jsonl`,
 *         `image_classification_2.jsonl`,...,`image_classification_N.jsonl`
 *         will be created, where N may be 1, and depends on the
 *         total number of the successfully predicted images and annotations.
 *         A single image will be listed only once with all its annotations,
 *         and its annotations will never be split across files.
 *         Each .JSONL file will contain, per line, a JSON representation of a
 *         proto that wraps image's "ID" : "<id_value>" followed by a list of
 *         zero or more AnnotationPayload protos (called annotations), which
 *         have classification detail populated.
 *         If prediction for any image failed (partially or completely), then an
 *         additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl`
 *         files will be created (N depends on total number of failed
 *         predictions). These files will have a JSON representation of a proto
 *         that wraps the same "ID" : "<id_value>" but here followed by
 *         exactly one
 * [`google.rpc.Status`](https:
 * //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
 *         containing only `code` and `message`fields.
 *  *  For Image Object Detection:
 *         In the created directory files `image_object_detection_1.jsonl`,
 *         `image_object_detection_2.jsonl`,...,`image_object_detection_N.jsonl`
 *         will be created, where N may be 1, and depends on the
 *         total number of the successfully predicted images and annotations.
 *         Each .JSONL file will contain, per line, a JSON representation of a
 *         proto that wraps image's "ID" : "<id_value>" followed by a list of
 *         zero or more AnnotationPayload protos (called annotations), which
 *         have image_object_detection detail populated. A single image will
 *         be listed only once with all its annotations, and its annotations
 *         will never be split across files.
 *         If prediction for any image failed (partially or completely), then
 *         additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl`
 *         files will be created (N depends on total number of failed
 *         predictions). These files will have a JSON representation of a proto
 *         that wraps the same "ID" : "<id_value>" but here followed by
 *         exactly one
 * [`google.rpc.Status`](https:
 * //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
 *         containing only `code` and `message`fields.
 *  *  For Video Classification:
 *         In the created directory a video_classification.csv file, and a .JSON
 *         file per each video classification requested in the input (i.e. each
 *         line in given CSV(s)), will be created.
 *         The format of video_classification.csv is:
 * GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
 *         where:
 *         GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1
 *             the prediction input lines (i.e. video_classification.csv has
 *             precisely the same number of lines as the prediction input had.)
 *         JSON_FILE_NAME = Name of .JSON file in the output directory, which
 *             contains prediction responses for the video time segment.
 *         STATUS = "OK" if prediction completed successfully, or an error code
 *             with message otherwise. If STATUS is not "OK" then the .JSON file
 *             for that line may not exist or be empty.
 *         Each .JSON file, assuming STATUS is "OK", will contain a list of
 *         AnnotationPayload protos in JSON format, which are the predictions
 *         for the video time segment the file is assigned to in the
 *         video_classification.csv. All AnnotationPayload protos will have
 *         video_classification field set, and will be sorted by
 *         video_classification.type field (note that the returned types are
 *         governed by `classifaction_types` parameter in
 *         [PredictService.BatchPredictRequest.params][]).
 *  *  For Video Object Tracking:
 *         In the created directory a video_object_tracking.csv file will be
 *         created, and multiple files video_object_trackinng_1.json,
 *         video_object_trackinng_2.json,..., video_object_trackinng_N.json,
 *         where N is the number of requests in the input (i.e. the number of
 *         lines in given CSV(s)).
 *         The format of video_object_tracking.csv is:
 * GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
 *         where:
 *         GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1
 *             the prediction input lines (i.e. video_object_tracking.csv has
 *             precisely the same number of lines as the prediction input had.)
 *         JSON_FILE_NAME = Name of .JSON file in the output directory, which
 *             contains prediction responses for the video time segment.
 *         STATUS = "OK" if prediction completed successfully, or an error
 *             code with message otherwise. If STATUS is not "OK" then the .JSON
 *             file for that line may not exist or be empty.
 *         Each .JSON file, assuming STATUS is "OK", will contain a list of
 *         AnnotationPayload protos in JSON format, which are the predictions
 *         for each frame of the video time segment the file is assigned to in
 *         video_object_tracking.csv. All AnnotationPayload protos will have
 *         video_object_tracking field set.
 *  *  For Text Classification:
 *         In the created directory files `text_classification_1.jsonl`,
 *         `text_classification_2.jsonl`,...,`text_classification_N.jsonl`
 *         will be created, where N may be 1, and depends on the
 *         total number of inputs and annotations found.
 *         Each .JSONL file will contain, per line, a JSON representation of a
 *         proto that wraps input text snippet or input text file and a list of
 *         zero or more AnnotationPayload protos (called annotations), which
 *         have classification detail populated. A single text snippet or file
 *         will be listed only once with all its annotations, and its
 *         annotations will never be split across files.
 *         If prediction for any text snippet or file failed (partially or
 *         completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,...,
 *         `errors_N.jsonl` files will be created (N depends on total number of
 *         failed predictions). These files will have a JSON representation of a
 *         proto that wraps input text snippet or input text file followed by
 *         exactly one
 * [`google.rpc.Status`](https:
 * //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
 *         containing only `code` and `message`.
 *  *  For Text Sentiment:
 *         In the created directory files `text_sentiment_1.jsonl`,
 *         `text_sentiment_2.jsonl`,...,`text_sentiment_N.jsonl`
 *         will be created, where N may be 1, and depends on the
 *         total number of inputs and annotations found.
 *         Each .JSONL file will contain, per line, a JSON representation of a
 *         proto that wraps input text snippet or input text file and a list of
 *         zero or more AnnotationPayload protos (called annotations), which
 *         have text_sentiment detail populated. A single text snippet or file
 *         will be listed only once with all its annotations, and its
 *         annotations will never be split across files.
 *         If prediction for any text snippet or file failed (partially or
 *         completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,...,
 *         `errors_N.jsonl` files will be created (N depends on total number of
 *         failed predictions). These files will have a JSON representation of a
 *         proto that wraps input text snippet or input text file followed by
 *         exactly one
 * [`google.rpc.Status`](https:
 * //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
 *         containing only `code` and `message`.
 *   *  For Text Extraction:
 *         In the created directory files `text_extraction_1.jsonl`,
 *         `text_extraction_2.jsonl`,...,`text_extraction_N.jsonl`
 *         will be created, where N may be 1, and depends on the
 *         total number of inputs and annotations found.
 *         The contents of these .JSONL file(s) depend on whether the input
 *         used inline text, or documents.
 *         If input was inline, then each .JSONL file will contain, per line,
 *           a JSON representation of a proto that wraps given in request text
 *           snippet's "id" (if specified), followed by input text snippet,
 *           and a list of zero or more
 *           AnnotationPayload protos (called annotations), which have
 *           text_extraction detail populated. A single text snippet will be
 *           listed only once with all its annotations, and its annotations will
 *           never be split across files.
 *         If input used documents, then each .JSONL file will contain, per
 *           line, a JSON representation of a proto that wraps given in request
 *           document proto, followed by its OCR-ed representation in the form
 *           of a text snippet, finally followed by a list of zero or more
 *           AnnotationPayload protos (called annotations), which have
 *           text_extraction detail populated and refer, via their indices, to
 *           the OCR-ed text snippet. A single document (and its text snippet)
 *           will be listed only once with all its annotations, and its
 *           annotations will never be split across files.
 *         If prediction for any text snippet failed (partially or completely),
 *         then additional `errors_1.jsonl`, `errors_2.jsonl`,...,
 *         `errors_N.jsonl` files will be created (N depends on total number of
 *         failed predictions). These files will have a JSON representation of a
 *         proto that wraps either the "id" : "<id_value>" (in case of inline)
 *         or the document proto (in case of document) but here followed by
 *         exactly one
 * [`google.rpc.Status`](https:
 * //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
 *         containing only `code` and `message`.
 *  *  For Tables:
 *         Output depends on whether
 * [gcs_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.gcs_destination]
 *         or
 * [bigquery_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.bigquery_destination]
 *         is set (either is allowed).
 *         GCS case:
 *           In the created directory files `tables_1.csv`, `tables_2.csv`,...,
 *           `tables_N.csv` will be created, where N may be 1, and depends on
 *           the total number of the successfully predicted rows.
 *           For all CLASSIFICATION
 * [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:
 *             Each .csv file will contain a header, listing all columns'
 * [display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]
 *             given on input followed by M target column names in the format of
 * "<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
 * [display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>_<target
 *             value>_score" where M is the number of distinct target values,
 *             i.e. number of distinct values in the target column of the table
 *             used to train the model. Subsequent lines will contain the
 *             respective values of successfully predicted rows, with the last,
 *             i.e. the target, columns having the corresponding prediction
 *             [scores][google.cloud.automl.v1beta1.TablesAnnotation.score].
 *           For REGRESSION and FORECASTING
 * [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:
 *             Each .csv file will contain a header, listing all columns'
 *             [display_name-s][google.cloud.automl.v1beta1.display_name] given
 *             on input followed by the predicted target column with name in the
 *             format of
 * "predicted_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
 * [display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>"
 *             Subsequent lines will contain the respective values of
 *             successfully predicted rows, with the last, i.e. the target,
 *             column having the predicted target value.
 *             If prediction for any rows failed, then an additional
 *             `errors_1.csv`, `errors_2.csv`,..., `errors_N.csv` will be
 *             created (N depends on total number of failed rows). These files
 *             will have analogous format as `tables_*.csv`, but always with a
 *             single target column having
 * [`google.rpc.Status`](https:
 * //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
 *             represented as a JSON string, and containing only `code` and
 *             `message`.
 *         BigQuery case:
 * [bigquery_destination][google.cloud.automl.v1beta1.OutputConfig.bigquery_destination]
 *           pointing to a BigQuery project must be set. In the given project a
 *           new dataset will be created with name
 *           `prediction_<model-display-name>_<timestamp-of-prediction-call>`
 *           where <model-display-name> will be made
 *           BigQuery-dataset-name compatible (e.g. most special characters will
 *           become underscores), and timestamp will be in
 *           YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In the dataset
 *           two tables will be created, `predictions`, and `errors`.
 *           The `predictions` table's column names will be the input columns'
 * [display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]
 *           followed by the target column with name in the format of
 * "predicted_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
 * [display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>"
 *           The input feature columns will contain the respective values of
 *           successfully predicted rows, with the target column having an
 *           ARRAY of
 * [AnnotationPayloads][google.cloud.automl.v1beta1.AnnotationPayload],
 *           represented as STRUCT-s, containing
 *           [TablesAnnotation][google.cloud.automl.v1beta1.TablesAnnotation].
 *           The `errors` table contains rows for which the prediction has
 *           failed, it has analogous input columns while the target column name
 *           is in the format of
 * "errors_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
 * [display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>",
 *           and as a value has
 * [`google.rpc.Status`](https:
 * //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
 *           represented as a STRUCT, and containing only `code` and `message`.
 * 
* * Protobuf type {@code google.cloud.automl.v1beta1.BatchPredictOutputConfig} */ public final class BatchPredictOutputConfig extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:google.cloud.automl.v1beta1.BatchPredictOutputConfig) BatchPredictOutputConfigOrBuilder { private static final long serialVersionUID = 0L; // Use BatchPredictOutputConfig.newBuilder() to construct. private BatchPredictOutputConfig(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private BatchPredictOutputConfig() {} @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance(UnusedPrivateParameter unused) { return new BatchPredictOutputConfig(); } @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.Io .internal_static_google_cloud_automl_v1beta1_BatchPredictOutputConfig_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.Io .internal_static_google_cloud_automl_v1beta1_BatchPredictOutputConfig_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.BatchPredictOutputConfig.class, com.google.cloud.automl.v1beta1.BatchPredictOutputConfig.Builder.class); } private int destinationCase_ = 0; private java.lang.Object destination_; public enum DestinationCase implements com.google.protobuf.Internal.EnumLite, com.google.protobuf.AbstractMessage.InternalOneOfEnum { GCS_DESTINATION(1), BIGQUERY_DESTINATION(2), DESTINATION_NOT_SET(0); private final int value; private DestinationCase(int value) { this.value = value; } /** * @param value The number of the enum to look for. * @return The enum associated with the given number. * @deprecated Use {@link #forNumber(int)} instead. */ @java.lang.Deprecated public static DestinationCase valueOf(int value) { return forNumber(value); } public static DestinationCase forNumber(int value) { switch (value) { case 1: return GCS_DESTINATION; case 2: return BIGQUERY_DESTINATION; case 0: return DESTINATION_NOT_SET; default: return null; } } public int getNumber() { return this.value; } }; public DestinationCase getDestinationCase() { return DestinationCase.forNumber(destinationCase_); } public static final int GCS_DESTINATION_FIELD_NUMBER = 1; /** * * *
   * The Google Cloud Storage location of the directory where the output is to
   * be written to.
   * 
* * .google.cloud.automl.v1beta1.GcsDestination gcs_destination = 1; * * @return Whether the gcsDestination field is set. */ @java.lang.Override public boolean hasGcsDestination() { return destinationCase_ == 1; } /** * * *
   * The Google Cloud Storage location of the directory where the output is to
   * be written to.
   * 
* * .google.cloud.automl.v1beta1.GcsDestination gcs_destination = 1; * * @return The gcsDestination. */ @java.lang.Override public com.google.cloud.automl.v1beta1.GcsDestination getGcsDestination() { if (destinationCase_ == 1) { return (com.google.cloud.automl.v1beta1.GcsDestination) destination_; } return com.google.cloud.automl.v1beta1.GcsDestination.getDefaultInstance(); } /** * * *
   * The Google Cloud Storage location of the directory where the output is to
   * be written to.
   * 
* * .google.cloud.automl.v1beta1.GcsDestination gcs_destination = 1; */ @java.lang.Override public com.google.cloud.automl.v1beta1.GcsDestinationOrBuilder getGcsDestinationOrBuilder() { if (destinationCase_ == 1) { return (com.google.cloud.automl.v1beta1.GcsDestination) destination_; } return com.google.cloud.automl.v1beta1.GcsDestination.getDefaultInstance(); } public static final int BIGQUERY_DESTINATION_FIELD_NUMBER = 2; /** * * *
   * The BigQuery location where the output is to be written to.
   * 
* * .google.cloud.automl.v1beta1.BigQueryDestination bigquery_destination = 2; * * @return Whether the bigqueryDestination field is set. */ @java.lang.Override public boolean hasBigqueryDestination() { return destinationCase_ == 2; } /** * * *
   * The BigQuery location where the output is to be written to.
   * 
* * .google.cloud.automl.v1beta1.BigQueryDestination bigquery_destination = 2; * * @return The bigqueryDestination. */ @java.lang.Override public com.google.cloud.automl.v1beta1.BigQueryDestination getBigqueryDestination() { if (destinationCase_ == 2) { return (com.google.cloud.automl.v1beta1.BigQueryDestination) destination_; } return com.google.cloud.automl.v1beta1.BigQueryDestination.getDefaultInstance(); } /** * * *
   * The BigQuery location where the output is to be written to.
   * 
* * .google.cloud.automl.v1beta1.BigQueryDestination bigquery_destination = 2; */ @java.lang.Override public com.google.cloud.automl.v1beta1.BigQueryDestinationOrBuilder getBigqueryDestinationOrBuilder() { if (destinationCase_ == 2) { return (com.google.cloud.automl.v1beta1.BigQueryDestination) destination_; } return com.google.cloud.automl.v1beta1.BigQueryDestination.getDefaultInstance(); } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (destinationCase_ == 1) { output.writeMessage(1, (com.google.cloud.automl.v1beta1.GcsDestination) destination_); } if (destinationCase_ == 2) { output.writeMessage(2, (com.google.cloud.automl.v1beta1.BigQueryDestination) destination_); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (destinationCase_ == 1) { size += com.google.protobuf.CodedOutputStream.computeMessageSize( 1, (com.google.cloud.automl.v1beta1.GcsDestination) destination_); } if (destinationCase_ == 2) { size += com.google.protobuf.CodedOutputStream.computeMessageSize( 2, (com.google.cloud.automl.v1beta1.BigQueryDestination) destination_); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof com.google.cloud.automl.v1beta1.BatchPredictOutputConfig)) { return super.equals(obj); } com.google.cloud.automl.v1beta1.BatchPredictOutputConfig other = (com.google.cloud.automl.v1beta1.BatchPredictOutputConfig) obj; if (!getDestinationCase().equals(other.getDestinationCase())) return false; switch (destinationCase_) { case 1: if (!getGcsDestination().equals(other.getGcsDestination())) return false; break; case 2: if (!getBigqueryDestination().equals(other.getBigqueryDestination())) return false; break; case 0: default: } if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); switch (destinationCase_) { case 1: hash = (37 * hash) + GCS_DESTINATION_FIELD_NUMBER; hash = (53 * hash) + getGcsDestination().hashCode(); break; case 2: hash = (37 * hash) + BIGQUERY_DESTINATION_FIELD_NUMBER; hash = (53 * hash) + getBigqueryDestination().hashCode(); break; case 0: default: } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static com.google.cloud.automl.v1beta1.BatchPredictOutputConfig parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.BatchPredictOutputConfig parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.BatchPredictOutputConfig parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.BatchPredictOutputConfig parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.BatchPredictOutputConfig parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.BatchPredictOutputConfig parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.BatchPredictOutputConfig parseFrom( java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.BatchPredictOutputConfig parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.BatchPredictOutputConfig parseDelimitedFrom( java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.BatchPredictOutputConfig parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.BatchPredictOutputConfig parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.BatchPredictOutputConfig parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder( com.google.cloud.automl.v1beta1.BatchPredictOutputConfig prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * * *
   * Output configuration for BatchPredict Action.
   * As destination the
   * [gcs_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.gcs_destination]
   * must be set unless specified otherwise for a domain. If gcs_destination is
   * set then in the given directory a new directory is created. Its name
   * will be
   * "prediction-<model-display-name>-<timestamp-of-prediction-call>",
   * where timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format. The contents
   * of it depends on the ML problem the predictions are made for.
   *  *  For Image Classification:
   *         In the created directory files `image_classification_1.jsonl`,
   *         `image_classification_2.jsonl`,...,`image_classification_N.jsonl`
   *         will be created, where N may be 1, and depends on the
   *         total number of the successfully predicted images and annotations.
   *         A single image will be listed only once with all its annotations,
   *         and its annotations will never be split across files.
   *         Each .JSONL file will contain, per line, a JSON representation of a
   *         proto that wraps image's "ID" : "<id_value>" followed by a list of
   *         zero or more AnnotationPayload protos (called annotations), which
   *         have classification detail populated.
   *         If prediction for any image failed (partially or completely), then an
   *         additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl`
   *         files will be created (N depends on total number of failed
   *         predictions). These files will have a JSON representation of a proto
   *         that wraps the same "ID" : "<id_value>" but here followed by
   *         exactly one
   * [`google.rpc.Status`](https:
   * //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
   *         containing only `code` and `message`fields.
   *  *  For Image Object Detection:
   *         In the created directory files `image_object_detection_1.jsonl`,
   *         `image_object_detection_2.jsonl`,...,`image_object_detection_N.jsonl`
   *         will be created, where N may be 1, and depends on the
   *         total number of the successfully predicted images and annotations.
   *         Each .JSONL file will contain, per line, a JSON representation of a
   *         proto that wraps image's "ID" : "<id_value>" followed by a list of
   *         zero or more AnnotationPayload protos (called annotations), which
   *         have image_object_detection detail populated. A single image will
   *         be listed only once with all its annotations, and its annotations
   *         will never be split across files.
   *         If prediction for any image failed (partially or completely), then
   *         additional `errors_1.jsonl`, `errors_2.jsonl`,..., `errors_N.jsonl`
   *         files will be created (N depends on total number of failed
   *         predictions). These files will have a JSON representation of a proto
   *         that wraps the same "ID" : "<id_value>" but here followed by
   *         exactly one
   * [`google.rpc.Status`](https:
   * //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
   *         containing only `code` and `message`fields.
   *  *  For Video Classification:
   *         In the created directory a video_classification.csv file, and a .JSON
   *         file per each video classification requested in the input (i.e. each
   *         line in given CSV(s)), will be created.
   *         The format of video_classification.csv is:
   * GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
   *         where:
   *         GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1
   *             the prediction input lines (i.e. video_classification.csv has
   *             precisely the same number of lines as the prediction input had.)
   *         JSON_FILE_NAME = Name of .JSON file in the output directory, which
   *             contains prediction responses for the video time segment.
   *         STATUS = "OK" if prediction completed successfully, or an error code
   *             with message otherwise. If STATUS is not "OK" then the .JSON file
   *             for that line may not exist or be empty.
   *         Each .JSON file, assuming STATUS is "OK", will contain a list of
   *         AnnotationPayload protos in JSON format, which are the predictions
   *         for the video time segment the file is assigned to in the
   *         video_classification.csv. All AnnotationPayload protos will have
   *         video_classification field set, and will be sorted by
   *         video_classification.type field (note that the returned types are
   *         governed by `classifaction_types` parameter in
   *         [PredictService.BatchPredictRequest.params][]).
   *  *  For Video Object Tracking:
   *         In the created directory a video_object_tracking.csv file will be
   *         created, and multiple files video_object_trackinng_1.json,
   *         video_object_trackinng_2.json,..., video_object_trackinng_N.json,
   *         where N is the number of requests in the input (i.e. the number of
   *         lines in given CSV(s)).
   *         The format of video_object_tracking.csv is:
   * GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
   *         where:
   *         GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1
   *             the prediction input lines (i.e. video_object_tracking.csv has
   *             precisely the same number of lines as the prediction input had.)
   *         JSON_FILE_NAME = Name of .JSON file in the output directory, which
   *             contains prediction responses for the video time segment.
   *         STATUS = "OK" if prediction completed successfully, or an error
   *             code with message otherwise. If STATUS is not "OK" then the .JSON
   *             file for that line may not exist or be empty.
   *         Each .JSON file, assuming STATUS is "OK", will contain a list of
   *         AnnotationPayload protos in JSON format, which are the predictions
   *         for each frame of the video time segment the file is assigned to in
   *         video_object_tracking.csv. All AnnotationPayload protos will have
   *         video_object_tracking field set.
   *  *  For Text Classification:
   *         In the created directory files `text_classification_1.jsonl`,
   *         `text_classification_2.jsonl`,...,`text_classification_N.jsonl`
   *         will be created, where N may be 1, and depends on the
   *         total number of inputs and annotations found.
   *         Each .JSONL file will contain, per line, a JSON representation of a
   *         proto that wraps input text snippet or input text file and a list of
   *         zero or more AnnotationPayload protos (called annotations), which
   *         have classification detail populated. A single text snippet or file
   *         will be listed only once with all its annotations, and its
   *         annotations will never be split across files.
   *         If prediction for any text snippet or file failed (partially or
   *         completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,...,
   *         `errors_N.jsonl` files will be created (N depends on total number of
   *         failed predictions). These files will have a JSON representation of a
   *         proto that wraps input text snippet or input text file followed by
   *         exactly one
   * [`google.rpc.Status`](https:
   * //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
   *         containing only `code` and `message`.
   *  *  For Text Sentiment:
   *         In the created directory files `text_sentiment_1.jsonl`,
   *         `text_sentiment_2.jsonl`,...,`text_sentiment_N.jsonl`
   *         will be created, where N may be 1, and depends on the
   *         total number of inputs and annotations found.
   *         Each .JSONL file will contain, per line, a JSON representation of a
   *         proto that wraps input text snippet or input text file and a list of
   *         zero or more AnnotationPayload protos (called annotations), which
   *         have text_sentiment detail populated. A single text snippet or file
   *         will be listed only once with all its annotations, and its
   *         annotations will never be split across files.
   *         If prediction for any text snippet or file failed (partially or
   *         completely), then additional `errors_1.jsonl`, `errors_2.jsonl`,...,
   *         `errors_N.jsonl` files will be created (N depends on total number of
   *         failed predictions). These files will have a JSON representation of a
   *         proto that wraps input text snippet or input text file followed by
   *         exactly one
   * [`google.rpc.Status`](https:
   * //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
   *         containing only `code` and `message`.
   *   *  For Text Extraction:
   *         In the created directory files `text_extraction_1.jsonl`,
   *         `text_extraction_2.jsonl`,...,`text_extraction_N.jsonl`
   *         will be created, where N may be 1, and depends on the
   *         total number of inputs and annotations found.
   *         The contents of these .JSONL file(s) depend on whether the input
   *         used inline text, or documents.
   *         If input was inline, then each .JSONL file will contain, per line,
   *           a JSON representation of a proto that wraps given in request text
   *           snippet's "id" (if specified), followed by input text snippet,
   *           and a list of zero or more
   *           AnnotationPayload protos (called annotations), which have
   *           text_extraction detail populated. A single text snippet will be
   *           listed only once with all its annotations, and its annotations will
   *           never be split across files.
   *         If input used documents, then each .JSONL file will contain, per
   *           line, a JSON representation of a proto that wraps given in request
   *           document proto, followed by its OCR-ed representation in the form
   *           of a text snippet, finally followed by a list of zero or more
   *           AnnotationPayload protos (called annotations), which have
   *           text_extraction detail populated and refer, via their indices, to
   *           the OCR-ed text snippet. A single document (and its text snippet)
   *           will be listed only once with all its annotations, and its
   *           annotations will never be split across files.
   *         If prediction for any text snippet failed (partially or completely),
   *         then additional `errors_1.jsonl`, `errors_2.jsonl`,...,
   *         `errors_N.jsonl` files will be created (N depends on total number of
   *         failed predictions). These files will have a JSON representation of a
   *         proto that wraps either the "id" : "<id_value>" (in case of inline)
   *         or the document proto (in case of document) but here followed by
   *         exactly one
   * [`google.rpc.Status`](https:
   * //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
   *         containing only `code` and `message`.
   *  *  For Tables:
   *         Output depends on whether
   * [gcs_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.gcs_destination]
   *         or
   * [bigquery_destination][google.cloud.automl.v1beta1.BatchPredictOutputConfig.bigquery_destination]
   *         is set (either is allowed).
   *         GCS case:
   *           In the created directory files `tables_1.csv`, `tables_2.csv`,...,
   *           `tables_N.csv` will be created, where N may be 1, and depends on
   *           the total number of the successfully predicted rows.
   *           For all CLASSIFICATION
   * [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:
   *             Each .csv file will contain a header, listing all columns'
   * [display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]
   *             given on input followed by M target column names in the format of
   * "<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
   * [display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>_<target
   *             value>_score" where M is the number of distinct target values,
   *             i.e. number of distinct values in the target column of the table
   *             used to train the model. Subsequent lines will contain the
   *             respective values of successfully predicted rows, with the last,
   *             i.e. the target, columns having the corresponding prediction
   *             [scores][google.cloud.automl.v1beta1.TablesAnnotation.score].
   *           For REGRESSION and FORECASTING
   * [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]:
   *             Each .csv file will contain a header, listing all columns'
   *             [display_name-s][google.cloud.automl.v1beta1.display_name] given
   *             on input followed by the predicted target column with name in the
   *             format of
   * "predicted_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
   * [display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>"
   *             Subsequent lines will contain the respective values of
   *             successfully predicted rows, with the last, i.e. the target,
   *             column having the predicted target value.
   *             If prediction for any rows failed, then an additional
   *             `errors_1.csv`, `errors_2.csv`,..., `errors_N.csv` will be
   *             created (N depends on total number of failed rows). These files
   *             will have analogous format as `tables_*.csv`, but always with a
   *             single target column having
   * [`google.rpc.Status`](https:
   * //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
   *             represented as a JSON string, and containing only `code` and
   *             `message`.
   *         BigQuery case:
   * [bigquery_destination][google.cloud.automl.v1beta1.OutputConfig.bigquery_destination]
   *           pointing to a BigQuery project must be set. In the given project a
   *           new dataset will be created with name
   *           `prediction_<model-display-name>_<timestamp-of-prediction-call>`
   *           where <model-display-name> will be made
   *           BigQuery-dataset-name compatible (e.g. most special characters will
   *           become underscores), and timestamp will be in
   *           YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In the dataset
   *           two tables will be created, `predictions`, and `errors`.
   *           The `predictions` table's column names will be the input columns'
   * [display_name-s][google.cloud.automl.v1beta1.ColumnSpec.display_name]
   *           followed by the target column with name in the format of
   * "predicted_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
   * [display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>"
   *           The input feature columns will contain the respective values of
   *           successfully predicted rows, with the target column having an
   *           ARRAY of
   * [AnnotationPayloads][google.cloud.automl.v1beta1.AnnotationPayload],
   *           represented as STRUCT-s, containing
   *           [TablesAnnotation][google.cloud.automl.v1beta1.TablesAnnotation].
   *           The `errors` table contains rows for which the prediction has
   *           failed, it has analogous input columns while the target column name
   *           is in the format of
   * "errors_<[target_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
   * [display_name][google.cloud.automl.v1beta1.ColumnSpec.display_name]>",
   *           and as a value has
   * [`google.rpc.Status`](https:
   * //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
   *           represented as a STRUCT, and containing only `code` and `message`.
   * 
* * Protobuf type {@code google.cloud.automl.v1beta1.BatchPredictOutputConfig} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:google.cloud.automl.v1beta1.BatchPredictOutputConfig) com.google.cloud.automl.v1beta1.BatchPredictOutputConfigOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.Io .internal_static_google_cloud_automl_v1beta1_BatchPredictOutputConfig_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.Io .internal_static_google_cloud_automl_v1beta1_BatchPredictOutputConfig_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.BatchPredictOutputConfig.class, com.google.cloud.automl.v1beta1.BatchPredictOutputConfig.Builder.class); } // Construct using com.google.cloud.automl.v1beta1.BatchPredictOutputConfig.newBuilder() private Builder() {} private Builder(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); } @java.lang.Override public Builder clear() { super.clear(); if (gcsDestinationBuilder_ != null) { gcsDestinationBuilder_.clear(); } if (bigqueryDestinationBuilder_ != null) { bigqueryDestinationBuilder_.clear(); } destinationCase_ = 0; destination_ = null; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return com.google.cloud.automl.v1beta1.Io .internal_static_google_cloud_automl_v1beta1_BatchPredictOutputConfig_descriptor; } @java.lang.Override public com.google.cloud.automl.v1beta1.BatchPredictOutputConfig getDefaultInstanceForType() { return com.google.cloud.automl.v1beta1.BatchPredictOutputConfig.getDefaultInstance(); } @java.lang.Override public com.google.cloud.automl.v1beta1.BatchPredictOutputConfig build() { com.google.cloud.automl.v1beta1.BatchPredictOutputConfig result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public com.google.cloud.automl.v1beta1.BatchPredictOutputConfig buildPartial() { com.google.cloud.automl.v1beta1.BatchPredictOutputConfig result = new com.google.cloud.automl.v1beta1.BatchPredictOutputConfig(this); if (destinationCase_ == 1) { if (gcsDestinationBuilder_ == null) { result.destination_ = destination_; } else { result.destination_ = gcsDestinationBuilder_.build(); } } if (destinationCase_ == 2) { if (bigqueryDestinationBuilder_ == null) { result.destination_ = destination_; } else { result.destination_ = bigqueryDestinationBuilder_.build(); } } result.destinationCase_ = destinationCase_; onBuilt(); return result; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof com.google.cloud.automl.v1beta1.BatchPredictOutputConfig) { return mergeFrom((com.google.cloud.automl.v1beta1.BatchPredictOutputConfig) other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(com.google.cloud.automl.v1beta1.BatchPredictOutputConfig other) { if (other == com.google.cloud.automl.v1beta1.BatchPredictOutputConfig.getDefaultInstance()) return this; switch (other.getDestinationCase()) { case GCS_DESTINATION: { mergeGcsDestination(other.getGcsDestination()); break; } case BIGQUERY_DESTINATION: { mergeBigqueryDestination(other.getBigqueryDestination()); break; } case DESTINATION_NOT_SET: { break; } } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { input.readMessage(getGcsDestinationFieldBuilder().getBuilder(), extensionRegistry); destinationCase_ = 1; break; } // case 10 case 18: { input.readMessage( getBigqueryDestinationFieldBuilder().getBuilder(), extensionRegistry); destinationCase_ = 2; break; } // case 18 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int destinationCase_ = 0; private java.lang.Object destination_; public DestinationCase getDestinationCase() { return DestinationCase.forNumber(destinationCase_); } public Builder clearDestination() { destinationCase_ = 0; destination_ = null; onChanged(); return this; } private com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.GcsDestination, com.google.cloud.automl.v1beta1.GcsDestination.Builder, com.google.cloud.automl.v1beta1.GcsDestinationOrBuilder> gcsDestinationBuilder_; /** * * *
     * The Google Cloud Storage location of the directory where the output is to
     * be written to.
     * 
* * .google.cloud.automl.v1beta1.GcsDestination gcs_destination = 1; * * @return Whether the gcsDestination field is set. */ @java.lang.Override public boolean hasGcsDestination() { return destinationCase_ == 1; } /** * * *
     * The Google Cloud Storage location of the directory where the output is to
     * be written to.
     * 
* * .google.cloud.automl.v1beta1.GcsDestination gcs_destination = 1; * * @return The gcsDestination. */ @java.lang.Override public com.google.cloud.automl.v1beta1.GcsDestination getGcsDestination() { if (gcsDestinationBuilder_ == null) { if (destinationCase_ == 1) { return (com.google.cloud.automl.v1beta1.GcsDestination) destination_; } return com.google.cloud.automl.v1beta1.GcsDestination.getDefaultInstance(); } else { if (destinationCase_ == 1) { return gcsDestinationBuilder_.getMessage(); } return com.google.cloud.automl.v1beta1.GcsDestination.getDefaultInstance(); } } /** * * *
     * The Google Cloud Storage location of the directory where the output is to
     * be written to.
     * 
* * .google.cloud.automl.v1beta1.GcsDestination gcs_destination = 1; */ public Builder setGcsDestination(com.google.cloud.automl.v1beta1.GcsDestination value) { if (gcsDestinationBuilder_ == null) { if (value == null) { throw new NullPointerException(); } destination_ = value; onChanged(); } else { gcsDestinationBuilder_.setMessage(value); } destinationCase_ = 1; return this; } /** * * *
     * The Google Cloud Storage location of the directory where the output is to
     * be written to.
     * 
* * .google.cloud.automl.v1beta1.GcsDestination gcs_destination = 1; */ public Builder setGcsDestination( com.google.cloud.automl.v1beta1.GcsDestination.Builder builderForValue) { if (gcsDestinationBuilder_ == null) { destination_ = builderForValue.build(); onChanged(); } else { gcsDestinationBuilder_.setMessage(builderForValue.build()); } destinationCase_ = 1; return this; } /** * * *
     * The Google Cloud Storage location of the directory where the output is to
     * be written to.
     * 
* * .google.cloud.automl.v1beta1.GcsDestination gcs_destination = 1; */ public Builder mergeGcsDestination(com.google.cloud.automl.v1beta1.GcsDestination value) { if (gcsDestinationBuilder_ == null) { if (destinationCase_ == 1 && destination_ != com.google.cloud.automl.v1beta1.GcsDestination.getDefaultInstance()) { destination_ = com.google.cloud.automl.v1beta1.GcsDestination.newBuilder( (com.google.cloud.automl.v1beta1.GcsDestination) destination_) .mergeFrom(value) .buildPartial(); } else { destination_ = value; } onChanged(); } else { if (destinationCase_ == 1) { gcsDestinationBuilder_.mergeFrom(value); } else { gcsDestinationBuilder_.setMessage(value); } } destinationCase_ = 1; return this; } /** * * *
     * The Google Cloud Storage location of the directory where the output is to
     * be written to.
     * 
* * .google.cloud.automl.v1beta1.GcsDestination gcs_destination = 1; */ public Builder clearGcsDestination() { if (gcsDestinationBuilder_ == null) { if (destinationCase_ == 1) { destinationCase_ = 0; destination_ = null; onChanged(); } } else { if (destinationCase_ == 1) { destinationCase_ = 0; destination_ = null; } gcsDestinationBuilder_.clear(); } return this; } /** * * *
     * The Google Cloud Storage location of the directory where the output is to
     * be written to.
     * 
* * .google.cloud.automl.v1beta1.GcsDestination gcs_destination = 1; */ public com.google.cloud.automl.v1beta1.GcsDestination.Builder getGcsDestinationBuilder() { return getGcsDestinationFieldBuilder().getBuilder(); } /** * * *
     * The Google Cloud Storage location of the directory where the output is to
     * be written to.
     * 
* * .google.cloud.automl.v1beta1.GcsDestination gcs_destination = 1; */ @java.lang.Override public com.google.cloud.automl.v1beta1.GcsDestinationOrBuilder getGcsDestinationOrBuilder() { if ((destinationCase_ == 1) && (gcsDestinationBuilder_ != null)) { return gcsDestinationBuilder_.getMessageOrBuilder(); } else { if (destinationCase_ == 1) { return (com.google.cloud.automl.v1beta1.GcsDestination) destination_; } return com.google.cloud.automl.v1beta1.GcsDestination.getDefaultInstance(); } } /** * * *
     * The Google Cloud Storage location of the directory where the output is to
     * be written to.
     * 
* * .google.cloud.automl.v1beta1.GcsDestination gcs_destination = 1; */ private com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.GcsDestination, com.google.cloud.automl.v1beta1.GcsDestination.Builder, com.google.cloud.automl.v1beta1.GcsDestinationOrBuilder> getGcsDestinationFieldBuilder() { if (gcsDestinationBuilder_ == null) { if (!(destinationCase_ == 1)) { destination_ = com.google.cloud.automl.v1beta1.GcsDestination.getDefaultInstance(); } gcsDestinationBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.GcsDestination, com.google.cloud.automl.v1beta1.GcsDestination.Builder, com.google.cloud.automl.v1beta1.GcsDestinationOrBuilder>( (com.google.cloud.automl.v1beta1.GcsDestination) destination_, getParentForChildren(), isClean()); destination_ = null; } destinationCase_ = 1; onChanged(); ; return gcsDestinationBuilder_; } private com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.BigQueryDestination, com.google.cloud.automl.v1beta1.BigQueryDestination.Builder, com.google.cloud.automl.v1beta1.BigQueryDestinationOrBuilder> bigqueryDestinationBuilder_; /** * * *
     * The BigQuery location where the output is to be written to.
     * 
* * .google.cloud.automl.v1beta1.BigQueryDestination bigquery_destination = 2; * * @return Whether the bigqueryDestination field is set. */ @java.lang.Override public boolean hasBigqueryDestination() { return destinationCase_ == 2; } /** * * *
     * The BigQuery location where the output is to be written to.
     * 
* * .google.cloud.automl.v1beta1.BigQueryDestination bigquery_destination = 2; * * @return The bigqueryDestination. */ @java.lang.Override public com.google.cloud.automl.v1beta1.BigQueryDestination getBigqueryDestination() { if (bigqueryDestinationBuilder_ == null) { if (destinationCase_ == 2) { return (com.google.cloud.automl.v1beta1.BigQueryDestination) destination_; } return com.google.cloud.automl.v1beta1.BigQueryDestination.getDefaultInstance(); } else { if (destinationCase_ == 2) { return bigqueryDestinationBuilder_.getMessage(); } return com.google.cloud.automl.v1beta1.BigQueryDestination.getDefaultInstance(); } } /** * * *
     * The BigQuery location where the output is to be written to.
     * 
* * .google.cloud.automl.v1beta1.BigQueryDestination bigquery_destination = 2; */ public Builder setBigqueryDestination( com.google.cloud.automl.v1beta1.BigQueryDestination value) { if (bigqueryDestinationBuilder_ == null) { if (value == null) { throw new NullPointerException(); } destination_ = value; onChanged(); } else { bigqueryDestinationBuilder_.setMessage(value); } destinationCase_ = 2; return this; } /** * * *
     * The BigQuery location where the output is to be written to.
     * 
* * .google.cloud.automl.v1beta1.BigQueryDestination bigquery_destination = 2; */ public Builder setBigqueryDestination( com.google.cloud.automl.v1beta1.BigQueryDestination.Builder builderForValue) { if (bigqueryDestinationBuilder_ == null) { destination_ = builderForValue.build(); onChanged(); } else { bigqueryDestinationBuilder_.setMessage(builderForValue.build()); } destinationCase_ = 2; return this; } /** * * *
     * The BigQuery location where the output is to be written to.
     * 
* * .google.cloud.automl.v1beta1.BigQueryDestination bigquery_destination = 2; */ public Builder mergeBigqueryDestination( com.google.cloud.automl.v1beta1.BigQueryDestination value) { if (bigqueryDestinationBuilder_ == null) { if (destinationCase_ == 2 && destination_ != com.google.cloud.automl.v1beta1.BigQueryDestination.getDefaultInstance()) { destination_ = com.google.cloud.automl.v1beta1.BigQueryDestination.newBuilder( (com.google.cloud.automl.v1beta1.BigQueryDestination) destination_) .mergeFrom(value) .buildPartial(); } else { destination_ = value; } onChanged(); } else { if (destinationCase_ == 2) { bigqueryDestinationBuilder_.mergeFrom(value); } else { bigqueryDestinationBuilder_.setMessage(value); } } destinationCase_ = 2; return this; } /** * * *
     * The BigQuery location where the output is to be written to.
     * 
* * .google.cloud.automl.v1beta1.BigQueryDestination bigquery_destination = 2; */ public Builder clearBigqueryDestination() { if (bigqueryDestinationBuilder_ == null) { if (destinationCase_ == 2) { destinationCase_ = 0; destination_ = null; onChanged(); } } else { if (destinationCase_ == 2) { destinationCase_ = 0; destination_ = null; } bigqueryDestinationBuilder_.clear(); } return this; } /** * * *
     * The BigQuery location where the output is to be written to.
     * 
* * .google.cloud.automl.v1beta1.BigQueryDestination bigquery_destination = 2; */ public com.google.cloud.automl.v1beta1.BigQueryDestination.Builder getBigqueryDestinationBuilder() { return getBigqueryDestinationFieldBuilder().getBuilder(); } /** * * *
     * The BigQuery location where the output is to be written to.
     * 
* * .google.cloud.automl.v1beta1.BigQueryDestination bigquery_destination = 2; */ @java.lang.Override public com.google.cloud.automl.v1beta1.BigQueryDestinationOrBuilder getBigqueryDestinationOrBuilder() { if ((destinationCase_ == 2) && (bigqueryDestinationBuilder_ != null)) { return bigqueryDestinationBuilder_.getMessageOrBuilder(); } else { if (destinationCase_ == 2) { return (com.google.cloud.automl.v1beta1.BigQueryDestination) destination_; } return com.google.cloud.automl.v1beta1.BigQueryDestination.getDefaultInstance(); } } /** * * *
     * The BigQuery location where the output is to be written to.
     * 
* * .google.cloud.automl.v1beta1.BigQueryDestination bigquery_destination = 2; */ private com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.BigQueryDestination, com.google.cloud.automl.v1beta1.BigQueryDestination.Builder, com.google.cloud.automl.v1beta1.BigQueryDestinationOrBuilder> getBigqueryDestinationFieldBuilder() { if (bigqueryDestinationBuilder_ == null) { if (!(destinationCase_ == 2)) { destination_ = com.google.cloud.automl.v1beta1.BigQueryDestination.getDefaultInstance(); } bigqueryDestinationBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.BigQueryDestination, com.google.cloud.automl.v1beta1.BigQueryDestination.Builder, com.google.cloud.automl.v1beta1.BigQueryDestinationOrBuilder>( (com.google.cloud.automl.v1beta1.BigQueryDestination) destination_, getParentForChildren(), isClean()); destination_ = null; } destinationCase_ = 2; onChanged(); ; return bigqueryDestinationBuilder_; } @java.lang.Override public final Builder setUnknownFields(final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:google.cloud.automl.v1beta1.BatchPredictOutputConfig) } // @@protoc_insertion_point(class_scope:google.cloud.automl.v1beta1.BatchPredictOutputConfig) private static final com.google.cloud.automl.v1beta1.BatchPredictOutputConfig DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new com.google.cloud.automl.v1beta1.BatchPredictOutputConfig(); } public static com.google.cloud.automl.v1beta1.BatchPredictOutputConfig getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public BatchPredictOutputConfig parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public com.google.cloud.automl.v1beta1.BatchPredictOutputConfig getDefaultInstanceForType() { return DEFAULT_INSTANCE; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy