All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.cloud.automl.v1beta1.ClassificationProto Maven / Gradle / Ivy

There is a newer version: 0.142.0
Show newest version
/*
 * Copyright 2020 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: google/cloud/automl/v1beta1/classification.proto

package com.google.cloud.automl.v1beta1;

public final class ClassificationProto {
  private ClassificationProto() {}

  public static void registerAllExtensions(com.google.protobuf.ExtensionRegistryLite registry) {}

  public static void registerAllExtensions(com.google.protobuf.ExtensionRegistry registry) {
    registerAllExtensions((com.google.protobuf.ExtensionRegistryLite) registry);
  }
  /**
   *
   *
   * 
   * Type of the classification problem.
   * 
* * Protobuf enum {@code google.cloud.automl.v1beta1.ClassificationType} */ public enum ClassificationType implements com.google.protobuf.ProtocolMessageEnum { /** * * *
     * An un-set value of this enum.
     * 
* * CLASSIFICATION_TYPE_UNSPECIFIED = 0; */ CLASSIFICATION_TYPE_UNSPECIFIED(0), /** * * *
     * At most one label is allowed per example.
     * 
* * MULTICLASS = 1; */ MULTICLASS(1), /** * * *
     * Multiple labels are allowed for one example.
     * 
* * MULTILABEL = 2; */ MULTILABEL(2), UNRECOGNIZED(-1), ; /** * * *
     * An un-set value of this enum.
     * 
* * CLASSIFICATION_TYPE_UNSPECIFIED = 0; */ public static final int CLASSIFICATION_TYPE_UNSPECIFIED_VALUE = 0; /** * * *
     * At most one label is allowed per example.
     * 
* * MULTICLASS = 1; */ public static final int MULTICLASS_VALUE = 1; /** * * *
     * Multiple labels are allowed for one example.
     * 
* * MULTILABEL = 2; */ public static final int MULTILABEL_VALUE = 2; public final int getNumber() { if (this == UNRECOGNIZED) { throw new java.lang.IllegalArgumentException( "Can't get the number of an unknown enum value."); } return value; } /** * @param value The numeric wire value of the corresponding enum entry. * @return The enum associated with the given numeric wire value. * @deprecated Use {@link #forNumber(int)} instead. */ @java.lang.Deprecated public static ClassificationType valueOf(int value) { return forNumber(value); } /** * @param value The numeric wire value of the corresponding enum entry. * @return The enum associated with the given numeric wire value. */ public static ClassificationType forNumber(int value) { switch (value) { case 0: return CLASSIFICATION_TYPE_UNSPECIFIED; case 1: return MULTICLASS; case 2: return MULTILABEL; default: return null; } } public static com.google.protobuf.Internal.EnumLiteMap internalGetValueMap() { return internalValueMap; } private static final com.google.protobuf.Internal.EnumLiteMap internalValueMap = new com.google.protobuf.Internal.EnumLiteMap() { public ClassificationType findValueByNumber(int number) { return ClassificationType.forNumber(number); } }; public final com.google.protobuf.Descriptors.EnumValueDescriptor getValueDescriptor() { if (this == UNRECOGNIZED) { throw new java.lang.IllegalStateException( "Can't get the descriptor of an unrecognized enum value."); } return getDescriptor().getValues().get(ordinal()); } public final com.google.protobuf.Descriptors.EnumDescriptor getDescriptorForType() { return getDescriptor(); } public static final com.google.protobuf.Descriptors.EnumDescriptor getDescriptor() { return com.google.cloud.automl.v1beta1.ClassificationProto.getDescriptor() .getEnumTypes() .get(0); } private static final ClassificationType[] VALUES = values(); public static ClassificationType valueOf( com.google.protobuf.Descriptors.EnumValueDescriptor desc) { if (desc.getType() != getDescriptor()) { throw new java.lang.IllegalArgumentException("EnumValueDescriptor is not for this type."); } if (desc.getIndex() == -1) { return UNRECOGNIZED; } return VALUES[desc.getIndex()]; } private final int value; private ClassificationType(int value) { this.value = value; } // @@protoc_insertion_point(enum_scope:google.cloud.automl.v1beta1.ClassificationType) } public interface ClassificationAnnotationOrBuilder extends // @@protoc_insertion_point(interface_extends:google.cloud.automl.v1beta1.ClassificationAnnotation) com.google.protobuf.MessageOrBuilder { /** * * *
     * Output only. A confidence estimate between 0.0 and 1.0. A higher value
     * means greater confidence that the annotation is positive. If a user
     * approves an annotation as negative or positive, the score value remains
     * unchanged. If a user creates an annotation, the score is 0 for negative or
     * 1 for positive.
     * 
* * float score = 1; * * @return The score. */ float getScore(); } /** * * *
   * Contains annotation details specific to classification.
   * 
* * Protobuf type {@code google.cloud.automl.v1beta1.ClassificationAnnotation} */ public static final class ClassificationAnnotation extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:google.cloud.automl.v1beta1.ClassificationAnnotation) ClassificationAnnotationOrBuilder { private static final long serialVersionUID = 0L; // Use ClassificationAnnotation.newBuilder() to construct. private ClassificationAnnotation(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private ClassificationAnnotation() {} @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance(UnusedPrivateParameter unused) { return new ClassificationAnnotation(); } @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_ClassificationAnnotation_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_ClassificationAnnotation_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation.class, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation.Builder .class); } public static final int SCORE_FIELD_NUMBER = 1; private float score_; /** * * *
     * Output only. A confidence estimate between 0.0 and 1.0. A higher value
     * means greater confidence that the annotation is positive. If a user
     * approves an annotation as negative or positive, the score value remains
     * unchanged. If a user creates an annotation, the score is 0 for negative or
     * 1 for positive.
     * 
* * float score = 1; * * @return The score. */ @java.lang.Override public float getScore() { return score_; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (java.lang.Float.floatToRawIntBits(score_) != 0) { output.writeFloat(1, score_); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (java.lang.Float.floatToRawIntBits(score_) != 0) { size += com.google.protobuf.CodedOutputStream.computeFloatSize(1, score_); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation)) { return super.equals(obj); } com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation other = (com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation) obj; if (java.lang.Float.floatToIntBits(getScore()) != java.lang.Float.floatToIntBits(other.getScore())) return false; if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); hash = (37 * hash) + SCORE_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits(getScore()); hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation parseFrom(java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation parseFrom(com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation parseFrom(byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation parseFrom(com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * * *
     * Contains annotation details specific to classification.
     * 
* * Protobuf type {@code google.cloud.automl.v1beta1.ClassificationAnnotation} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:google.cloud.automl.v1beta1.ClassificationAnnotation) com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotationOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_ClassificationAnnotation_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_ClassificationAnnotation_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation.class, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation.Builder .class); } // Construct using // com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation.newBuilder() private Builder() {} private Builder(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); } @java.lang.Override public Builder clear() { super.clear(); score_ = 0F; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_ClassificationAnnotation_descriptor; } @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation getDefaultInstanceForType() { return com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation .getDefaultInstance(); } @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation build() { com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation buildPartial() { com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation result = new com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation(this); result.score_ = score_; onBuilt(); return result; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation) { return mergeFrom( (com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation) other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation other) { if (other == com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation .getDefaultInstance()) return this; if (other.getScore() != 0F) { setScore(other.getScore()); } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 13: { score_ = input.readFloat(); break; } // case 13 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private float score_; /** * * *
       * Output only. A confidence estimate between 0.0 and 1.0. A higher value
       * means greater confidence that the annotation is positive. If a user
       * approves an annotation as negative or positive, the score value remains
       * unchanged. If a user creates an annotation, the score is 0 for negative or
       * 1 for positive.
       * 
* * float score = 1; * * @return The score. */ @java.lang.Override public float getScore() { return score_; } /** * * *
       * Output only. A confidence estimate between 0.0 and 1.0. A higher value
       * means greater confidence that the annotation is positive. If a user
       * approves an annotation as negative or positive, the score value remains
       * unchanged. If a user creates an annotation, the score is 0 for negative or
       * 1 for positive.
       * 
* * float score = 1; * * @param value The score to set. * @return This builder for chaining. */ public Builder setScore(float value) { score_ = value; onChanged(); return this; } /** * * *
       * Output only. A confidence estimate between 0.0 and 1.0. A higher value
       * means greater confidence that the annotation is positive. If a user
       * approves an annotation as negative or positive, the score value remains
       * unchanged. If a user creates an annotation, the score is 0 for negative or
       * 1 for positive.
       * 
* * float score = 1; * * @return This builder for chaining. */ public Builder clearScore() { score_ = 0F; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:google.cloud.automl.v1beta1.ClassificationAnnotation) } // @@protoc_insertion_point(class_scope:google.cloud.automl.v1beta1.ClassificationAnnotation) private static final com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationAnnotation DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation(); } public static com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public ClassificationAnnotation parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException() .setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface VideoClassificationAnnotationOrBuilder extends // @@protoc_insertion_point(interface_extends:google.cloud.automl.v1beta1.VideoClassificationAnnotation) com.google.protobuf.MessageOrBuilder { /** * * *
     * Output only. Expresses the type of video classification. Possible values:
     * *  `segment` - Classification done on a specified by user
     *        time segment of a video. AnnotationSpec is answered to be present
     *        in that time segment, if it is present in any part of it. The video
     *        ML model evaluations are done only for this type of classification.
     * *  `shot`- Shot-level classification.
     *        AutoML Video Intelligence determines the boundaries
     *        for each camera shot in the entire segment of the video that user
     *        specified in the request configuration. AutoML Video Intelligence
     *        then returns labels and their confidence scores for each detected
     *        shot, along with the start and end time of the shot.
     *        WARNING: Model evaluation is not done for this classification type,
     *        the quality of it depends on training data, but there are no
     *        metrics provided to describe that quality.
     * *  `1s_interval` - AutoML Video Intelligence returns labels and their
     *        confidence scores for each second of the entire segment of the video
     *        that user specified in the request configuration.
     *        WARNING: Model evaluation is not done for this classification type,
     *        the quality of it depends on training data, but there are no
     *        metrics provided to describe that quality.
     * 
* * string type = 1; * * @return The type. */ java.lang.String getType(); /** * * *
     * Output only. Expresses the type of video classification. Possible values:
     * *  `segment` - Classification done on a specified by user
     *        time segment of a video. AnnotationSpec is answered to be present
     *        in that time segment, if it is present in any part of it. The video
     *        ML model evaluations are done only for this type of classification.
     * *  `shot`- Shot-level classification.
     *        AutoML Video Intelligence determines the boundaries
     *        for each camera shot in the entire segment of the video that user
     *        specified in the request configuration. AutoML Video Intelligence
     *        then returns labels and their confidence scores for each detected
     *        shot, along with the start and end time of the shot.
     *        WARNING: Model evaluation is not done for this classification type,
     *        the quality of it depends on training data, but there are no
     *        metrics provided to describe that quality.
     * *  `1s_interval` - AutoML Video Intelligence returns labels and their
     *        confidence scores for each second of the entire segment of the video
     *        that user specified in the request configuration.
     *        WARNING: Model evaluation is not done for this classification type,
     *        the quality of it depends on training data, but there are no
     *        metrics provided to describe that quality.
     * 
* * string type = 1; * * @return The bytes for type. */ com.google.protobuf.ByteString getTypeBytes(); /** * * *
     * Output only . The classification details of this annotation.
     * 
* * .google.cloud.automl.v1beta1.ClassificationAnnotation classification_annotation = 2; * * * @return Whether the classificationAnnotation field is set. */ boolean hasClassificationAnnotation(); /** * * *
     * Output only . The classification details of this annotation.
     * 
* * .google.cloud.automl.v1beta1.ClassificationAnnotation classification_annotation = 2; * * * @return The classificationAnnotation. */ com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation getClassificationAnnotation(); /** * * *
     * Output only . The classification details of this annotation.
     * 
* * .google.cloud.automl.v1beta1.ClassificationAnnotation classification_annotation = 2; * */ com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotationOrBuilder getClassificationAnnotationOrBuilder(); /** * * *
     * Output only . The time segment of the video to which the
     * annotation applies.
     * 
* * .google.cloud.automl.v1beta1.TimeSegment time_segment = 3; * * @return Whether the timeSegment field is set. */ boolean hasTimeSegment(); /** * * *
     * Output only . The time segment of the video to which the
     * annotation applies.
     * 
* * .google.cloud.automl.v1beta1.TimeSegment time_segment = 3; * * @return The timeSegment. */ com.google.cloud.automl.v1beta1.TimeSegment getTimeSegment(); /** * * *
     * Output only . The time segment of the video to which the
     * annotation applies.
     * 
* * .google.cloud.automl.v1beta1.TimeSegment time_segment = 3; */ com.google.cloud.automl.v1beta1.TimeSegmentOrBuilder getTimeSegmentOrBuilder(); } /** * * *
   * Contains annotation details specific to video classification.
   * 
* * Protobuf type {@code google.cloud.automl.v1beta1.VideoClassificationAnnotation} */ public static final class VideoClassificationAnnotation extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:google.cloud.automl.v1beta1.VideoClassificationAnnotation) VideoClassificationAnnotationOrBuilder { private static final long serialVersionUID = 0L; // Use VideoClassificationAnnotation.newBuilder() to construct. private VideoClassificationAnnotation( com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private VideoClassificationAnnotation() { type_ = ""; } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance(UnusedPrivateParameter unused) { return new VideoClassificationAnnotation(); } @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_VideoClassificationAnnotation_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_VideoClassificationAnnotation_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation .class, com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation .Builder.class); } public static final int TYPE_FIELD_NUMBER = 1; private volatile java.lang.Object type_; /** * * *
     * Output only. Expresses the type of video classification. Possible values:
     * *  `segment` - Classification done on a specified by user
     *        time segment of a video. AnnotationSpec is answered to be present
     *        in that time segment, if it is present in any part of it. The video
     *        ML model evaluations are done only for this type of classification.
     * *  `shot`- Shot-level classification.
     *        AutoML Video Intelligence determines the boundaries
     *        for each camera shot in the entire segment of the video that user
     *        specified in the request configuration. AutoML Video Intelligence
     *        then returns labels and their confidence scores for each detected
     *        shot, along with the start and end time of the shot.
     *        WARNING: Model evaluation is not done for this classification type,
     *        the quality of it depends on training data, but there are no
     *        metrics provided to describe that quality.
     * *  `1s_interval` - AutoML Video Intelligence returns labels and their
     *        confidence scores for each second of the entire segment of the video
     *        that user specified in the request configuration.
     *        WARNING: Model evaluation is not done for this classification type,
     *        the quality of it depends on training data, but there are no
     *        metrics provided to describe that quality.
     * 
* * string type = 1; * * @return The type. */ @java.lang.Override public java.lang.String getType() { java.lang.Object ref = type_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); type_ = s; return s; } } /** * * *
     * Output only. Expresses the type of video classification. Possible values:
     * *  `segment` - Classification done on a specified by user
     *        time segment of a video. AnnotationSpec is answered to be present
     *        in that time segment, if it is present in any part of it. The video
     *        ML model evaluations are done only for this type of classification.
     * *  `shot`- Shot-level classification.
     *        AutoML Video Intelligence determines the boundaries
     *        for each camera shot in the entire segment of the video that user
     *        specified in the request configuration. AutoML Video Intelligence
     *        then returns labels and their confidence scores for each detected
     *        shot, along with the start and end time of the shot.
     *        WARNING: Model evaluation is not done for this classification type,
     *        the quality of it depends on training data, but there are no
     *        metrics provided to describe that quality.
     * *  `1s_interval` - AutoML Video Intelligence returns labels and their
     *        confidence scores for each second of the entire segment of the video
     *        that user specified in the request configuration.
     *        WARNING: Model evaluation is not done for this classification type,
     *        the quality of it depends on training data, but there are no
     *        metrics provided to describe that quality.
     * 
* * string type = 1; * * @return The bytes for type. */ @java.lang.Override public com.google.protobuf.ByteString getTypeBytes() { java.lang.Object ref = type_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref); type_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int CLASSIFICATION_ANNOTATION_FIELD_NUMBER = 2; private com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation classificationAnnotation_; /** * * *
     * Output only . The classification details of this annotation.
     * 
* * .google.cloud.automl.v1beta1.ClassificationAnnotation classification_annotation = 2; * * * @return Whether the classificationAnnotation field is set. */ @java.lang.Override public boolean hasClassificationAnnotation() { return classificationAnnotation_ != null; } /** * * *
     * Output only . The classification details of this annotation.
     * 
* * .google.cloud.automl.v1beta1.ClassificationAnnotation classification_annotation = 2; * * * @return The classificationAnnotation. */ @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation getClassificationAnnotation() { return classificationAnnotation_ == null ? com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation .getDefaultInstance() : classificationAnnotation_; } /** * * *
     * Output only . The classification details of this annotation.
     * 
* * .google.cloud.automl.v1beta1.ClassificationAnnotation classification_annotation = 2; * */ @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotationOrBuilder getClassificationAnnotationOrBuilder() { return getClassificationAnnotation(); } public static final int TIME_SEGMENT_FIELD_NUMBER = 3; private com.google.cloud.automl.v1beta1.TimeSegment timeSegment_; /** * * *
     * Output only . The time segment of the video to which the
     * annotation applies.
     * 
* * .google.cloud.automl.v1beta1.TimeSegment time_segment = 3; * * @return Whether the timeSegment field is set. */ @java.lang.Override public boolean hasTimeSegment() { return timeSegment_ != null; } /** * * *
     * Output only . The time segment of the video to which the
     * annotation applies.
     * 
* * .google.cloud.automl.v1beta1.TimeSegment time_segment = 3; * * @return The timeSegment. */ @java.lang.Override public com.google.cloud.automl.v1beta1.TimeSegment getTimeSegment() { return timeSegment_ == null ? com.google.cloud.automl.v1beta1.TimeSegment.getDefaultInstance() : timeSegment_; } /** * * *
     * Output only . The time segment of the video to which the
     * annotation applies.
     * 
* * .google.cloud.automl.v1beta1.TimeSegment time_segment = 3; */ @java.lang.Override public com.google.cloud.automl.v1beta1.TimeSegmentOrBuilder getTimeSegmentOrBuilder() { return getTimeSegment(); } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(type_)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 1, type_); } if (classificationAnnotation_ != null) { output.writeMessage(2, getClassificationAnnotation()); } if (timeSegment_ != null) { output.writeMessage(3, getTimeSegment()); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(type_)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(1, type_); } if (classificationAnnotation_ != null) { size += com.google.protobuf.CodedOutputStream.computeMessageSize( 2, getClassificationAnnotation()); } if (timeSegment_ != null) { size += com.google.protobuf.CodedOutputStream.computeMessageSize(3, getTimeSegment()); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation)) { return super.equals(obj); } com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation other = (com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation) obj; if (!getType().equals(other.getType())) return false; if (hasClassificationAnnotation() != other.hasClassificationAnnotation()) return false; if (hasClassificationAnnotation()) { if (!getClassificationAnnotation().equals(other.getClassificationAnnotation())) return false; } if (hasTimeSegment() != other.hasTimeSegment()) return false; if (hasTimeSegment()) { if (!getTimeSegment().equals(other.getTimeSegment())) return false; } if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); hash = (37 * hash) + TYPE_FIELD_NUMBER; hash = (53 * hash) + getType().hashCode(); if (hasClassificationAnnotation()) { hash = (37 * hash) + CLASSIFICATION_ANNOTATION_FIELD_NUMBER; hash = (53 * hash) + getClassificationAnnotation().hashCode(); } if (hasTimeSegment()) { hash = (37 * hash) + TIME_SEGMENT_FIELD_NUMBER; hash = (53 * hash) + getTimeSegment().hashCode(); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation parseFrom(java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation parseFrom(com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation parseFrom(byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation parseFrom(com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder( com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * * *
     * Contains annotation details specific to video classification.
     * 
* * Protobuf type {@code google.cloud.automl.v1beta1.VideoClassificationAnnotation} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:google.cloud.automl.v1beta1.VideoClassificationAnnotation) com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotationOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_VideoClassificationAnnotation_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_VideoClassificationAnnotation_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation .class, com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation .Builder.class); } // Construct using // com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation.newBuilder() private Builder() {} private Builder(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); } @java.lang.Override public Builder clear() { super.clear(); type_ = ""; if (classificationAnnotationBuilder_ == null) { classificationAnnotation_ = null; } else { classificationAnnotation_ = null; classificationAnnotationBuilder_ = null; } if (timeSegmentBuilder_ == null) { timeSegment_ = null; } else { timeSegment_ = null; timeSegmentBuilder_ = null; } return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_VideoClassificationAnnotation_descriptor; } @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation getDefaultInstanceForType() { return com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation .getDefaultInstance(); } @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation build() { com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation buildPartial() { com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation result = new com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation( this); result.type_ = type_; if (classificationAnnotationBuilder_ == null) { result.classificationAnnotation_ = classificationAnnotation_; } else { result.classificationAnnotation_ = classificationAnnotationBuilder_.build(); } if (timeSegmentBuilder_ == null) { result.timeSegment_ = timeSegment_; } else { result.timeSegment_ = timeSegmentBuilder_.build(); } onBuilt(); return result; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation) { return mergeFrom( (com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation) other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom( com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation other) { if (other == com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation .getDefaultInstance()) return this; if (!other.getType().isEmpty()) { type_ = other.type_; onChanged(); } if (other.hasClassificationAnnotation()) { mergeClassificationAnnotation(other.getClassificationAnnotation()); } if (other.hasTimeSegment()) { mergeTimeSegment(other.getTimeSegment()); } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { type_ = input.readStringRequireUtf8(); break; } // case 10 case 18: { input.readMessage( getClassificationAnnotationFieldBuilder().getBuilder(), extensionRegistry); break; } // case 18 case 26: { input.readMessage(getTimeSegmentFieldBuilder().getBuilder(), extensionRegistry); break; } // case 26 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private java.lang.Object type_ = ""; /** * * *
       * Output only. Expresses the type of video classification. Possible values:
       * *  `segment` - Classification done on a specified by user
       *        time segment of a video. AnnotationSpec is answered to be present
       *        in that time segment, if it is present in any part of it. The video
       *        ML model evaluations are done only for this type of classification.
       * *  `shot`- Shot-level classification.
       *        AutoML Video Intelligence determines the boundaries
       *        for each camera shot in the entire segment of the video that user
       *        specified in the request configuration. AutoML Video Intelligence
       *        then returns labels and their confidence scores for each detected
       *        shot, along with the start and end time of the shot.
       *        WARNING: Model evaluation is not done for this classification type,
       *        the quality of it depends on training data, but there are no
       *        metrics provided to describe that quality.
       * *  `1s_interval` - AutoML Video Intelligence returns labels and their
       *        confidence scores for each second of the entire segment of the video
       *        that user specified in the request configuration.
       *        WARNING: Model evaluation is not done for this classification type,
       *        the quality of it depends on training data, but there are no
       *        metrics provided to describe that quality.
       * 
* * string type = 1; * * @return The type. */ public java.lang.String getType() { java.lang.Object ref = type_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); type_ = s; return s; } else { return (java.lang.String) ref; } } /** * * *
       * Output only. Expresses the type of video classification. Possible values:
       * *  `segment` - Classification done on a specified by user
       *        time segment of a video. AnnotationSpec is answered to be present
       *        in that time segment, if it is present in any part of it. The video
       *        ML model evaluations are done only for this type of classification.
       * *  `shot`- Shot-level classification.
       *        AutoML Video Intelligence determines the boundaries
       *        for each camera shot in the entire segment of the video that user
       *        specified in the request configuration. AutoML Video Intelligence
       *        then returns labels and their confidence scores for each detected
       *        shot, along with the start and end time of the shot.
       *        WARNING: Model evaluation is not done for this classification type,
       *        the quality of it depends on training data, but there are no
       *        metrics provided to describe that quality.
       * *  `1s_interval` - AutoML Video Intelligence returns labels and their
       *        confidence scores for each second of the entire segment of the video
       *        that user specified in the request configuration.
       *        WARNING: Model evaluation is not done for this classification type,
       *        the quality of it depends on training data, but there are no
       *        metrics provided to describe that quality.
       * 
* * string type = 1; * * @return The bytes for type. */ public com.google.protobuf.ByteString getTypeBytes() { java.lang.Object ref = type_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref); type_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** * * *
       * Output only. Expresses the type of video classification. Possible values:
       * *  `segment` - Classification done on a specified by user
       *        time segment of a video. AnnotationSpec is answered to be present
       *        in that time segment, if it is present in any part of it. The video
       *        ML model evaluations are done only for this type of classification.
       * *  `shot`- Shot-level classification.
       *        AutoML Video Intelligence determines the boundaries
       *        for each camera shot in the entire segment of the video that user
       *        specified in the request configuration. AutoML Video Intelligence
       *        then returns labels and their confidence scores for each detected
       *        shot, along with the start and end time of the shot.
       *        WARNING: Model evaluation is not done for this classification type,
       *        the quality of it depends on training data, but there are no
       *        metrics provided to describe that quality.
       * *  `1s_interval` - AutoML Video Intelligence returns labels and their
       *        confidence scores for each second of the entire segment of the video
       *        that user specified in the request configuration.
       *        WARNING: Model evaluation is not done for this classification type,
       *        the quality of it depends on training data, but there are no
       *        metrics provided to describe that quality.
       * 
* * string type = 1; * * @param value The type to set. * @return This builder for chaining. */ public Builder setType(java.lang.String value) { if (value == null) { throw new NullPointerException(); } type_ = value; onChanged(); return this; } /** * * *
       * Output only. Expresses the type of video classification. Possible values:
       * *  `segment` - Classification done on a specified by user
       *        time segment of a video. AnnotationSpec is answered to be present
       *        in that time segment, if it is present in any part of it. The video
       *        ML model evaluations are done only for this type of classification.
       * *  `shot`- Shot-level classification.
       *        AutoML Video Intelligence determines the boundaries
       *        for each camera shot in the entire segment of the video that user
       *        specified in the request configuration. AutoML Video Intelligence
       *        then returns labels and their confidence scores for each detected
       *        shot, along with the start and end time of the shot.
       *        WARNING: Model evaluation is not done for this classification type,
       *        the quality of it depends on training data, but there are no
       *        metrics provided to describe that quality.
       * *  `1s_interval` - AutoML Video Intelligence returns labels and their
       *        confidence scores for each second of the entire segment of the video
       *        that user specified in the request configuration.
       *        WARNING: Model evaluation is not done for this classification type,
       *        the quality of it depends on training data, but there are no
       *        metrics provided to describe that quality.
       * 
* * string type = 1; * * @return This builder for chaining. */ public Builder clearType() { type_ = getDefaultInstance().getType(); onChanged(); return this; } /** * * *
       * Output only. Expresses the type of video classification. Possible values:
       * *  `segment` - Classification done on a specified by user
       *        time segment of a video. AnnotationSpec is answered to be present
       *        in that time segment, if it is present in any part of it. The video
       *        ML model evaluations are done only for this type of classification.
       * *  `shot`- Shot-level classification.
       *        AutoML Video Intelligence determines the boundaries
       *        for each camera shot in the entire segment of the video that user
       *        specified in the request configuration. AutoML Video Intelligence
       *        then returns labels and their confidence scores for each detected
       *        shot, along with the start and end time of the shot.
       *        WARNING: Model evaluation is not done for this classification type,
       *        the quality of it depends on training data, but there are no
       *        metrics provided to describe that quality.
       * *  `1s_interval` - AutoML Video Intelligence returns labels and their
       *        confidence scores for each second of the entire segment of the video
       *        that user specified in the request configuration.
       *        WARNING: Model evaluation is not done for this classification type,
       *        the quality of it depends on training data, but there are no
       *        metrics provided to describe that quality.
       * 
* * string type = 1; * * @param value The bytes for type to set. * @return This builder for chaining. */ public Builder setTypeBytes(com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } checkByteStringIsUtf8(value); type_ = value; onChanged(); return this; } private com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation classificationAnnotation_; private com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation.Builder, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotationOrBuilder> classificationAnnotationBuilder_; /** * * *
       * Output only . The classification details of this annotation.
       * 
* * .google.cloud.automl.v1beta1.ClassificationAnnotation classification_annotation = 2; * * * @return Whether the classificationAnnotation field is set. */ public boolean hasClassificationAnnotation() { return classificationAnnotationBuilder_ != null || classificationAnnotation_ != null; } /** * * *
       * Output only . The classification details of this annotation.
       * 
* * .google.cloud.automl.v1beta1.ClassificationAnnotation classification_annotation = 2; * * * @return The classificationAnnotation. */ public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation getClassificationAnnotation() { if (classificationAnnotationBuilder_ == null) { return classificationAnnotation_ == null ? com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation .getDefaultInstance() : classificationAnnotation_; } else { return classificationAnnotationBuilder_.getMessage(); } } /** * * *
       * Output only . The classification details of this annotation.
       * 
* * .google.cloud.automl.v1beta1.ClassificationAnnotation classification_annotation = 2; * */ public Builder setClassificationAnnotation( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation value) { if (classificationAnnotationBuilder_ == null) { if (value == null) { throw new NullPointerException(); } classificationAnnotation_ = value; onChanged(); } else { classificationAnnotationBuilder_.setMessage(value); } return this; } /** * * *
       * Output only . The classification details of this annotation.
       * 
* * .google.cloud.automl.v1beta1.ClassificationAnnotation classification_annotation = 2; * */ public Builder setClassificationAnnotation( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation.Builder builderForValue) { if (classificationAnnotationBuilder_ == null) { classificationAnnotation_ = builderForValue.build(); onChanged(); } else { classificationAnnotationBuilder_.setMessage(builderForValue.build()); } return this; } /** * * *
       * Output only . The classification details of this annotation.
       * 
* * .google.cloud.automl.v1beta1.ClassificationAnnotation classification_annotation = 2; * */ public Builder mergeClassificationAnnotation( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation value) { if (classificationAnnotationBuilder_ == null) { if (classificationAnnotation_ != null) { classificationAnnotation_ = com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation .newBuilder(classificationAnnotation_) .mergeFrom(value) .buildPartial(); } else { classificationAnnotation_ = value; } onChanged(); } else { classificationAnnotationBuilder_.mergeFrom(value); } return this; } /** * * *
       * Output only . The classification details of this annotation.
       * 
* * .google.cloud.automl.v1beta1.ClassificationAnnotation classification_annotation = 2; * */ public Builder clearClassificationAnnotation() { if (classificationAnnotationBuilder_ == null) { classificationAnnotation_ = null; onChanged(); } else { classificationAnnotation_ = null; classificationAnnotationBuilder_ = null; } return this; } /** * * *
       * Output only . The classification details of this annotation.
       * 
* * .google.cloud.automl.v1beta1.ClassificationAnnotation classification_annotation = 2; * */ public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation.Builder getClassificationAnnotationBuilder() { onChanged(); return getClassificationAnnotationFieldBuilder().getBuilder(); } /** * * *
       * Output only . The classification details of this annotation.
       * 
* * .google.cloud.automl.v1beta1.ClassificationAnnotation classification_annotation = 2; * */ public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotationOrBuilder getClassificationAnnotationOrBuilder() { if (classificationAnnotationBuilder_ != null) { return classificationAnnotationBuilder_.getMessageOrBuilder(); } else { return classificationAnnotation_ == null ? com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation .getDefaultInstance() : classificationAnnotation_; } } /** * * *
       * Output only . The classification details of this annotation.
       * 
* * .google.cloud.automl.v1beta1.ClassificationAnnotation classification_annotation = 2; * */ private com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation.Builder, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotationOrBuilder> getClassificationAnnotationFieldBuilder() { if (classificationAnnotationBuilder_ == null) { classificationAnnotationBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationAnnotation .Builder, com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationAnnotationOrBuilder>( getClassificationAnnotation(), getParentForChildren(), isClean()); classificationAnnotation_ = null; } return classificationAnnotationBuilder_; } private com.google.cloud.automl.v1beta1.TimeSegment timeSegment_; private com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.TimeSegment, com.google.cloud.automl.v1beta1.TimeSegment.Builder, com.google.cloud.automl.v1beta1.TimeSegmentOrBuilder> timeSegmentBuilder_; /** * * *
       * Output only . The time segment of the video to which the
       * annotation applies.
       * 
* * .google.cloud.automl.v1beta1.TimeSegment time_segment = 3; * * @return Whether the timeSegment field is set. */ public boolean hasTimeSegment() { return timeSegmentBuilder_ != null || timeSegment_ != null; } /** * * *
       * Output only . The time segment of the video to which the
       * annotation applies.
       * 
* * .google.cloud.automl.v1beta1.TimeSegment time_segment = 3; * * @return The timeSegment. */ public com.google.cloud.automl.v1beta1.TimeSegment getTimeSegment() { if (timeSegmentBuilder_ == null) { return timeSegment_ == null ? com.google.cloud.automl.v1beta1.TimeSegment.getDefaultInstance() : timeSegment_; } else { return timeSegmentBuilder_.getMessage(); } } /** * * *
       * Output only . The time segment of the video to which the
       * annotation applies.
       * 
* * .google.cloud.automl.v1beta1.TimeSegment time_segment = 3; */ public Builder setTimeSegment(com.google.cloud.automl.v1beta1.TimeSegment value) { if (timeSegmentBuilder_ == null) { if (value == null) { throw new NullPointerException(); } timeSegment_ = value; onChanged(); } else { timeSegmentBuilder_.setMessage(value); } return this; } /** * * *
       * Output only . The time segment of the video to which the
       * annotation applies.
       * 
* * .google.cloud.automl.v1beta1.TimeSegment time_segment = 3; */ public Builder setTimeSegment( com.google.cloud.automl.v1beta1.TimeSegment.Builder builderForValue) { if (timeSegmentBuilder_ == null) { timeSegment_ = builderForValue.build(); onChanged(); } else { timeSegmentBuilder_.setMessage(builderForValue.build()); } return this; } /** * * *
       * Output only . The time segment of the video to which the
       * annotation applies.
       * 
* * .google.cloud.automl.v1beta1.TimeSegment time_segment = 3; */ public Builder mergeTimeSegment(com.google.cloud.automl.v1beta1.TimeSegment value) { if (timeSegmentBuilder_ == null) { if (timeSegment_ != null) { timeSegment_ = com.google.cloud.automl.v1beta1.TimeSegment.newBuilder(timeSegment_) .mergeFrom(value) .buildPartial(); } else { timeSegment_ = value; } onChanged(); } else { timeSegmentBuilder_.mergeFrom(value); } return this; } /** * * *
       * Output only . The time segment of the video to which the
       * annotation applies.
       * 
* * .google.cloud.automl.v1beta1.TimeSegment time_segment = 3; */ public Builder clearTimeSegment() { if (timeSegmentBuilder_ == null) { timeSegment_ = null; onChanged(); } else { timeSegment_ = null; timeSegmentBuilder_ = null; } return this; } /** * * *
       * Output only . The time segment of the video to which the
       * annotation applies.
       * 
* * .google.cloud.automl.v1beta1.TimeSegment time_segment = 3; */ public com.google.cloud.automl.v1beta1.TimeSegment.Builder getTimeSegmentBuilder() { onChanged(); return getTimeSegmentFieldBuilder().getBuilder(); } /** * * *
       * Output only . The time segment of the video to which the
       * annotation applies.
       * 
* * .google.cloud.automl.v1beta1.TimeSegment time_segment = 3; */ public com.google.cloud.automl.v1beta1.TimeSegmentOrBuilder getTimeSegmentOrBuilder() { if (timeSegmentBuilder_ != null) { return timeSegmentBuilder_.getMessageOrBuilder(); } else { return timeSegment_ == null ? com.google.cloud.automl.v1beta1.TimeSegment.getDefaultInstance() : timeSegment_; } } /** * * *
       * Output only . The time segment of the video to which the
       * annotation applies.
       * 
* * .google.cloud.automl.v1beta1.TimeSegment time_segment = 3; */ private com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.TimeSegment, com.google.cloud.automl.v1beta1.TimeSegment.Builder, com.google.cloud.automl.v1beta1.TimeSegmentOrBuilder> getTimeSegmentFieldBuilder() { if (timeSegmentBuilder_ == null) { timeSegmentBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.TimeSegment, com.google.cloud.automl.v1beta1.TimeSegment.Builder, com.google.cloud.automl.v1beta1.TimeSegmentOrBuilder>( getTimeSegment(), getParentForChildren(), isClean()); timeSegment_ = null; } return timeSegmentBuilder_; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:google.cloud.automl.v1beta1.VideoClassificationAnnotation) } // @@protoc_insertion_point(class_scope:google.cloud.automl.v1beta1.VideoClassificationAnnotation) private static final com.google.cloud.automl.v1beta1.ClassificationProto .VideoClassificationAnnotation DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation(); } public static com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public VideoClassificationAnnotation parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException() .setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.VideoClassificationAnnotation getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface ClassificationEvaluationMetricsOrBuilder extends // @@protoc_insertion_point(interface_extends:google.cloud.automl.v1beta1.ClassificationEvaluationMetrics) com.google.protobuf.MessageOrBuilder { /** * * *
     * Output only. The Area Under Precision-Recall Curve metric. Micro-averaged
     * for the overall evaluation.
     * 
* * float au_prc = 1; * * @return The auPrc. */ float getAuPrc(); /** * * *
     * Output only. The Area Under Precision-Recall Curve metric based on priors.
     * Micro-averaged for the overall evaluation.
     * Deprecated.
     * 
* * float base_au_prc = 2 [deprecated = true]; * * @deprecated google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.base_au_prc is * deprecated. See google/cloud/automl/v1beta1/classification.proto;l=188 * @return The baseAuPrc. */ @java.lang.Deprecated float getBaseAuPrc(); /** * * *
     * Output only. The Area Under Receiver Operating Characteristic curve metric.
     * Micro-averaged for the overall evaluation.
     * 
* * float au_roc = 6; * * @return The auRoc. */ float getAuRoc(); /** * * *
     * Output only. The Log Loss metric.
     * 
* * float log_loss = 7; * * @return The logLoss. */ float getLogLoss(); /** * * *
     * Output only. Metrics for each confidence_threshold in
     * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
     * position_threshold = INT32_MAX_VALUE.
     * ROC and precision-recall curves, and other aggregated metrics are derived
     * from them. The confidence metrics entries may also be supplied for
     * additional values of position_threshold, but from these no aggregated
     * metrics are computed.
     * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ java.util.List< com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry> getConfidenceMetricsEntryList(); /** * * *
     * Output only. Metrics for each confidence_threshold in
     * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
     * position_threshold = INT32_MAX_VALUE.
     * ROC and precision-recall curves, and other aggregated metrics are derived
     * from them. The confidence metrics entries may also be supplied for
     * additional values of position_threshold, but from these no aggregated
     * metrics are computed.
     * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry getConfidenceMetricsEntry(int index); /** * * *
     * Output only. Metrics for each confidence_threshold in
     * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
     * position_threshold = INT32_MAX_VALUE.
     * ROC and precision-recall curves, and other aggregated metrics are derived
     * from them. The confidence metrics entries may also be supplied for
     * additional values of position_threshold, but from these no aggregated
     * metrics are computed.
     * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ int getConfidenceMetricsEntryCount(); /** * * *
     * Output only. Metrics for each confidence_threshold in
     * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
     * position_threshold = INT32_MAX_VALUE.
     * ROC and precision-recall curves, and other aggregated metrics are derived
     * from them. The confidence metrics entries may also be supplied for
     * additional values of position_threshold, but from these no aggregated
     * metrics are computed.
     * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ java.util.List< ? extends com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntryOrBuilder> getConfidenceMetricsEntryOrBuilderList(); /** * * *
     * Output only. Metrics for each confidence_threshold in
     * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
     * position_threshold = INT32_MAX_VALUE.
     * ROC and precision-recall curves, and other aggregated metrics are derived
     * from them. The confidence metrics entries may also be supplied for
     * additional values of position_threshold, but from these no aggregated
     * metrics are computed.
     * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntryOrBuilder getConfidenceMetricsEntryOrBuilder(int index); /** * * *
     * Output only. Confusion matrix of the evaluation.
     * Only set for MULTICLASS classification problems where number
     * of labels is no more than 10.
     * Only set for model level evaluation, not for evaluation per label.
     * 
* * * .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 4; * * * @return Whether the confusionMatrix field is set. */ boolean hasConfusionMatrix(); /** * * *
     * Output only. Confusion matrix of the evaluation.
     * Only set for MULTICLASS classification problems where number
     * of labels is no more than 10.
     * Only set for model level evaluation, not for evaluation per label.
     * 
* * * .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 4; * * * @return The confusionMatrix. */ com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix getConfusionMatrix(); /** * * *
     * Output only. Confusion matrix of the evaluation.
     * Only set for MULTICLASS classification problems where number
     * of labels is no more than 10.
     * Only set for model level evaluation, not for evaluation per label.
     * 
* * * .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 4; * */ com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrixOrBuilder getConfusionMatrixOrBuilder(); /** * * *
     * Output only. The annotation spec ids used for this evaluation.
     * 
* * repeated string annotation_spec_id = 5; * * @return A list containing the annotationSpecId. */ java.util.List getAnnotationSpecIdList(); /** * * *
     * Output only. The annotation spec ids used for this evaluation.
     * 
* * repeated string annotation_spec_id = 5; * * @return The count of annotationSpecId. */ int getAnnotationSpecIdCount(); /** * * *
     * Output only. The annotation spec ids used for this evaluation.
     * 
* * repeated string annotation_spec_id = 5; * * @param index The index of the element to return. * @return The annotationSpecId at the given index. */ java.lang.String getAnnotationSpecId(int index); /** * * *
     * Output only. The annotation spec ids used for this evaluation.
     * 
* * repeated string annotation_spec_id = 5; * * @param index The index of the value to return. * @return The bytes of the annotationSpecId at the given index. */ com.google.protobuf.ByteString getAnnotationSpecIdBytes(int index); } /** * * *
   * Model evaluation metrics for classification problems.
   * Note: For Video Classification this metrics only describe quality of the
   * Video Classification predictions of "segment_classification" type.
   * 
* * Protobuf type {@code google.cloud.automl.v1beta1.ClassificationEvaluationMetrics} */ public static final class ClassificationEvaluationMetrics extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:google.cloud.automl.v1beta1.ClassificationEvaluationMetrics) ClassificationEvaluationMetricsOrBuilder { private static final long serialVersionUID = 0L; // Use ClassificationEvaluationMetrics.newBuilder() to construct. private ClassificationEvaluationMetrics( com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private ClassificationEvaluationMetrics() { confidenceMetricsEntry_ = java.util.Collections.emptyList(); annotationSpecId_ = com.google.protobuf.LazyStringArrayList.EMPTY; } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance(UnusedPrivateParameter unused) { return new ClassificationEvaluationMetrics(); } @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .class, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .Builder.class); } public interface ConfidenceMetricsEntryOrBuilder extends // @@protoc_insertion_point(interface_extends:google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry) com.google.protobuf.MessageOrBuilder { /** * * *
       * Output only. Metrics are computed with an assumption that the model
       * never returns predictions with score lower than this value.
       * 
* * float confidence_threshold = 1; * * @return The confidenceThreshold. */ float getConfidenceThreshold(); /** * * *
       * Output only. Metrics are computed with an assumption that the model
       * always returns at most this many predictions (ordered by their score,
       * descendingly), but they all still need to meet the confidence_threshold.
       * 
* * int32 position_threshold = 14; * * @return The positionThreshold. */ int getPositionThreshold(); /** * * *
       * Output only. Recall (True Positive Rate) for the given confidence
       * threshold.
       * 
* * float recall = 2; * * @return The recall. */ float getRecall(); /** * * *
       * Output only. Precision for the given confidence threshold.
       * 
* * float precision = 3; * * @return The precision. */ float getPrecision(); /** * * *
       * Output only. False Positive Rate for the given confidence threshold.
       * 
* * float false_positive_rate = 8; * * @return The falsePositiveRate. */ float getFalsePositiveRate(); /** * * *
       * Output only. The harmonic mean of recall and precision.
       * 
* * float f1_score = 4; * * @return The f1Score. */ float getF1Score(); /** * * *
       * Output only. The Recall (True Positive Rate) when only considering the
       * label that has the highest prediction score and not below the confidence
       * threshold for each example.
       * 
* * float recall_at1 = 5; * * @return The recallAt1. */ float getRecallAt1(); /** * * *
       * Output only. The precision when only considering the label that has the
       * highest prediction score and not below the confidence threshold for each
       * example.
       * 
* * float precision_at1 = 6; * * @return The precisionAt1. */ float getPrecisionAt1(); /** * * *
       * Output only. The False Positive Rate when only considering the label that
       * has the highest prediction score and not below the confidence threshold
       * for each example.
       * 
* * float false_positive_rate_at1 = 9; * * @return The falsePositiveRateAt1. */ float getFalsePositiveRateAt1(); /** * * *
       * Output only. The harmonic mean of [recall_at1][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.recall_at1] and [precision_at1][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.precision_at1].
       * 
* * float f1_score_at1 = 7; * * @return The f1ScoreAt1. */ float getF1ScoreAt1(); /** * * *
       * Output only. The number of model created labels that match a ground truth
       * label.
       * 
* * int64 true_positive_count = 10; * * @return The truePositiveCount. */ long getTruePositiveCount(); /** * * *
       * Output only. The number of model created labels that do not match a
       * ground truth label.
       * 
* * int64 false_positive_count = 11; * * @return The falsePositiveCount. */ long getFalsePositiveCount(); /** * * *
       * Output only. The number of ground truth labels that are not matched
       * by a model created label.
       * 
* * int64 false_negative_count = 12; * * @return The falseNegativeCount. */ long getFalseNegativeCount(); /** * * *
       * Output only. The number of labels that were not created by the model,
       * but if they would, they would not match a ground truth label.
       * 
* * int64 true_negative_count = 13; * * @return The trueNegativeCount. */ long getTrueNegativeCount(); } /** * * *
     * Metrics for a single confidence threshold.
     * 
* * Protobuf type {@code * google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry} */ public static final class ConfidenceMetricsEntry extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry) ConfidenceMetricsEntryOrBuilder { private static final long serialVersionUID = 0L; // Use ConfidenceMetricsEntry.newBuilder() to construct. private ConfidenceMetricsEntry(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private ConfidenceMetricsEntry() {} @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance(UnusedPrivateParameter unused) { return new ConfidenceMetricsEntry(); } @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfidenceMetricsEntry_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfidenceMetricsEntry_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry.class, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry.Builder.class); } public static final int CONFIDENCE_THRESHOLD_FIELD_NUMBER = 1; private float confidenceThreshold_; /** * * *
       * Output only. Metrics are computed with an assumption that the model
       * never returns predictions with score lower than this value.
       * 
* * float confidence_threshold = 1; * * @return The confidenceThreshold. */ @java.lang.Override public float getConfidenceThreshold() { return confidenceThreshold_; } public static final int POSITION_THRESHOLD_FIELD_NUMBER = 14; private int positionThreshold_; /** * * *
       * Output only. Metrics are computed with an assumption that the model
       * always returns at most this many predictions (ordered by their score,
       * descendingly), but they all still need to meet the confidence_threshold.
       * 
* * int32 position_threshold = 14; * * @return The positionThreshold. */ @java.lang.Override public int getPositionThreshold() { return positionThreshold_; } public static final int RECALL_FIELD_NUMBER = 2; private float recall_; /** * * *
       * Output only. Recall (True Positive Rate) for the given confidence
       * threshold.
       * 
* * float recall = 2; * * @return The recall. */ @java.lang.Override public float getRecall() { return recall_; } public static final int PRECISION_FIELD_NUMBER = 3; private float precision_; /** * * *
       * Output only. Precision for the given confidence threshold.
       * 
* * float precision = 3; * * @return The precision. */ @java.lang.Override public float getPrecision() { return precision_; } public static final int FALSE_POSITIVE_RATE_FIELD_NUMBER = 8; private float falsePositiveRate_; /** * * *
       * Output only. False Positive Rate for the given confidence threshold.
       * 
* * float false_positive_rate = 8; * * @return The falsePositiveRate. */ @java.lang.Override public float getFalsePositiveRate() { return falsePositiveRate_; } public static final int F1_SCORE_FIELD_NUMBER = 4; private float f1Score_; /** * * *
       * Output only. The harmonic mean of recall and precision.
       * 
* * float f1_score = 4; * * @return The f1Score. */ @java.lang.Override public float getF1Score() { return f1Score_; } public static final int RECALL_AT1_FIELD_NUMBER = 5; private float recallAt1_; /** * * *
       * Output only. The Recall (True Positive Rate) when only considering the
       * label that has the highest prediction score and not below the confidence
       * threshold for each example.
       * 
* * float recall_at1 = 5; * * @return The recallAt1. */ @java.lang.Override public float getRecallAt1() { return recallAt1_; } public static final int PRECISION_AT1_FIELD_NUMBER = 6; private float precisionAt1_; /** * * *
       * Output only. The precision when only considering the label that has the
       * highest prediction score and not below the confidence threshold for each
       * example.
       * 
* * float precision_at1 = 6; * * @return The precisionAt1. */ @java.lang.Override public float getPrecisionAt1() { return precisionAt1_; } public static final int FALSE_POSITIVE_RATE_AT1_FIELD_NUMBER = 9; private float falsePositiveRateAt1_; /** * * *
       * Output only. The False Positive Rate when only considering the label that
       * has the highest prediction score and not below the confidence threshold
       * for each example.
       * 
* * float false_positive_rate_at1 = 9; * * @return The falsePositiveRateAt1. */ @java.lang.Override public float getFalsePositiveRateAt1() { return falsePositiveRateAt1_; } public static final int F1_SCORE_AT1_FIELD_NUMBER = 7; private float f1ScoreAt1_; /** * * *
       * Output only. The harmonic mean of [recall_at1][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.recall_at1] and [precision_at1][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.precision_at1].
       * 
* * float f1_score_at1 = 7; * * @return The f1ScoreAt1. */ @java.lang.Override public float getF1ScoreAt1() { return f1ScoreAt1_; } public static final int TRUE_POSITIVE_COUNT_FIELD_NUMBER = 10; private long truePositiveCount_; /** * * *
       * Output only. The number of model created labels that match a ground truth
       * label.
       * 
* * int64 true_positive_count = 10; * * @return The truePositiveCount. */ @java.lang.Override public long getTruePositiveCount() { return truePositiveCount_; } public static final int FALSE_POSITIVE_COUNT_FIELD_NUMBER = 11; private long falsePositiveCount_; /** * * *
       * Output only. The number of model created labels that do not match a
       * ground truth label.
       * 
* * int64 false_positive_count = 11; * * @return The falsePositiveCount. */ @java.lang.Override public long getFalsePositiveCount() { return falsePositiveCount_; } public static final int FALSE_NEGATIVE_COUNT_FIELD_NUMBER = 12; private long falseNegativeCount_; /** * * *
       * Output only. The number of ground truth labels that are not matched
       * by a model created label.
       * 
* * int64 false_negative_count = 12; * * @return The falseNegativeCount. */ @java.lang.Override public long getFalseNegativeCount() { return falseNegativeCount_; } public static final int TRUE_NEGATIVE_COUNT_FIELD_NUMBER = 13; private long trueNegativeCount_; /** * * *
       * Output only. The number of labels that were not created by the model,
       * but if they would, they would not match a ground truth label.
       * 
* * int64 true_negative_count = 13; * * @return The trueNegativeCount. */ @java.lang.Override public long getTrueNegativeCount() { return trueNegativeCount_; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (java.lang.Float.floatToRawIntBits(confidenceThreshold_) != 0) { output.writeFloat(1, confidenceThreshold_); } if (java.lang.Float.floatToRawIntBits(recall_) != 0) { output.writeFloat(2, recall_); } if (java.lang.Float.floatToRawIntBits(precision_) != 0) { output.writeFloat(3, precision_); } if (java.lang.Float.floatToRawIntBits(f1Score_) != 0) { output.writeFloat(4, f1Score_); } if (java.lang.Float.floatToRawIntBits(recallAt1_) != 0) { output.writeFloat(5, recallAt1_); } if (java.lang.Float.floatToRawIntBits(precisionAt1_) != 0) { output.writeFloat(6, precisionAt1_); } if (java.lang.Float.floatToRawIntBits(f1ScoreAt1_) != 0) { output.writeFloat(7, f1ScoreAt1_); } if (java.lang.Float.floatToRawIntBits(falsePositiveRate_) != 0) { output.writeFloat(8, falsePositiveRate_); } if (java.lang.Float.floatToRawIntBits(falsePositiveRateAt1_) != 0) { output.writeFloat(9, falsePositiveRateAt1_); } if (truePositiveCount_ != 0L) { output.writeInt64(10, truePositiveCount_); } if (falsePositiveCount_ != 0L) { output.writeInt64(11, falsePositiveCount_); } if (falseNegativeCount_ != 0L) { output.writeInt64(12, falseNegativeCount_); } if (trueNegativeCount_ != 0L) { output.writeInt64(13, trueNegativeCount_); } if (positionThreshold_ != 0) { output.writeInt32(14, positionThreshold_); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (java.lang.Float.floatToRawIntBits(confidenceThreshold_) != 0) { size += com.google.protobuf.CodedOutputStream.computeFloatSize(1, confidenceThreshold_); } if (java.lang.Float.floatToRawIntBits(recall_) != 0) { size += com.google.protobuf.CodedOutputStream.computeFloatSize(2, recall_); } if (java.lang.Float.floatToRawIntBits(precision_) != 0) { size += com.google.protobuf.CodedOutputStream.computeFloatSize(3, precision_); } if (java.lang.Float.floatToRawIntBits(f1Score_) != 0) { size += com.google.protobuf.CodedOutputStream.computeFloatSize(4, f1Score_); } if (java.lang.Float.floatToRawIntBits(recallAt1_) != 0) { size += com.google.protobuf.CodedOutputStream.computeFloatSize(5, recallAt1_); } if (java.lang.Float.floatToRawIntBits(precisionAt1_) != 0) { size += com.google.protobuf.CodedOutputStream.computeFloatSize(6, precisionAt1_); } if (java.lang.Float.floatToRawIntBits(f1ScoreAt1_) != 0) { size += com.google.protobuf.CodedOutputStream.computeFloatSize(7, f1ScoreAt1_); } if (java.lang.Float.floatToRawIntBits(falsePositiveRate_) != 0) { size += com.google.protobuf.CodedOutputStream.computeFloatSize(8, falsePositiveRate_); } if (java.lang.Float.floatToRawIntBits(falsePositiveRateAt1_) != 0) { size += com.google.protobuf.CodedOutputStream.computeFloatSize(9, falsePositiveRateAt1_); } if (truePositiveCount_ != 0L) { size += com.google.protobuf.CodedOutputStream.computeInt64Size(10, truePositiveCount_); } if (falsePositiveCount_ != 0L) { size += com.google.protobuf.CodedOutputStream.computeInt64Size(11, falsePositiveCount_); } if (falseNegativeCount_ != 0L) { size += com.google.protobuf.CodedOutputStream.computeInt64Size(12, falseNegativeCount_); } if (trueNegativeCount_ != 0L) { size += com.google.protobuf.CodedOutputStream.computeInt64Size(13, trueNegativeCount_); } if (positionThreshold_ != 0) { size += com.google.protobuf.CodedOutputStream.computeInt32Size(14, positionThreshold_); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry)) { return super.equals(obj); } com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry other = (com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry) obj; if (java.lang.Float.floatToIntBits(getConfidenceThreshold()) != java.lang.Float.floatToIntBits(other.getConfidenceThreshold())) return false; if (getPositionThreshold() != other.getPositionThreshold()) return false; if (java.lang.Float.floatToIntBits(getRecall()) != java.lang.Float.floatToIntBits(other.getRecall())) return false; if (java.lang.Float.floatToIntBits(getPrecision()) != java.lang.Float.floatToIntBits(other.getPrecision())) return false; if (java.lang.Float.floatToIntBits(getFalsePositiveRate()) != java.lang.Float.floatToIntBits(other.getFalsePositiveRate())) return false; if (java.lang.Float.floatToIntBits(getF1Score()) != java.lang.Float.floatToIntBits(other.getF1Score())) return false; if (java.lang.Float.floatToIntBits(getRecallAt1()) != java.lang.Float.floatToIntBits(other.getRecallAt1())) return false; if (java.lang.Float.floatToIntBits(getPrecisionAt1()) != java.lang.Float.floatToIntBits(other.getPrecisionAt1())) return false; if (java.lang.Float.floatToIntBits(getFalsePositiveRateAt1()) != java.lang.Float.floatToIntBits(other.getFalsePositiveRateAt1())) return false; if (java.lang.Float.floatToIntBits(getF1ScoreAt1()) != java.lang.Float.floatToIntBits(other.getF1ScoreAt1())) return false; if (getTruePositiveCount() != other.getTruePositiveCount()) return false; if (getFalsePositiveCount() != other.getFalsePositiveCount()) return false; if (getFalseNegativeCount() != other.getFalseNegativeCount()) return false; if (getTrueNegativeCount() != other.getTrueNegativeCount()) return false; if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); hash = (37 * hash) + CONFIDENCE_THRESHOLD_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits(getConfidenceThreshold()); hash = (37 * hash) + POSITION_THRESHOLD_FIELD_NUMBER; hash = (53 * hash) + getPositionThreshold(); hash = (37 * hash) + RECALL_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits(getRecall()); hash = (37 * hash) + PRECISION_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits(getPrecision()); hash = (37 * hash) + FALSE_POSITIVE_RATE_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits(getFalsePositiveRate()); hash = (37 * hash) + F1_SCORE_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits(getF1Score()); hash = (37 * hash) + RECALL_AT1_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits(getRecallAt1()); hash = (37 * hash) + PRECISION_AT1_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits(getPrecisionAt1()); hash = (37 * hash) + FALSE_POSITIVE_RATE_AT1_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits(getFalsePositiveRateAt1()); hash = (37 * hash) + F1_SCORE_AT1_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits(getF1ScoreAt1()); hash = (37 * hash) + TRUE_POSITIVE_COUNT_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong(getTruePositiveCount()); hash = (37 * hash) + FALSE_POSITIVE_COUNT_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong(getFalsePositiveCount()); hash = (37 * hash) + FALSE_NEGATIVE_COUNT_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong(getFalseNegativeCount()); hash = (37 * hash) + TRUE_NEGATIVE_COUNT_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong(getTrueNegativeCount()); hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfidenceMetricsEntry parseFrom(java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfidenceMetricsEntry parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfidenceMetricsEntry parseFrom(com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfidenceMetricsEntry parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfidenceMetricsEntry parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfidenceMetricsEntry parseFrom(byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfidenceMetricsEntry parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfidenceMetricsEntry parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfidenceMetricsEntry parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfidenceMetricsEntry parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfidenceMetricsEntry parseFrom(com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfidenceMetricsEntry parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * * *
       * Metrics for a single confidence threshold.
       * 
* * Protobuf type {@code * google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry) com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntryOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfidenceMetricsEntry_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfidenceMetricsEntry_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfidenceMetricsEntry.class, com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfidenceMetricsEntry.Builder.class); } // Construct using // com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.newBuilder() private Builder() {} private Builder(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); } @java.lang.Override public Builder clear() { super.clear(); confidenceThreshold_ = 0F; positionThreshold_ = 0; recall_ = 0F; precision_ = 0F; falsePositiveRate_ = 0F; f1Score_ = 0F; recallAt1_ = 0F; precisionAt1_ = 0F; falsePositiveRateAt1_ = 0F; f1ScoreAt1_ = 0F; truePositiveCount_ = 0L; falsePositiveCount_ = 0L; falseNegativeCount_ = 0L; trueNegativeCount_ = 0L; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfidenceMetricsEntry_descriptor; } @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry getDefaultInstanceForType() { return com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry.getDefaultInstance(); } @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry build() { com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry buildPartial() { com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry result = new com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfidenceMetricsEntry(this); result.confidenceThreshold_ = confidenceThreshold_; result.positionThreshold_ = positionThreshold_; result.recall_ = recall_; result.precision_ = precision_; result.falsePositiveRate_ = falsePositiveRate_; result.f1Score_ = f1Score_; result.recallAt1_ = recallAt1_; result.precisionAt1_ = precisionAt1_; result.falsePositiveRateAt1_ = falsePositiveRateAt1_; result.f1ScoreAt1_ = f1ScoreAt1_; result.truePositiveCount_ = truePositiveCount_; result.falsePositiveCount_ = falsePositiveCount_; result.falseNegativeCount_ = falseNegativeCount_; result.trueNegativeCount_ = trueNegativeCount_; onBuilt(); return result; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry) { return mergeFrom( (com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry) other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry other) { if (other == com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry.getDefaultInstance()) return this; if (other.getConfidenceThreshold() != 0F) { setConfidenceThreshold(other.getConfidenceThreshold()); } if (other.getPositionThreshold() != 0) { setPositionThreshold(other.getPositionThreshold()); } if (other.getRecall() != 0F) { setRecall(other.getRecall()); } if (other.getPrecision() != 0F) { setPrecision(other.getPrecision()); } if (other.getFalsePositiveRate() != 0F) { setFalsePositiveRate(other.getFalsePositiveRate()); } if (other.getF1Score() != 0F) { setF1Score(other.getF1Score()); } if (other.getRecallAt1() != 0F) { setRecallAt1(other.getRecallAt1()); } if (other.getPrecisionAt1() != 0F) { setPrecisionAt1(other.getPrecisionAt1()); } if (other.getFalsePositiveRateAt1() != 0F) { setFalsePositiveRateAt1(other.getFalsePositiveRateAt1()); } if (other.getF1ScoreAt1() != 0F) { setF1ScoreAt1(other.getF1ScoreAt1()); } if (other.getTruePositiveCount() != 0L) { setTruePositiveCount(other.getTruePositiveCount()); } if (other.getFalsePositiveCount() != 0L) { setFalsePositiveCount(other.getFalsePositiveCount()); } if (other.getFalseNegativeCount() != 0L) { setFalseNegativeCount(other.getFalseNegativeCount()); } if (other.getTrueNegativeCount() != 0L) { setTrueNegativeCount(other.getTrueNegativeCount()); } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 13: { confidenceThreshold_ = input.readFloat(); break; } // case 13 case 21: { recall_ = input.readFloat(); break; } // case 21 case 29: { precision_ = input.readFloat(); break; } // case 29 case 37: { f1Score_ = input.readFloat(); break; } // case 37 case 45: { recallAt1_ = input.readFloat(); break; } // case 45 case 53: { precisionAt1_ = input.readFloat(); break; } // case 53 case 61: { f1ScoreAt1_ = input.readFloat(); break; } // case 61 case 69: { falsePositiveRate_ = input.readFloat(); break; } // case 69 case 77: { falsePositiveRateAt1_ = input.readFloat(); break; } // case 77 case 80: { truePositiveCount_ = input.readInt64(); break; } // case 80 case 88: { falsePositiveCount_ = input.readInt64(); break; } // case 88 case 96: { falseNegativeCount_ = input.readInt64(); break; } // case 96 case 104: { trueNegativeCount_ = input.readInt64(); break; } // case 104 case 112: { positionThreshold_ = input.readInt32(); break; } // case 112 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private float confidenceThreshold_; /** * * *
         * Output only. Metrics are computed with an assumption that the model
         * never returns predictions with score lower than this value.
         * 
* * float confidence_threshold = 1; * * @return The confidenceThreshold. */ @java.lang.Override public float getConfidenceThreshold() { return confidenceThreshold_; } /** * * *
         * Output only. Metrics are computed with an assumption that the model
         * never returns predictions with score lower than this value.
         * 
* * float confidence_threshold = 1; * * @param value The confidenceThreshold to set. * @return This builder for chaining. */ public Builder setConfidenceThreshold(float value) { confidenceThreshold_ = value; onChanged(); return this; } /** * * *
         * Output only. Metrics are computed with an assumption that the model
         * never returns predictions with score lower than this value.
         * 
* * float confidence_threshold = 1; * * @return This builder for chaining. */ public Builder clearConfidenceThreshold() { confidenceThreshold_ = 0F; onChanged(); return this; } private int positionThreshold_; /** * * *
         * Output only. Metrics are computed with an assumption that the model
         * always returns at most this many predictions (ordered by their score,
         * descendingly), but they all still need to meet the confidence_threshold.
         * 
* * int32 position_threshold = 14; * * @return The positionThreshold. */ @java.lang.Override public int getPositionThreshold() { return positionThreshold_; } /** * * *
         * Output only. Metrics are computed with an assumption that the model
         * always returns at most this many predictions (ordered by their score,
         * descendingly), but they all still need to meet the confidence_threshold.
         * 
* * int32 position_threshold = 14; * * @param value The positionThreshold to set. * @return This builder for chaining. */ public Builder setPositionThreshold(int value) { positionThreshold_ = value; onChanged(); return this; } /** * * *
         * Output only. Metrics are computed with an assumption that the model
         * always returns at most this many predictions (ordered by their score,
         * descendingly), but they all still need to meet the confidence_threshold.
         * 
* * int32 position_threshold = 14; * * @return This builder for chaining. */ public Builder clearPositionThreshold() { positionThreshold_ = 0; onChanged(); return this; } private float recall_; /** * * *
         * Output only. Recall (True Positive Rate) for the given confidence
         * threshold.
         * 
* * float recall = 2; * * @return The recall. */ @java.lang.Override public float getRecall() { return recall_; } /** * * *
         * Output only. Recall (True Positive Rate) for the given confidence
         * threshold.
         * 
* * float recall = 2; * * @param value The recall to set. * @return This builder for chaining. */ public Builder setRecall(float value) { recall_ = value; onChanged(); return this; } /** * * *
         * Output only. Recall (True Positive Rate) for the given confidence
         * threshold.
         * 
* * float recall = 2; * * @return This builder for chaining. */ public Builder clearRecall() { recall_ = 0F; onChanged(); return this; } private float precision_; /** * * *
         * Output only. Precision for the given confidence threshold.
         * 
* * float precision = 3; * * @return The precision. */ @java.lang.Override public float getPrecision() { return precision_; } /** * * *
         * Output only. Precision for the given confidence threshold.
         * 
* * float precision = 3; * * @param value The precision to set. * @return This builder for chaining. */ public Builder setPrecision(float value) { precision_ = value; onChanged(); return this; } /** * * *
         * Output only. Precision for the given confidence threshold.
         * 
* * float precision = 3; * * @return This builder for chaining. */ public Builder clearPrecision() { precision_ = 0F; onChanged(); return this; } private float falsePositiveRate_; /** * * *
         * Output only. False Positive Rate for the given confidence threshold.
         * 
* * float false_positive_rate = 8; * * @return The falsePositiveRate. */ @java.lang.Override public float getFalsePositiveRate() { return falsePositiveRate_; } /** * * *
         * Output only. False Positive Rate for the given confidence threshold.
         * 
* * float false_positive_rate = 8; * * @param value The falsePositiveRate to set. * @return This builder for chaining. */ public Builder setFalsePositiveRate(float value) { falsePositiveRate_ = value; onChanged(); return this; } /** * * *
         * Output only. False Positive Rate for the given confidence threshold.
         * 
* * float false_positive_rate = 8; * * @return This builder for chaining. */ public Builder clearFalsePositiveRate() { falsePositiveRate_ = 0F; onChanged(); return this; } private float f1Score_; /** * * *
         * Output only. The harmonic mean of recall and precision.
         * 
* * float f1_score = 4; * * @return The f1Score. */ @java.lang.Override public float getF1Score() { return f1Score_; } /** * * *
         * Output only. The harmonic mean of recall and precision.
         * 
* * float f1_score = 4; * * @param value The f1Score to set. * @return This builder for chaining. */ public Builder setF1Score(float value) { f1Score_ = value; onChanged(); return this; } /** * * *
         * Output only. The harmonic mean of recall and precision.
         * 
* * float f1_score = 4; * * @return This builder for chaining. */ public Builder clearF1Score() { f1Score_ = 0F; onChanged(); return this; } private float recallAt1_; /** * * *
         * Output only. The Recall (True Positive Rate) when only considering the
         * label that has the highest prediction score and not below the confidence
         * threshold for each example.
         * 
* * float recall_at1 = 5; * * @return The recallAt1. */ @java.lang.Override public float getRecallAt1() { return recallAt1_; } /** * * *
         * Output only. The Recall (True Positive Rate) when only considering the
         * label that has the highest prediction score and not below the confidence
         * threshold for each example.
         * 
* * float recall_at1 = 5; * * @param value The recallAt1 to set. * @return This builder for chaining. */ public Builder setRecallAt1(float value) { recallAt1_ = value; onChanged(); return this; } /** * * *
         * Output only. The Recall (True Positive Rate) when only considering the
         * label that has the highest prediction score and not below the confidence
         * threshold for each example.
         * 
* * float recall_at1 = 5; * * @return This builder for chaining. */ public Builder clearRecallAt1() { recallAt1_ = 0F; onChanged(); return this; } private float precisionAt1_; /** * * *
         * Output only. The precision when only considering the label that has the
         * highest prediction score and not below the confidence threshold for each
         * example.
         * 
* * float precision_at1 = 6; * * @return The precisionAt1. */ @java.lang.Override public float getPrecisionAt1() { return precisionAt1_; } /** * * *
         * Output only. The precision when only considering the label that has the
         * highest prediction score and not below the confidence threshold for each
         * example.
         * 
* * float precision_at1 = 6; * * @param value The precisionAt1 to set. * @return This builder for chaining. */ public Builder setPrecisionAt1(float value) { precisionAt1_ = value; onChanged(); return this; } /** * * *
         * Output only. The precision when only considering the label that has the
         * highest prediction score and not below the confidence threshold for each
         * example.
         * 
* * float precision_at1 = 6; * * @return This builder for chaining. */ public Builder clearPrecisionAt1() { precisionAt1_ = 0F; onChanged(); return this; } private float falsePositiveRateAt1_; /** * * *
         * Output only. The False Positive Rate when only considering the label that
         * has the highest prediction score and not below the confidence threshold
         * for each example.
         * 
* * float false_positive_rate_at1 = 9; * * @return The falsePositiveRateAt1. */ @java.lang.Override public float getFalsePositiveRateAt1() { return falsePositiveRateAt1_; } /** * * *
         * Output only. The False Positive Rate when only considering the label that
         * has the highest prediction score and not below the confidence threshold
         * for each example.
         * 
* * float false_positive_rate_at1 = 9; * * @param value The falsePositiveRateAt1 to set. * @return This builder for chaining. */ public Builder setFalsePositiveRateAt1(float value) { falsePositiveRateAt1_ = value; onChanged(); return this; } /** * * *
         * Output only. The False Positive Rate when only considering the label that
         * has the highest prediction score and not below the confidence threshold
         * for each example.
         * 
* * float false_positive_rate_at1 = 9; * * @return This builder for chaining. */ public Builder clearFalsePositiveRateAt1() { falsePositiveRateAt1_ = 0F; onChanged(); return this; } private float f1ScoreAt1_; /** * * *
         * Output only. The harmonic mean of [recall_at1][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.recall_at1] and [precision_at1][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.precision_at1].
         * 
* * float f1_score_at1 = 7; * * @return The f1ScoreAt1. */ @java.lang.Override public float getF1ScoreAt1() { return f1ScoreAt1_; } /** * * *
         * Output only. The harmonic mean of [recall_at1][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.recall_at1] and [precision_at1][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.precision_at1].
         * 
* * float f1_score_at1 = 7; * * @param value The f1ScoreAt1 to set. * @return This builder for chaining. */ public Builder setF1ScoreAt1(float value) { f1ScoreAt1_ = value; onChanged(); return this; } /** * * *
         * Output only. The harmonic mean of [recall_at1][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.recall_at1] and [precision_at1][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.precision_at1].
         * 
* * float f1_score_at1 = 7; * * @return This builder for chaining. */ public Builder clearF1ScoreAt1() { f1ScoreAt1_ = 0F; onChanged(); return this; } private long truePositiveCount_; /** * * *
         * Output only. The number of model created labels that match a ground truth
         * label.
         * 
* * int64 true_positive_count = 10; * * @return The truePositiveCount. */ @java.lang.Override public long getTruePositiveCount() { return truePositiveCount_; } /** * * *
         * Output only. The number of model created labels that match a ground truth
         * label.
         * 
* * int64 true_positive_count = 10; * * @param value The truePositiveCount to set. * @return This builder for chaining. */ public Builder setTruePositiveCount(long value) { truePositiveCount_ = value; onChanged(); return this; } /** * * *
         * Output only. The number of model created labels that match a ground truth
         * label.
         * 
* * int64 true_positive_count = 10; * * @return This builder for chaining. */ public Builder clearTruePositiveCount() { truePositiveCount_ = 0L; onChanged(); return this; } private long falsePositiveCount_; /** * * *
         * Output only. The number of model created labels that do not match a
         * ground truth label.
         * 
* * int64 false_positive_count = 11; * * @return The falsePositiveCount. */ @java.lang.Override public long getFalsePositiveCount() { return falsePositiveCount_; } /** * * *
         * Output only. The number of model created labels that do not match a
         * ground truth label.
         * 
* * int64 false_positive_count = 11; * * @param value The falsePositiveCount to set. * @return This builder for chaining. */ public Builder setFalsePositiveCount(long value) { falsePositiveCount_ = value; onChanged(); return this; } /** * * *
         * Output only. The number of model created labels that do not match a
         * ground truth label.
         * 
* * int64 false_positive_count = 11; * * @return This builder for chaining. */ public Builder clearFalsePositiveCount() { falsePositiveCount_ = 0L; onChanged(); return this; } private long falseNegativeCount_; /** * * *
         * Output only. The number of ground truth labels that are not matched
         * by a model created label.
         * 
* * int64 false_negative_count = 12; * * @return The falseNegativeCount. */ @java.lang.Override public long getFalseNegativeCount() { return falseNegativeCount_; } /** * * *
         * Output only. The number of ground truth labels that are not matched
         * by a model created label.
         * 
* * int64 false_negative_count = 12; * * @param value The falseNegativeCount to set. * @return This builder for chaining. */ public Builder setFalseNegativeCount(long value) { falseNegativeCount_ = value; onChanged(); return this; } /** * * *
         * Output only. The number of ground truth labels that are not matched
         * by a model created label.
         * 
* * int64 false_negative_count = 12; * * @return This builder for chaining. */ public Builder clearFalseNegativeCount() { falseNegativeCount_ = 0L; onChanged(); return this; } private long trueNegativeCount_; /** * * *
         * Output only. The number of labels that were not created by the model,
         * but if they would, they would not match a ground truth label.
         * 
* * int64 true_negative_count = 13; * * @return The trueNegativeCount. */ @java.lang.Override public long getTrueNegativeCount() { return trueNegativeCount_; } /** * * *
         * Output only. The number of labels that were not created by the model,
         * but if they would, they would not match a ground truth label.
         * 
* * int64 true_negative_count = 13; * * @param value The trueNegativeCount to set. * @return This builder for chaining. */ public Builder setTrueNegativeCount(long value) { trueNegativeCount_ = value; onChanged(); return this; } /** * * *
         * Output only. The number of labels that were not created by the model,
         * but if they would, they would not match a ground truth label.
         * 
* * int64 true_negative_count = 13; * * @return This builder for chaining. */ public Builder clearTrueNegativeCount() { trueNegativeCount_ = 0L; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry) } // @@protoc_insertion_point(class_scope:google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry) private static final com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfidenceMetricsEntry DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry(); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfidenceMetricsEntry getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public ConfidenceMetricsEntry parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException() .setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public interface ConfusionMatrixOrBuilder extends // @@protoc_insertion_point(interface_extends:google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix) com.google.protobuf.MessageOrBuilder { /** * * *
       * Output only. IDs of the annotation specs used in the confusion matrix.
       * For Tables CLASSIFICATION
       * [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]
       * only list of [annotation_spec_display_name-s][] is populated.
       * 
* * repeated string annotation_spec_id = 1; * * @return A list containing the annotationSpecId. */ java.util.List getAnnotationSpecIdList(); /** * * *
       * Output only. IDs of the annotation specs used in the confusion matrix.
       * For Tables CLASSIFICATION
       * [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]
       * only list of [annotation_spec_display_name-s][] is populated.
       * 
* * repeated string annotation_spec_id = 1; * * @return The count of annotationSpecId. */ int getAnnotationSpecIdCount(); /** * * *
       * Output only. IDs of the annotation specs used in the confusion matrix.
       * For Tables CLASSIFICATION
       * [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]
       * only list of [annotation_spec_display_name-s][] is populated.
       * 
* * repeated string annotation_spec_id = 1; * * @param index The index of the element to return. * @return The annotationSpecId at the given index. */ java.lang.String getAnnotationSpecId(int index); /** * * *
       * Output only. IDs of the annotation specs used in the confusion matrix.
       * For Tables CLASSIFICATION
       * [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]
       * only list of [annotation_spec_display_name-s][] is populated.
       * 
* * repeated string annotation_spec_id = 1; * * @param index The index of the value to return. * @return The bytes of the annotationSpecId at the given index. */ com.google.protobuf.ByteString getAnnotationSpecIdBytes(int index); /** * * *
       * Output only. Display name of the annotation specs used in the confusion
       * matrix, as they were at the moment of the evaluation. For Tables
       * CLASSIFICATION
       * [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type],
       * distinct values of the target column at the moment of the model
       * evaluation are populated here.
       * 
* * repeated string display_name = 3; * * @return A list containing the displayName. */ java.util.List getDisplayNameList(); /** * * *
       * Output only. Display name of the annotation specs used in the confusion
       * matrix, as they were at the moment of the evaluation. For Tables
       * CLASSIFICATION
       * [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type],
       * distinct values of the target column at the moment of the model
       * evaluation are populated here.
       * 
* * repeated string display_name = 3; * * @return The count of displayName. */ int getDisplayNameCount(); /** * * *
       * Output only. Display name of the annotation specs used in the confusion
       * matrix, as they were at the moment of the evaluation. For Tables
       * CLASSIFICATION
       * [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type],
       * distinct values of the target column at the moment of the model
       * evaluation are populated here.
       * 
* * repeated string display_name = 3; * * @param index The index of the element to return. * @return The displayName at the given index. */ java.lang.String getDisplayName(int index); /** * * *
       * Output only. Display name of the annotation specs used in the confusion
       * matrix, as they were at the moment of the evaluation. For Tables
       * CLASSIFICATION
       * [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type],
       * distinct values of the target column at the moment of the model
       * evaluation are populated here.
       * 
* * repeated string display_name = 3; * * @param index The index of the value to return. * @return The bytes of the displayName at the given index. */ com.google.protobuf.ByteString getDisplayNameBytes(int index); /** * * *
       * Output only. Rows in the confusion matrix. The number of rows is equal to
       * the size of `annotation_spec_id`.
       * `row[i].example_count[j]` is the number of examples that have ground
       * truth of the `annotation_spec_id[i]` and are predicted as
       * `annotation_spec_id[j]` by the model being evaluated.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ java.util.List< com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row> getRowList(); /** * * *
       * Output only. Rows in the confusion matrix. The number of rows is equal to
       * the size of `annotation_spec_id`.
       * `row[i].example_count[j]` is the number of examples that have ground
       * truth of the `annotation_spec_id[i]` and are predicted as
       * `annotation_spec_id[j]` by the model being evaluated.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row getRow(int index); /** * * *
       * Output only. Rows in the confusion matrix. The number of rows is equal to
       * the size of `annotation_spec_id`.
       * `row[i].example_count[j]` is the number of examples that have ground
       * truth of the `annotation_spec_id[i]` and are predicted as
       * `annotation_spec_id[j]` by the model being evaluated.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ int getRowCount(); /** * * *
       * Output only. Rows in the confusion matrix. The number of rows is equal to
       * the size of `annotation_spec_id`.
       * `row[i].example_count[j]` is the number of examples that have ground
       * truth of the `annotation_spec_id[i]` and are predicted as
       * `annotation_spec_id[j]` by the model being evaluated.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ java.util.List< ? extends com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.RowOrBuilder> getRowOrBuilderList(); /** * * *
       * Output only. Rows in the confusion matrix. The number of rows is equal to
       * the size of `annotation_spec_id`.
       * `row[i].example_count[j]` is the number of examples that have ground
       * truth of the `annotation_spec_id[i]` and are predicted as
       * `annotation_spec_id[j]` by the model being evaluated.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.RowOrBuilder getRowOrBuilder(int index); } /** * * *
     * Confusion matrix of the model running the classification.
     * 
* * Protobuf type {@code * google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix} */ public static final class ConfusionMatrix extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix) ConfusionMatrixOrBuilder { private static final long serialVersionUID = 0L; // Use ConfusionMatrix.newBuilder() to construct. private ConfusionMatrix(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private ConfusionMatrix() { annotationSpecId_ = com.google.protobuf.LazyStringArrayList.EMPTY; displayName_ = com.google.protobuf.LazyStringArrayList.EMPTY; row_ = java.util.Collections.emptyList(); } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance(UnusedPrivateParameter unused) { return new ConfusionMatrix(); } @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfusionMatrix_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfusionMatrix_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.class, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Builder.class); } public interface RowOrBuilder extends // @@protoc_insertion_point(interface_extends:google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row) com.google.protobuf.MessageOrBuilder { /** * * *
         * Output only. Value of the specific cell in the confusion matrix.
         * The number of values each row has (i.e. the length of the row) is equal
         * to the length of the `annotation_spec_id` field or, if that one is not
         * populated, length of the [display_name][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.display_name] field.
         * 
* * repeated int32 example_count = 1; * * @return A list containing the exampleCount. */ java.util.List getExampleCountList(); /** * * *
         * Output only. Value of the specific cell in the confusion matrix.
         * The number of values each row has (i.e. the length of the row) is equal
         * to the length of the `annotation_spec_id` field or, if that one is not
         * populated, length of the [display_name][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.display_name] field.
         * 
* * repeated int32 example_count = 1; * * @return The count of exampleCount. */ int getExampleCountCount(); /** * * *
         * Output only. Value of the specific cell in the confusion matrix.
         * The number of values each row has (i.e. the length of the row) is equal
         * to the length of the `annotation_spec_id` field or, if that one is not
         * populated, length of the [display_name][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.display_name] field.
         * 
* * repeated int32 example_count = 1; * * @param index The index of the element to return. * @return The exampleCount at the given index. */ int getExampleCount(int index); } /** * * *
       * Output only. A row in the confusion matrix.
       * 
* * Protobuf type {@code * google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row} */ public static final class Row extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row) RowOrBuilder { private static final long serialVersionUID = 0L; // Use Row.newBuilder() to construct. private Row(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private Row() { exampleCount_ = emptyIntList(); } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance(UnusedPrivateParameter unused) { return new Row(); } @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfusionMatrix_Row_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfusionMatrix_Row_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row.class, com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder.class); } public static final int EXAMPLE_COUNT_FIELD_NUMBER = 1; private com.google.protobuf.Internal.IntList exampleCount_; /** * * *
         * Output only. Value of the specific cell in the confusion matrix.
         * The number of values each row has (i.e. the length of the row) is equal
         * to the length of the `annotation_spec_id` field or, if that one is not
         * populated, length of the [display_name][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.display_name] field.
         * 
* * repeated int32 example_count = 1; * * @return A list containing the exampleCount. */ @java.lang.Override public java.util.List getExampleCountList() { return exampleCount_; } /** * * *
         * Output only. Value of the specific cell in the confusion matrix.
         * The number of values each row has (i.e. the length of the row) is equal
         * to the length of the `annotation_spec_id` field or, if that one is not
         * populated, length of the [display_name][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.display_name] field.
         * 
* * repeated int32 example_count = 1; * * @return The count of exampleCount. */ public int getExampleCountCount() { return exampleCount_.size(); } /** * * *
         * Output only. Value of the specific cell in the confusion matrix.
         * The number of values each row has (i.e. the length of the row) is equal
         * to the length of the `annotation_spec_id` field or, if that one is not
         * populated, length of the [display_name][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.display_name] field.
         * 
* * repeated int32 example_count = 1; * * @param index The index of the element to return. * @return The exampleCount at the given index. */ public int getExampleCount(int index) { return exampleCount_.getInt(index); } private int exampleCountMemoizedSerializedSize = -1; private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { getSerializedSize(); if (getExampleCountList().size() > 0) { output.writeUInt32NoTag(10); output.writeUInt32NoTag(exampleCountMemoizedSerializedSize); } for (int i = 0; i < exampleCount_.size(); i++) { output.writeInt32NoTag(exampleCount_.getInt(i)); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; { int dataSize = 0; for (int i = 0; i < exampleCount_.size(); i++) { dataSize += com.google.protobuf.CodedOutputStream.computeInt32SizeNoTag( exampleCount_.getInt(i)); } size += dataSize; if (!getExampleCountList().isEmpty()) { size += 1; size += com.google.protobuf.CodedOutputStream.computeInt32SizeNoTag(dataSize); } exampleCountMemoizedSerializedSize = dataSize; } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row)) { return super.equals(obj); } com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row other = (com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row) obj; if (!getExampleCountList().equals(other.getExampleCountList())) return false; if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (getExampleCountCount() > 0) { hash = (37 * hash) + EXAMPLE_COUNT_FIELD_NUMBER; hash = (53 * hash) + getExampleCountList().hashCode(); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row parseFrom(java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row parseFrom(com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row parseFrom(byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException( PARSER, input); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row parseFrom(com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * * *
         * Output only. A row in the confusion matrix.
         * 
* * Protobuf type {@code * google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row) com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.RowOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfusionMatrix_Row_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfusionMatrix_Row_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row.class, com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder.class); } // Construct using // com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.Row.newBuilder() private Builder() {} private Builder(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); } @java.lang.Override public Builder clear() { super.clear(); exampleCount_ = emptyIntList(); bitField0_ = (bitField0_ & ~0x00000001); return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfusionMatrix_Row_descriptor; } @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row getDefaultInstanceForType() { return com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row.getDefaultInstance(); } @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row build() { com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row buildPartial() { com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row result = new com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row(this); int from_bitField0_ = bitField0_; if (((bitField0_ & 0x00000001) != 0)) { exampleCount_.makeImmutable(); bitField0_ = (bitField0_ & ~0x00000001); } result.exampleCount_ = exampleCount_; onBuilt(); return result; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row) { return mergeFrom( (com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row) other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row other) { if (other == com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row.getDefaultInstance()) return this; if (!other.exampleCount_.isEmpty()) { if (exampleCount_.isEmpty()) { exampleCount_ = other.exampleCount_; bitField0_ = (bitField0_ & ~0x00000001); } else { ensureExampleCountIsMutable(); exampleCount_.addAll(other.exampleCount_); } onChanged(); } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 8: { int v = input.readInt32(); ensureExampleCountIsMutable(); exampleCount_.addInt(v); break; } // case 8 case 10: { int length = input.readRawVarint32(); int limit = input.pushLimit(length); ensureExampleCountIsMutable(); while (input.getBytesUntilLimit() > 0) { exampleCount_.addInt(input.readInt32()); } input.popLimit(limit); break; } // case 10 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private com.google.protobuf.Internal.IntList exampleCount_ = emptyIntList(); private void ensureExampleCountIsMutable() { if (!((bitField0_ & 0x00000001) != 0)) { exampleCount_ = mutableCopy(exampleCount_); bitField0_ |= 0x00000001; } } /** * * *
           * Output only. Value of the specific cell in the confusion matrix.
           * The number of values each row has (i.e. the length of the row) is equal
           * to the length of the `annotation_spec_id` field or, if that one is not
           * populated, length of the [display_name][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.display_name] field.
           * 
* * repeated int32 example_count = 1; * * @return A list containing the exampleCount. */ public java.util.List getExampleCountList() { return ((bitField0_ & 0x00000001) != 0) ? java.util.Collections.unmodifiableList(exampleCount_) : exampleCount_; } /** * * *
           * Output only. Value of the specific cell in the confusion matrix.
           * The number of values each row has (i.e. the length of the row) is equal
           * to the length of the `annotation_spec_id` field or, if that one is not
           * populated, length of the [display_name][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.display_name] field.
           * 
* * repeated int32 example_count = 1; * * @return The count of exampleCount. */ public int getExampleCountCount() { return exampleCount_.size(); } /** * * *
           * Output only. Value of the specific cell in the confusion matrix.
           * The number of values each row has (i.e. the length of the row) is equal
           * to the length of the `annotation_spec_id` field or, if that one is not
           * populated, length of the [display_name][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.display_name] field.
           * 
* * repeated int32 example_count = 1; * * @param index The index of the element to return. * @return The exampleCount at the given index. */ public int getExampleCount(int index) { return exampleCount_.getInt(index); } /** * * *
           * Output only. Value of the specific cell in the confusion matrix.
           * The number of values each row has (i.e. the length of the row) is equal
           * to the length of the `annotation_spec_id` field or, if that one is not
           * populated, length of the [display_name][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.display_name] field.
           * 
* * repeated int32 example_count = 1; * * @param index The index to set the value at. * @param value The exampleCount to set. * @return This builder for chaining. */ public Builder setExampleCount(int index, int value) { ensureExampleCountIsMutable(); exampleCount_.setInt(index, value); onChanged(); return this; } /** * * *
           * Output only. Value of the specific cell in the confusion matrix.
           * The number of values each row has (i.e. the length of the row) is equal
           * to the length of the `annotation_spec_id` field or, if that one is not
           * populated, length of the [display_name][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.display_name] field.
           * 
* * repeated int32 example_count = 1; * * @param value The exampleCount to add. * @return This builder for chaining. */ public Builder addExampleCount(int value) { ensureExampleCountIsMutable(); exampleCount_.addInt(value); onChanged(); return this; } /** * * *
           * Output only. Value of the specific cell in the confusion matrix.
           * The number of values each row has (i.e. the length of the row) is equal
           * to the length of the `annotation_spec_id` field or, if that one is not
           * populated, length of the [display_name][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.display_name] field.
           * 
* * repeated int32 example_count = 1; * * @param values The exampleCount to add. * @return This builder for chaining. */ public Builder addAllExampleCount( java.lang.Iterable values) { ensureExampleCountIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll(values, exampleCount_); onChanged(); return this; } /** * * *
           * Output only. Value of the specific cell in the confusion matrix.
           * The number of values each row has (i.e. the length of the row) is equal
           * to the length of the `annotation_spec_id` field or, if that one is not
           * populated, length of the [display_name][google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.display_name] field.
           * 
* * repeated int32 example_count = 1; * * @return This builder for chaining. */ public Builder clearExampleCount() { exampleCount_ = emptyIntList(); bitField0_ = (bitField0_ & ~0x00000001); onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row) } // @@protoc_insertion_point(class_scope:google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row) private static final com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row(); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public Row parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException() .setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public static final int ANNOTATION_SPEC_ID_FIELD_NUMBER = 1; private com.google.protobuf.LazyStringList annotationSpecId_; /** * * *
       * Output only. IDs of the annotation specs used in the confusion matrix.
       * For Tables CLASSIFICATION
       * [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]
       * only list of [annotation_spec_display_name-s][] is populated.
       * 
* * repeated string annotation_spec_id = 1; * * @return A list containing the annotationSpecId. */ public com.google.protobuf.ProtocolStringList getAnnotationSpecIdList() { return annotationSpecId_; } /** * * *
       * Output only. IDs of the annotation specs used in the confusion matrix.
       * For Tables CLASSIFICATION
       * [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]
       * only list of [annotation_spec_display_name-s][] is populated.
       * 
* * repeated string annotation_spec_id = 1; * * @return The count of annotationSpecId. */ public int getAnnotationSpecIdCount() { return annotationSpecId_.size(); } /** * * *
       * Output only. IDs of the annotation specs used in the confusion matrix.
       * For Tables CLASSIFICATION
       * [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]
       * only list of [annotation_spec_display_name-s][] is populated.
       * 
* * repeated string annotation_spec_id = 1; * * @param index The index of the element to return. * @return The annotationSpecId at the given index. */ public java.lang.String getAnnotationSpecId(int index) { return annotationSpecId_.get(index); } /** * * *
       * Output only. IDs of the annotation specs used in the confusion matrix.
       * For Tables CLASSIFICATION
       * [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]
       * only list of [annotation_spec_display_name-s][] is populated.
       * 
* * repeated string annotation_spec_id = 1; * * @param index The index of the value to return. * @return The bytes of the annotationSpecId at the given index. */ public com.google.protobuf.ByteString getAnnotationSpecIdBytes(int index) { return annotationSpecId_.getByteString(index); } public static final int DISPLAY_NAME_FIELD_NUMBER = 3; private com.google.protobuf.LazyStringList displayName_; /** * * *
       * Output only. Display name of the annotation specs used in the confusion
       * matrix, as they were at the moment of the evaluation. For Tables
       * CLASSIFICATION
       * [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type],
       * distinct values of the target column at the moment of the model
       * evaluation are populated here.
       * 
* * repeated string display_name = 3; * * @return A list containing the displayName. */ public com.google.protobuf.ProtocolStringList getDisplayNameList() { return displayName_; } /** * * *
       * Output only. Display name of the annotation specs used in the confusion
       * matrix, as they were at the moment of the evaluation. For Tables
       * CLASSIFICATION
       * [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type],
       * distinct values of the target column at the moment of the model
       * evaluation are populated here.
       * 
* * repeated string display_name = 3; * * @return The count of displayName. */ public int getDisplayNameCount() { return displayName_.size(); } /** * * *
       * Output only. Display name of the annotation specs used in the confusion
       * matrix, as they were at the moment of the evaluation. For Tables
       * CLASSIFICATION
       * [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type],
       * distinct values of the target column at the moment of the model
       * evaluation are populated here.
       * 
* * repeated string display_name = 3; * * @param index The index of the element to return. * @return The displayName at the given index. */ public java.lang.String getDisplayName(int index) { return displayName_.get(index); } /** * * *
       * Output only. Display name of the annotation specs used in the confusion
       * matrix, as they were at the moment of the evaluation. For Tables
       * CLASSIFICATION
       * [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type],
       * distinct values of the target column at the moment of the model
       * evaluation are populated here.
       * 
* * repeated string display_name = 3; * * @param index The index of the value to return. * @return The bytes of the displayName at the given index. */ public com.google.protobuf.ByteString getDisplayNameBytes(int index) { return displayName_.getByteString(index); } public static final int ROW_FIELD_NUMBER = 2; private java.util.List< com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row> row_; /** * * *
       * Output only. Rows in the confusion matrix. The number of rows is equal to
       * the size of `annotation_spec_id`.
       * `row[i].example_count[j]` is the number of examples that have ground
       * truth of the `annotation_spec_id[i]` and are predicted as
       * `annotation_spec_id[j]` by the model being evaluated.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ @java.lang.Override public java.util.List< com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row> getRowList() { return row_; } /** * * *
       * Output only. Rows in the confusion matrix. The number of rows is equal to
       * the size of `annotation_spec_id`.
       * `row[i].example_count[j]` is the number of examples that have ground
       * truth of the `annotation_spec_id[i]` and are predicted as
       * `annotation_spec_id[j]` by the model being evaluated.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ @java.lang.Override public java.util.List< ? extends com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.RowOrBuilder> getRowOrBuilderList() { return row_; } /** * * *
       * Output only. Rows in the confusion matrix. The number of rows is equal to
       * the size of `annotation_spec_id`.
       * `row[i].example_count[j]` is the number of examples that have ground
       * truth of the `annotation_spec_id[i]` and are predicted as
       * `annotation_spec_id[j]` by the model being evaluated.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ @java.lang.Override public int getRowCount() { return row_.size(); } /** * * *
       * Output only. Rows in the confusion matrix. The number of rows is equal to
       * the size of `annotation_spec_id`.
       * `row[i].example_count[j]` is the number of examples that have ground
       * truth of the `annotation_spec_id[i]` and are predicted as
       * `annotation_spec_id[j]` by the model being evaluated.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row getRow(int index) { return row_.get(index); } /** * * *
       * Output only. Rows in the confusion matrix. The number of rows is equal to
       * the size of `annotation_spec_id`.
       * `row[i].example_count[j]` is the number of examples that have ground
       * truth of the `annotation_spec_id[i]` and are predicted as
       * `annotation_spec_id[j]` by the model being evaluated.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.RowOrBuilder getRowOrBuilder(int index) { return row_.get(index); } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { for (int i = 0; i < annotationSpecId_.size(); i++) { com.google.protobuf.GeneratedMessageV3.writeString( output, 1, annotationSpecId_.getRaw(i)); } for (int i = 0; i < row_.size(); i++) { output.writeMessage(2, row_.get(i)); } for (int i = 0; i < displayName_.size(); i++) { com.google.protobuf.GeneratedMessageV3.writeString(output, 3, displayName_.getRaw(i)); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; { int dataSize = 0; for (int i = 0; i < annotationSpecId_.size(); i++) { dataSize += computeStringSizeNoTag(annotationSpecId_.getRaw(i)); } size += dataSize; size += 1 * getAnnotationSpecIdList().size(); } for (int i = 0; i < row_.size(); i++) { size += com.google.protobuf.CodedOutputStream.computeMessageSize(2, row_.get(i)); } { int dataSize = 0; for (int i = 0; i < displayName_.size(); i++) { dataSize += computeStringSizeNoTag(displayName_.getRaw(i)); } size += dataSize; size += 1 * getDisplayNameList().size(); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix)) { return super.equals(obj); } com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix other = (com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix) obj; if (!getAnnotationSpecIdList().equals(other.getAnnotationSpecIdList())) return false; if (!getDisplayNameList().equals(other.getDisplayNameList())) return false; if (!getRowList().equals(other.getRowList())) return false; if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (getAnnotationSpecIdCount() > 0) { hash = (37 * hash) + ANNOTATION_SPEC_ID_FIELD_NUMBER; hash = (53 * hash) + getAnnotationSpecIdList().hashCode(); } if (getDisplayNameCount() > 0) { hash = (37 * hash) + DISPLAY_NAME_FIELD_NUMBER; hash = (53 * hash) + getDisplayNameList().hashCode(); } if (getRowCount() > 0) { hash = (37 * hash) + ROW_FIELD_NUMBER; hash = (53 * hash) + getRowList().hashCode(); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix parseFrom(java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix parseFrom(com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix parseFrom(byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix parseFrom(com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * * *
       * Confusion matrix of the model running the classification.
       * 
* * Protobuf type {@code * google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix) com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrixOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfusionMatrix_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfusionMatrix_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.class, com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Builder.class); } // Construct using // com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics.ConfusionMatrix.newBuilder() private Builder() {} private Builder(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); } @java.lang.Override public Builder clear() { super.clear(); annotationSpecId_ = com.google.protobuf.LazyStringArrayList.EMPTY; bitField0_ = (bitField0_ & ~0x00000001); displayName_ = com.google.protobuf.LazyStringArrayList.EMPTY; bitField0_ = (bitField0_ & ~0x00000002); if (rowBuilder_ == null) { row_ = java.util.Collections.emptyList(); } else { row_ = null; rowBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000004); return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfusionMatrix_descriptor; } @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix getDefaultInstanceForType() { return com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.getDefaultInstance(); } @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix build() { com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix buildPartial() { com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix result = new com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix(this); int from_bitField0_ = bitField0_; if (((bitField0_ & 0x00000001) != 0)) { annotationSpecId_ = annotationSpecId_.getUnmodifiableView(); bitField0_ = (bitField0_ & ~0x00000001); } result.annotationSpecId_ = annotationSpecId_; if (((bitField0_ & 0x00000002) != 0)) { displayName_ = displayName_.getUnmodifiableView(); bitField0_ = (bitField0_ & ~0x00000002); } result.displayName_ = displayName_; if (rowBuilder_ == null) { if (((bitField0_ & 0x00000004) != 0)) { row_ = java.util.Collections.unmodifiableList(row_); bitField0_ = (bitField0_ & ~0x00000004); } result.row_ = row_; } else { result.row_ = rowBuilder_.build(); } onBuilt(); return result; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix) { return mergeFrom( (com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix) other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix other) { if (other == com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.getDefaultInstance()) return this; if (!other.annotationSpecId_.isEmpty()) { if (annotationSpecId_.isEmpty()) { annotationSpecId_ = other.annotationSpecId_; bitField0_ = (bitField0_ & ~0x00000001); } else { ensureAnnotationSpecIdIsMutable(); annotationSpecId_.addAll(other.annotationSpecId_); } onChanged(); } if (!other.displayName_.isEmpty()) { if (displayName_.isEmpty()) { displayName_ = other.displayName_; bitField0_ = (bitField0_ & ~0x00000002); } else { ensureDisplayNameIsMutable(); displayName_.addAll(other.displayName_); } onChanged(); } if (rowBuilder_ == null) { if (!other.row_.isEmpty()) { if (row_.isEmpty()) { row_ = other.row_; bitField0_ = (bitField0_ & ~0x00000004); } else { ensureRowIsMutable(); row_.addAll(other.row_); } onChanged(); } } else { if (!other.row_.isEmpty()) { if (rowBuilder_.isEmpty()) { rowBuilder_.dispose(); rowBuilder_ = null; row_ = other.row_; bitField0_ = (bitField0_ & ~0x00000004); rowBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getRowFieldBuilder() : null; } else { rowBuilder_.addAllMessages(other.row_); } } } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { java.lang.String s = input.readStringRequireUtf8(); ensureAnnotationSpecIdIsMutable(); annotationSpecId_.add(s); break; } // case 10 case 18: { com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row m = input.readMessage( com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row.parser(), extensionRegistry); if (rowBuilder_ == null) { ensureRowIsMutable(); row_.add(m); } else { rowBuilder_.addMessage(m); } break; } // case 18 case 26: { java.lang.String s = input.readStringRequireUtf8(); ensureDisplayNameIsMutable(); displayName_.add(s); break; } // case 26 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private com.google.protobuf.LazyStringList annotationSpecId_ = com.google.protobuf.LazyStringArrayList.EMPTY; private void ensureAnnotationSpecIdIsMutable() { if (!((bitField0_ & 0x00000001) != 0)) { annotationSpecId_ = new com.google.protobuf.LazyStringArrayList(annotationSpecId_); bitField0_ |= 0x00000001; } } /** * * *
         * Output only. IDs of the annotation specs used in the confusion matrix.
         * For Tables CLASSIFICATION
         * [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]
         * only list of [annotation_spec_display_name-s][] is populated.
         * 
* * repeated string annotation_spec_id = 1; * * @return A list containing the annotationSpecId. */ public com.google.protobuf.ProtocolStringList getAnnotationSpecIdList() { return annotationSpecId_.getUnmodifiableView(); } /** * * *
         * Output only. IDs of the annotation specs used in the confusion matrix.
         * For Tables CLASSIFICATION
         * [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]
         * only list of [annotation_spec_display_name-s][] is populated.
         * 
* * repeated string annotation_spec_id = 1; * * @return The count of annotationSpecId. */ public int getAnnotationSpecIdCount() { return annotationSpecId_.size(); } /** * * *
         * Output only. IDs of the annotation specs used in the confusion matrix.
         * For Tables CLASSIFICATION
         * [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]
         * only list of [annotation_spec_display_name-s][] is populated.
         * 
* * repeated string annotation_spec_id = 1; * * @param index The index of the element to return. * @return The annotationSpecId at the given index. */ public java.lang.String getAnnotationSpecId(int index) { return annotationSpecId_.get(index); } /** * * *
         * Output only. IDs of the annotation specs used in the confusion matrix.
         * For Tables CLASSIFICATION
         * [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]
         * only list of [annotation_spec_display_name-s][] is populated.
         * 
* * repeated string annotation_spec_id = 1; * * @param index The index of the value to return. * @return The bytes of the annotationSpecId at the given index. */ public com.google.protobuf.ByteString getAnnotationSpecIdBytes(int index) { return annotationSpecId_.getByteString(index); } /** * * *
         * Output only. IDs of the annotation specs used in the confusion matrix.
         * For Tables CLASSIFICATION
         * [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]
         * only list of [annotation_spec_display_name-s][] is populated.
         * 
* * repeated string annotation_spec_id = 1; * * @param index The index to set the value at. * @param value The annotationSpecId to set. * @return This builder for chaining. */ public Builder setAnnotationSpecId(int index, java.lang.String value) { if (value == null) { throw new NullPointerException(); } ensureAnnotationSpecIdIsMutable(); annotationSpecId_.set(index, value); onChanged(); return this; } /** * * *
         * Output only. IDs of the annotation specs used in the confusion matrix.
         * For Tables CLASSIFICATION
         * [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]
         * only list of [annotation_spec_display_name-s][] is populated.
         * 
* * repeated string annotation_spec_id = 1; * * @param value The annotationSpecId to add. * @return This builder for chaining. */ public Builder addAnnotationSpecId(java.lang.String value) { if (value == null) { throw new NullPointerException(); } ensureAnnotationSpecIdIsMutable(); annotationSpecId_.add(value); onChanged(); return this; } /** * * *
         * Output only. IDs of the annotation specs used in the confusion matrix.
         * For Tables CLASSIFICATION
         * [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]
         * only list of [annotation_spec_display_name-s][] is populated.
         * 
* * repeated string annotation_spec_id = 1; * * @param values The annotationSpecId to add. * @return This builder for chaining. */ public Builder addAllAnnotationSpecId(java.lang.Iterable values) { ensureAnnotationSpecIdIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll(values, annotationSpecId_); onChanged(); return this; } /** * * *
         * Output only. IDs of the annotation specs used in the confusion matrix.
         * For Tables CLASSIFICATION
         * [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]
         * only list of [annotation_spec_display_name-s][] is populated.
         * 
* * repeated string annotation_spec_id = 1; * * @return This builder for chaining. */ public Builder clearAnnotationSpecId() { annotationSpecId_ = com.google.protobuf.LazyStringArrayList.EMPTY; bitField0_ = (bitField0_ & ~0x00000001); onChanged(); return this; } /** * * *
         * Output only. IDs of the annotation specs used in the confusion matrix.
         * For Tables CLASSIFICATION
         * [prediction_type][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type]
         * only list of [annotation_spec_display_name-s][] is populated.
         * 
* * repeated string annotation_spec_id = 1; * * @param value The bytes of the annotationSpecId to add. * @return This builder for chaining. */ public Builder addAnnotationSpecIdBytes(com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } checkByteStringIsUtf8(value); ensureAnnotationSpecIdIsMutable(); annotationSpecId_.add(value); onChanged(); return this; } private com.google.protobuf.LazyStringList displayName_ = com.google.protobuf.LazyStringArrayList.EMPTY; private void ensureDisplayNameIsMutable() { if (!((bitField0_ & 0x00000002) != 0)) { displayName_ = new com.google.protobuf.LazyStringArrayList(displayName_); bitField0_ |= 0x00000002; } } /** * * *
         * Output only. Display name of the annotation specs used in the confusion
         * matrix, as they were at the moment of the evaluation. For Tables
         * CLASSIFICATION
         * [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type],
         * distinct values of the target column at the moment of the model
         * evaluation are populated here.
         * 
* * repeated string display_name = 3; * * @return A list containing the displayName. */ public com.google.protobuf.ProtocolStringList getDisplayNameList() { return displayName_.getUnmodifiableView(); } /** * * *
         * Output only. Display name of the annotation specs used in the confusion
         * matrix, as they were at the moment of the evaluation. For Tables
         * CLASSIFICATION
         * [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type],
         * distinct values of the target column at the moment of the model
         * evaluation are populated here.
         * 
* * repeated string display_name = 3; * * @return The count of displayName. */ public int getDisplayNameCount() { return displayName_.size(); } /** * * *
         * Output only. Display name of the annotation specs used in the confusion
         * matrix, as they were at the moment of the evaluation. For Tables
         * CLASSIFICATION
         * [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type],
         * distinct values of the target column at the moment of the model
         * evaluation are populated here.
         * 
* * repeated string display_name = 3; * * @param index The index of the element to return. * @return The displayName at the given index. */ public java.lang.String getDisplayName(int index) { return displayName_.get(index); } /** * * *
         * Output only. Display name of the annotation specs used in the confusion
         * matrix, as they were at the moment of the evaluation. For Tables
         * CLASSIFICATION
         * [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type],
         * distinct values of the target column at the moment of the model
         * evaluation are populated here.
         * 
* * repeated string display_name = 3; * * @param index The index of the value to return. * @return The bytes of the displayName at the given index. */ public com.google.protobuf.ByteString getDisplayNameBytes(int index) { return displayName_.getByteString(index); } /** * * *
         * Output only. Display name of the annotation specs used in the confusion
         * matrix, as they were at the moment of the evaluation. For Tables
         * CLASSIFICATION
         * [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type],
         * distinct values of the target column at the moment of the model
         * evaluation are populated here.
         * 
* * repeated string display_name = 3; * * @param index The index to set the value at. * @param value The displayName to set. * @return This builder for chaining. */ public Builder setDisplayName(int index, java.lang.String value) { if (value == null) { throw new NullPointerException(); } ensureDisplayNameIsMutable(); displayName_.set(index, value); onChanged(); return this; } /** * * *
         * Output only. Display name of the annotation specs used in the confusion
         * matrix, as they were at the moment of the evaluation. For Tables
         * CLASSIFICATION
         * [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type],
         * distinct values of the target column at the moment of the model
         * evaluation are populated here.
         * 
* * repeated string display_name = 3; * * @param value The displayName to add. * @return This builder for chaining. */ public Builder addDisplayName(java.lang.String value) { if (value == null) { throw new NullPointerException(); } ensureDisplayNameIsMutable(); displayName_.add(value); onChanged(); return this; } /** * * *
         * Output only. Display name of the annotation specs used in the confusion
         * matrix, as they were at the moment of the evaluation. For Tables
         * CLASSIFICATION
         * [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type],
         * distinct values of the target column at the moment of the model
         * evaluation are populated here.
         * 
* * repeated string display_name = 3; * * @param values The displayName to add. * @return This builder for chaining. */ public Builder addAllDisplayName(java.lang.Iterable values) { ensureDisplayNameIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll(values, displayName_); onChanged(); return this; } /** * * *
         * Output only. Display name of the annotation specs used in the confusion
         * matrix, as they were at the moment of the evaluation. For Tables
         * CLASSIFICATION
         * [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type],
         * distinct values of the target column at the moment of the model
         * evaluation are populated here.
         * 
* * repeated string display_name = 3; * * @return This builder for chaining. */ public Builder clearDisplayName() { displayName_ = com.google.protobuf.LazyStringArrayList.EMPTY; bitField0_ = (bitField0_ & ~0x00000002); onChanged(); return this; } /** * * *
         * Output only. Display name of the annotation specs used in the confusion
         * matrix, as they were at the moment of the evaluation. For Tables
         * CLASSIFICATION
         * [prediction_type-s][google.cloud.automl.v1beta1.TablesModelMetadata.prediction_type],
         * distinct values of the target column at the moment of the model
         * evaluation are populated here.
         * 
* * repeated string display_name = 3; * * @param value The bytes of the displayName to add. * @return This builder for chaining. */ public Builder addDisplayNameBytes(com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } checkByteStringIsUtf8(value); ensureDisplayNameIsMutable(); displayName_.add(value); onChanged(); return this; } private java.util.List< com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row> row_ = java.util.Collections.emptyList(); private void ensureRowIsMutable() { if (!((bitField0_ & 0x00000004) != 0)) { row_ = new java.util.ArrayList< com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row>(row_); bitField0_ |= 0x00000004; } } private com.google.protobuf.RepeatedFieldBuilderV3< com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row.Builder, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.RowOrBuilder> rowBuilder_; /** * * *
         * Output only. Rows in the confusion matrix. The number of rows is equal to
         * the size of `annotation_spec_id`.
         * `row[i].example_count[j]` is the number of examples that have ground
         * truth of the `annotation_spec_id[i]` and are predicted as
         * `annotation_spec_id[j]` by the model being evaluated.
         * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ public java.util.List< com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row> getRowList() { if (rowBuilder_ == null) { return java.util.Collections.unmodifiableList(row_); } else { return rowBuilder_.getMessageList(); } } /** * * *
         * Output only. Rows in the confusion matrix. The number of rows is equal to
         * the size of `annotation_spec_id`.
         * `row[i].example_count[j]` is the number of examples that have ground
         * truth of the `annotation_spec_id[i]` and are predicted as
         * `annotation_spec_id[j]` by the model being evaluated.
         * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ public int getRowCount() { if (rowBuilder_ == null) { return row_.size(); } else { return rowBuilder_.getCount(); } } /** * * *
         * Output only. Rows in the confusion matrix. The number of rows is equal to
         * the size of `annotation_spec_id`.
         * `row[i].example_count[j]` is the number of examples that have ground
         * truth of the `annotation_spec_id[i]` and are predicted as
         * `annotation_spec_id[j]` by the model being evaluated.
         * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row getRow(int index) { if (rowBuilder_ == null) { return row_.get(index); } else { return rowBuilder_.getMessage(index); } } /** * * *
         * Output only. Rows in the confusion matrix. The number of rows is equal to
         * the size of `annotation_spec_id`.
         * `row[i].example_count[j]` is the number of examples that have ground
         * truth of the `annotation_spec_id[i]` and are predicted as
         * `annotation_spec_id[j]` by the model being evaluated.
         * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ public Builder setRow( int index, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row value) { if (rowBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureRowIsMutable(); row_.set(index, value); onChanged(); } else { rowBuilder_.setMessage(index, value); } return this; } /** * * *
         * Output only. Rows in the confusion matrix. The number of rows is equal to
         * the size of `annotation_spec_id`.
         * `row[i].example_count[j]` is the number of examples that have ground
         * truth of the `annotation_spec_id[i]` and are predicted as
         * `annotation_spec_id[j]` by the model being evaluated.
         * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ public Builder setRow( int index, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row.Builder builderForValue) { if (rowBuilder_ == null) { ensureRowIsMutable(); row_.set(index, builderForValue.build()); onChanged(); } else { rowBuilder_.setMessage(index, builderForValue.build()); } return this; } /** * * *
         * Output only. Rows in the confusion matrix. The number of rows is equal to
         * the size of `annotation_spec_id`.
         * `row[i].example_count[j]` is the number of examples that have ground
         * truth of the `annotation_spec_id[i]` and are predicted as
         * `annotation_spec_id[j]` by the model being evaluated.
         * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ public Builder addRow( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row value) { if (rowBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureRowIsMutable(); row_.add(value); onChanged(); } else { rowBuilder_.addMessage(value); } return this; } /** * * *
         * Output only. Rows in the confusion matrix. The number of rows is equal to
         * the size of `annotation_spec_id`.
         * `row[i].example_count[j]` is the number of examples that have ground
         * truth of the `annotation_spec_id[i]` and are predicted as
         * `annotation_spec_id[j]` by the model being evaluated.
         * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ public Builder addRow( int index, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row value) { if (rowBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureRowIsMutable(); row_.add(index, value); onChanged(); } else { rowBuilder_.addMessage(index, value); } return this; } /** * * *
         * Output only. Rows in the confusion matrix. The number of rows is equal to
         * the size of `annotation_spec_id`.
         * `row[i].example_count[j]` is the number of examples that have ground
         * truth of the `annotation_spec_id[i]` and are predicted as
         * `annotation_spec_id[j]` by the model being evaluated.
         * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ public Builder addRow( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row.Builder builderForValue) { if (rowBuilder_ == null) { ensureRowIsMutable(); row_.add(builderForValue.build()); onChanged(); } else { rowBuilder_.addMessage(builderForValue.build()); } return this; } /** * * *
         * Output only. Rows in the confusion matrix. The number of rows is equal to
         * the size of `annotation_spec_id`.
         * `row[i].example_count[j]` is the number of examples that have ground
         * truth of the `annotation_spec_id[i]` and are predicted as
         * `annotation_spec_id[j]` by the model being evaluated.
         * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ public Builder addRow( int index, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row.Builder builderForValue) { if (rowBuilder_ == null) { ensureRowIsMutable(); row_.add(index, builderForValue.build()); onChanged(); } else { rowBuilder_.addMessage(index, builderForValue.build()); } return this; } /** * * *
         * Output only. Rows in the confusion matrix. The number of rows is equal to
         * the size of `annotation_spec_id`.
         * `row[i].example_count[j]` is the number of examples that have ground
         * truth of the `annotation_spec_id[i]` and are predicted as
         * `annotation_spec_id[j]` by the model being evaluated.
         * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ public Builder addAllRow( java.lang.Iterable< ? extends com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row> values) { if (rowBuilder_ == null) { ensureRowIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll(values, row_); onChanged(); } else { rowBuilder_.addAllMessages(values); } return this; } /** * * *
         * Output only. Rows in the confusion matrix. The number of rows is equal to
         * the size of `annotation_spec_id`.
         * `row[i].example_count[j]` is the number of examples that have ground
         * truth of the `annotation_spec_id[i]` and are predicted as
         * `annotation_spec_id[j]` by the model being evaluated.
         * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ public Builder clearRow() { if (rowBuilder_ == null) { row_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000004); onChanged(); } else { rowBuilder_.clear(); } return this; } /** * * *
         * Output only. Rows in the confusion matrix. The number of rows is equal to
         * the size of `annotation_spec_id`.
         * `row[i].example_count[j]` is the number of examples that have ground
         * truth of the `annotation_spec_id[i]` and are predicted as
         * `annotation_spec_id[j]` by the model being evaluated.
         * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ public Builder removeRow(int index) { if (rowBuilder_ == null) { ensureRowIsMutable(); row_.remove(index); onChanged(); } else { rowBuilder_.remove(index); } return this; } /** * * *
         * Output only. Rows in the confusion matrix. The number of rows is equal to
         * the size of `annotation_spec_id`.
         * `row[i].example_count[j]` is the number of examples that have ground
         * truth of the `annotation_spec_id[i]` and are predicted as
         * `annotation_spec_id[j]` by the model being evaluated.
         * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row.Builder getRowBuilder(int index) { return getRowFieldBuilder().getBuilder(index); } /** * * *
         * Output only. Rows in the confusion matrix. The number of rows is equal to
         * the size of `annotation_spec_id`.
         * `row[i].example_count[j]` is the number of examples that have ground
         * truth of the `annotation_spec_id[i]` and are predicted as
         * `annotation_spec_id[j]` by the model being evaluated.
         * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.RowOrBuilder getRowOrBuilder(int index) { if (rowBuilder_ == null) { return row_.get(index); } else { return rowBuilder_.getMessageOrBuilder(index); } } /** * * *
         * Output only. Rows in the confusion matrix. The number of rows is equal to
         * the size of `annotation_spec_id`.
         * `row[i].example_count[j]` is the number of examples that have ground
         * truth of the `annotation_spec_id[i]` and are predicted as
         * `annotation_spec_id[j]` by the model being evaluated.
         * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ public java.util.List< ? extends com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.RowOrBuilder> getRowOrBuilderList() { if (rowBuilder_ != null) { return rowBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(row_); } } /** * * *
         * Output only. Rows in the confusion matrix. The number of rows is equal to
         * the size of `annotation_spec_id`.
         * `row[i].example_count[j]` is the number of examples that have ground
         * truth of the `annotation_spec_id[i]` and are predicted as
         * `annotation_spec_id[j]` by the model being evaluated.
         * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row.Builder addRowBuilder() { return getRowFieldBuilder() .addBuilder( com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row.getDefaultInstance()); } /** * * *
         * Output only. Rows in the confusion matrix. The number of rows is equal to
         * the size of `annotation_spec_id`.
         * `row[i].example_count[j]` is the number of examples that have ground
         * truth of the `annotation_spec_id[i]` and are predicted as
         * `annotation_spec_id[j]` by the model being evaluated.
         * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row.Builder addRowBuilder(int index) { return getRowFieldBuilder() .addBuilder( index, com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row.getDefaultInstance()); } /** * * *
         * Output only. Rows in the confusion matrix. The number of rows is equal to
         * the size of `annotation_spec_id`.
         * `row[i].example_count[j]` is the number of examples that have ground
         * truth of the `annotation_spec_id[i]` and are predicted as
         * `annotation_spec_id[j]` by the model being evaluated.
         * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix.Row row = 2; * */ public java.util.List< com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row.Builder> getRowBuilderList() { return getRowFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Row.Builder, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.RowOrBuilder> getRowFieldBuilder() { if (rowBuilder_ == null) { rowBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row, com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Row.Builder, com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.RowOrBuilder>( row_, ((bitField0_ & 0x00000004) != 0), getParentForChildren(), isClean()); row_ = null; } return rowBuilder_; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix) } // @@protoc_insertion_point(class_scope:google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix) private static final com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix(); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public ConfusionMatrix parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException() .setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } public static final int AU_PRC_FIELD_NUMBER = 1; private float auPrc_; /** * * *
     * Output only. The Area Under Precision-Recall Curve metric. Micro-averaged
     * for the overall evaluation.
     * 
* * float au_prc = 1; * * @return The auPrc. */ @java.lang.Override public float getAuPrc() { return auPrc_; } public static final int BASE_AU_PRC_FIELD_NUMBER = 2; private float baseAuPrc_; /** * * *
     * Output only. The Area Under Precision-Recall Curve metric based on priors.
     * Micro-averaged for the overall evaluation.
     * Deprecated.
     * 
* * float base_au_prc = 2 [deprecated = true]; * * @deprecated google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.base_au_prc is * deprecated. See google/cloud/automl/v1beta1/classification.proto;l=188 * @return The baseAuPrc. */ @java.lang.Override @java.lang.Deprecated public float getBaseAuPrc() { return baseAuPrc_; } public static final int AU_ROC_FIELD_NUMBER = 6; private float auRoc_; /** * * *
     * Output only. The Area Under Receiver Operating Characteristic curve metric.
     * Micro-averaged for the overall evaluation.
     * 
* * float au_roc = 6; * * @return The auRoc. */ @java.lang.Override public float getAuRoc() { return auRoc_; } public static final int LOG_LOSS_FIELD_NUMBER = 7; private float logLoss_; /** * * *
     * Output only. The Log Loss metric.
     * 
* * float log_loss = 7; * * @return The logLoss. */ @java.lang.Override public float getLogLoss() { return logLoss_; } public static final int CONFIDENCE_METRICS_ENTRY_FIELD_NUMBER = 3; private java.util.List< com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry> confidenceMetricsEntry_; /** * * *
     * Output only. Metrics for each confidence_threshold in
     * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
     * position_threshold = INT32_MAX_VALUE.
     * ROC and precision-recall curves, and other aggregated metrics are derived
     * from them. The confidence metrics entries may also be supplied for
     * additional values of position_threshold, but from these no aggregated
     * metrics are computed.
     * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ @java.lang.Override public java.util.List< com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry> getConfidenceMetricsEntryList() { return confidenceMetricsEntry_; } /** * * *
     * Output only. Metrics for each confidence_threshold in
     * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
     * position_threshold = INT32_MAX_VALUE.
     * ROC and precision-recall curves, and other aggregated metrics are derived
     * from them. The confidence metrics entries may also be supplied for
     * additional values of position_threshold, but from these no aggregated
     * metrics are computed.
     * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ @java.lang.Override public java.util.List< ? extends com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntryOrBuilder> getConfidenceMetricsEntryOrBuilderList() { return confidenceMetricsEntry_; } /** * * *
     * Output only. Metrics for each confidence_threshold in
     * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
     * position_threshold = INT32_MAX_VALUE.
     * ROC and precision-recall curves, and other aggregated metrics are derived
     * from them. The confidence metrics entries may also be supplied for
     * additional values of position_threshold, but from these no aggregated
     * metrics are computed.
     * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ @java.lang.Override public int getConfidenceMetricsEntryCount() { return confidenceMetricsEntry_.size(); } /** * * *
     * Output only. Metrics for each confidence_threshold in
     * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
     * position_threshold = INT32_MAX_VALUE.
     * ROC and precision-recall curves, and other aggregated metrics are derived
     * from them. The confidence metrics entries may also be supplied for
     * additional values of position_threshold, but from these no aggregated
     * metrics are computed.
     * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry getConfidenceMetricsEntry(int index) { return confidenceMetricsEntry_.get(index); } /** * * *
     * Output only. Metrics for each confidence_threshold in
     * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
     * position_threshold = INT32_MAX_VALUE.
     * ROC and precision-recall curves, and other aggregated metrics are derived
     * from them. The confidence metrics entries may also be supplied for
     * additional values of position_threshold, but from these no aggregated
     * metrics are computed.
     * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntryOrBuilder getConfidenceMetricsEntryOrBuilder(int index) { return confidenceMetricsEntry_.get(index); } public static final int CONFUSION_MATRIX_FIELD_NUMBER = 4; private com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix confusionMatrix_; /** * * *
     * Output only. Confusion matrix of the evaluation.
     * Only set for MULTICLASS classification problems where number
     * of labels is no more than 10.
     * Only set for model level evaluation, not for evaluation per label.
     * 
* * * .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 4; * * * @return Whether the confusionMatrix field is set. */ @java.lang.Override public boolean hasConfusionMatrix() { return confusionMatrix_ != null; } /** * * *
     * Output only. Confusion matrix of the evaluation.
     * Only set for MULTICLASS classification problems where number
     * of labels is no more than 10.
     * Only set for model level evaluation, not for evaluation per label.
     * 
* * * .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 4; * * * @return The confusionMatrix. */ @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix getConfusionMatrix() { return confusionMatrix_ == null ? com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.getDefaultInstance() : confusionMatrix_; } /** * * *
     * Output only. Confusion matrix of the evaluation.
     * Only set for MULTICLASS classification problems where number
     * of labels is no more than 10.
     * Only set for model level evaluation, not for evaluation per label.
     * 
* * * .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 4; * */ @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrixOrBuilder getConfusionMatrixOrBuilder() { return getConfusionMatrix(); } public static final int ANNOTATION_SPEC_ID_FIELD_NUMBER = 5; private com.google.protobuf.LazyStringList annotationSpecId_; /** * * *
     * Output only. The annotation spec ids used for this evaluation.
     * 
* * repeated string annotation_spec_id = 5; * * @return A list containing the annotationSpecId. */ public com.google.protobuf.ProtocolStringList getAnnotationSpecIdList() { return annotationSpecId_; } /** * * *
     * Output only. The annotation spec ids used for this evaluation.
     * 
* * repeated string annotation_spec_id = 5; * * @return The count of annotationSpecId. */ public int getAnnotationSpecIdCount() { return annotationSpecId_.size(); } /** * * *
     * Output only. The annotation spec ids used for this evaluation.
     * 
* * repeated string annotation_spec_id = 5; * * @param index The index of the element to return. * @return The annotationSpecId at the given index. */ public java.lang.String getAnnotationSpecId(int index) { return annotationSpecId_.get(index); } /** * * *
     * Output only. The annotation spec ids used for this evaluation.
     * 
* * repeated string annotation_spec_id = 5; * * @param index The index of the value to return. * @return The bytes of the annotationSpecId at the given index. */ public com.google.protobuf.ByteString getAnnotationSpecIdBytes(int index) { return annotationSpecId_.getByteString(index); } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (java.lang.Float.floatToRawIntBits(auPrc_) != 0) { output.writeFloat(1, auPrc_); } if (java.lang.Float.floatToRawIntBits(baseAuPrc_) != 0) { output.writeFloat(2, baseAuPrc_); } for (int i = 0; i < confidenceMetricsEntry_.size(); i++) { output.writeMessage(3, confidenceMetricsEntry_.get(i)); } if (confusionMatrix_ != null) { output.writeMessage(4, getConfusionMatrix()); } for (int i = 0; i < annotationSpecId_.size(); i++) { com.google.protobuf.GeneratedMessageV3.writeString(output, 5, annotationSpecId_.getRaw(i)); } if (java.lang.Float.floatToRawIntBits(auRoc_) != 0) { output.writeFloat(6, auRoc_); } if (java.lang.Float.floatToRawIntBits(logLoss_) != 0) { output.writeFloat(7, logLoss_); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (java.lang.Float.floatToRawIntBits(auPrc_) != 0) { size += com.google.protobuf.CodedOutputStream.computeFloatSize(1, auPrc_); } if (java.lang.Float.floatToRawIntBits(baseAuPrc_) != 0) { size += com.google.protobuf.CodedOutputStream.computeFloatSize(2, baseAuPrc_); } for (int i = 0; i < confidenceMetricsEntry_.size(); i++) { size += com.google.protobuf.CodedOutputStream.computeMessageSize( 3, confidenceMetricsEntry_.get(i)); } if (confusionMatrix_ != null) { size += com.google.protobuf.CodedOutputStream.computeMessageSize(4, getConfusionMatrix()); } { int dataSize = 0; for (int i = 0; i < annotationSpecId_.size(); i++) { dataSize += computeStringSizeNoTag(annotationSpecId_.getRaw(i)); } size += dataSize; size += 1 * getAnnotationSpecIdList().size(); } if (java.lang.Float.floatToRawIntBits(auRoc_) != 0) { size += com.google.protobuf.CodedOutputStream.computeFloatSize(6, auRoc_); } if (java.lang.Float.floatToRawIntBits(logLoss_) != 0) { size += com.google.protobuf.CodedOutputStream.computeFloatSize(7, logLoss_); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics)) { return super.equals(obj); } com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics other = (com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics) obj; if (java.lang.Float.floatToIntBits(getAuPrc()) != java.lang.Float.floatToIntBits(other.getAuPrc())) return false; if (java.lang.Float.floatToIntBits(getBaseAuPrc()) != java.lang.Float.floatToIntBits(other.getBaseAuPrc())) return false; if (java.lang.Float.floatToIntBits(getAuRoc()) != java.lang.Float.floatToIntBits(other.getAuRoc())) return false; if (java.lang.Float.floatToIntBits(getLogLoss()) != java.lang.Float.floatToIntBits(other.getLogLoss())) return false; if (!getConfidenceMetricsEntryList().equals(other.getConfidenceMetricsEntryList())) return false; if (hasConfusionMatrix() != other.hasConfusionMatrix()) return false; if (hasConfusionMatrix()) { if (!getConfusionMatrix().equals(other.getConfusionMatrix())) return false; } if (!getAnnotationSpecIdList().equals(other.getAnnotationSpecIdList())) return false; if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); hash = (37 * hash) + AU_PRC_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits(getAuPrc()); hash = (37 * hash) + BASE_AU_PRC_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits(getBaseAuPrc()); hash = (37 * hash) + AU_ROC_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits(getAuRoc()); hash = (37 * hash) + LOG_LOSS_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits(getLogLoss()); if (getConfidenceMetricsEntryCount() > 0) { hash = (37 * hash) + CONFIDENCE_METRICS_ENTRY_FIELD_NUMBER; hash = (53 * hash) + getConfidenceMetricsEntryList().hashCode(); } if (hasConfusionMatrix()) { hash = (37 * hash) + CONFUSION_MATRIX_FIELD_NUMBER; hash = (53 * hash) + getConfusionMatrix().hashCode(); } if (getAnnotationSpecIdCount() > 0) { hash = (37 * hash) + ANNOTATION_SPEC_ID_FIELD_NUMBER; hash = (53 * hash) + getAnnotationSpecIdList().hashCode(); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics parseFrom(java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics parseFrom(com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics parseFrom(byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics parseFrom(com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * * *
     * Model evaluation metrics for classification problems.
     * Note: For Video Classification this metrics only describe quality of the
     * Video Classification predictions of "segment_classification" type.
     * 
* * Protobuf type {@code google.cloud.automl.v1beta1.ClassificationEvaluationMetrics} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:google.cloud.automl.v1beta1.ClassificationEvaluationMetrics) com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetricsOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .class, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .Builder.class); } // Construct using // com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics.newBuilder() private Builder() {} private Builder(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); } @java.lang.Override public Builder clear() { super.clear(); auPrc_ = 0F; baseAuPrc_ = 0F; auRoc_ = 0F; logLoss_ = 0F; if (confidenceMetricsEntryBuilder_ == null) { confidenceMetricsEntry_ = java.util.Collections.emptyList(); } else { confidenceMetricsEntry_ = null; confidenceMetricsEntryBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000001); if (confusionMatrixBuilder_ == null) { confusionMatrix_ = null; } else { confusionMatrix_ = null; confusionMatrixBuilder_ = null; } annotationSpecId_ = com.google.protobuf.LazyStringArrayList.EMPTY; bitField0_ = (bitField0_ & ~0x00000002); return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return com.google.cloud.automl.v1beta1.ClassificationProto .internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_descriptor; } @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics getDefaultInstanceForType() { return com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .getDefaultInstance(); } @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics build() { com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics buildPartial() { com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics result = new com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics( this); int from_bitField0_ = bitField0_; result.auPrc_ = auPrc_; result.baseAuPrc_ = baseAuPrc_; result.auRoc_ = auRoc_; result.logLoss_ = logLoss_; if (confidenceMetricsEntryBuilder_ == null) { if (((bitField0_ & 0x00000001) != 0)) { confidenceMetricsEntry_ = java.util.Collections.unmodifiableList(confidenceMetricsEntry_); bitField0_ = (bitField0_ & ~0x00000001); } result.confidenceMetricsEntry_ = confidenceMetricsEntry_; } else { result.confidenceMetricsEntry_ = confidenceMetricsEntryBuilder_.build(); } if (confusionMatrixBuilder_ == null) { result.confusionMatrix_ = confusionMatrix_; } else { result.confusionMatrix_ = confusionMatrixBuilder_.build(); } if (((bitField0_ & 0x00000002) != 0)) { annotationSpecId_ = annotationSpecId_.getUnmodifiableView(); bitField0_ = (bitField0_ & ~0x00000002); } result.annotationSpecId_ = annotationSpecId_; onBuilt(); return result; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics) { return mergeFrom( (com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics) other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics other) { if (other == com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .getDefaultInstance()) return this; if (other.getAuPrc() != 0F) { setAuPrc(other.getAuPrc()); } if (other.getBaseAuPrc() != 0F) { setBaseAuPrc(other.getBaseAuPrc()); } if (other.getAuRoc() != 0F) { setAuRoc(other.getAuRoc()); } if (other.getLogLoss() != 0F) { setLogLoss(other.getLogLoss()); } if (confidenceMetricsEntryBuilder_ == null) { if (!other.confidenceMetricsEntry_.isEmpty()) { if (confidenceMetricsEntry_.isEmpty()) { confidenceMetricsEntry_ = other.confidenceMetricsEntry_; bitField0_ = (bitField0_ & ~0x00000001); } else { ensureConfidenceMetricsEntryIsMutable(); confidenceMetricsEntry_.addAll(other.confidenceMetricsEntry_); } onChanged(); } } else { if (!other.confidenceMetricsEntry_.isEmpty()) { if (confidenceMetricsEntryBuilder_.isEmpty()) { confidenceMetricsEntryBuilder_.dispose(); confidenceMetricsEntryBuilder_ = null; confidenceMetricsEntry_ = other.confidenceMetricsEntry_; bitField0_ = (bitField0_ & ~0x00000001); confidenceMetricsEntryBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getConfidenceMetricsEntryFieldBuilder() : null; } else { confidenceMetricsEntryBuilder_.addAllMessages(other.confidenceMetricsEntry_); } } } if (other.hasConfusionMatrix()) { mergeConfusionMatrix(other.getConfusionMatrix()); } if (!other.annotationSpecId_.isEmpty()) { if (annotationSpecId_.isEmpty()) { annotationSpecId_ = other.annotationSpecId_; bitField0_ = (bitField0_ & ~0x00000002); } else { ensureAnnotationSpecIdIsMutable(); annotationSpecId_.addAll(other.annotationSpecId_); } onChanged(); } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 13: { auPrc_ = input.readFloat(); break; } // case 13 case 21: { baseAuPrc_ = input.readFloat(); break; } // case 21 case 26: { com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfidenceMetricsEntry m = input.readMessage( com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfidenceMetricsEntry.parser(), extensionRegistry); if (confidenceMetricsEntryBuilder_ == null) { ensureConfidenceMetricsEntryIsMutable(); confidenceMetricsEntry_.add(m); } else { confidenceMetricsEntryBuilder_.addMessage(m); } break; } // case 26 case 34: { input.readMessage( getConfusionMatrixFieldBuilder().getBuilder(), extensionRegistry); break; } // case 34 case 42: { java.lang.String s = input.readStringRequireUtf8(); ensureAnnotationSpecIdIsMutable(); annotationSpecId_.add(s); break; } // case 42 case 53: { auRoc_ = input.readFloat(); break; } // case 53 case 61: { logLoss_ = input.readFloat(); break; } // case 61 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private float auPrc_; /** * * *
       * Output only. The Area Under Precision-Recall Curve metric. Micro-averaged
       * for the overall evaluation.
       * 
* * float au_prc = 1; * * @return The auPrc. */ @java.lang.Override public float getAuPrc() { return auPrc_; } /** * * *
       * Output only. The Area Under Precision-Recall Curve metric. Micro-averaged
       * for the overall evaluation.
       * 
* * float au_prc = 1; * * @param value The auPrc to set. * @return This builder for chaining. */ public Builder setAuPrc(float value) { auPrc_ = value; onChanged(); return this; } /** * * *
       * Output only. The Area Under Precision-Recall Curve metric. Micro-averaged
       * for the overall evaluation.
       * 
* * float au_prc = 1; * * @return This builder for chaining. */ public Builder clearAuPrc() { auPrc_ = 0F; onChanged(); return this; } private float baseAuPrc_; /** * * *
       * Output only. The Area Under Precision-Recall Curve metric based on priors.
       * Micro-averaged for the overall evaluation.
       * Deprecated.
       * 
* * float base_au_prc = 2 [deprecated = true]; * * @deprecated google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.base_au_prc is * deprecated. See google/cloud/automl/v1beta1/classification.proto;l=188 * @return The baseAuPrc. */ @java.lang.Override @java.lang.Deprecated public float getBaseAuPrc() { return baseAuPrc_; } /** * * *
       * Output only. The Area Under Precision-Recall Curve metric based on priors.
       * Micro-averaged for the overall evaluation.
       * Deprecated.
       * 
* * float base_au_prc = 2 [deprecated = true]; * * @deprecated google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.base_au_prc is * deprecated. See google/cloud/automl/v1beta1/classification.proto;l=188 * @param value The baseAuPrc to set. * @return This builder for chaining. */ @java.lang.Deprecated public Builder setBaseAuPrc(float value) { baseAuPrc_ = value; onChanged(); return this; } /** * * *
       * Output only. The Area Under Precision-Recall Curve metric based on priors.
       * Micro-averaged for the overall evaluation.
       * Deprecated.
       * 
* * float base_au_prc = 2 [deprecated = true]; * * @deprecated google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.base_au_prc is * deprecated. See google/cloud/automl/v1beta1/classification.proto;l=188 * @return This builder for chaining. */ @java.lang.Deprecated public Builder clearBaseAuPrc() { baseAuPrc_ = 0F; onChanged(); return this; } private float auRoc_; /** * * *
       * Output only. The Area Under Receiver Operating Characteristic curve metric.
       * Micro-averaged for the overall evaluation.
       * 
* * float au_roc = 6; * * @return The auRoc. */ @java.lang.Override public float getAuRoc() { return auRoc_; } /** * * *
       * Output only. The Area Under Receiver Operating Characteristic curve metric.
       * Micro-averaged for the overall evaluation.
       * 
* * float au_roc = 6; * * @param value The auRoc to set. * @return This builder for chaining. */ public Builder setAuRoc(float value) { auRoc_ = value; onChanged(); return this; } /** * * *
       * Output only. The Area Under Receiver Operating Characteristic curve metric.
       * Micro-averaged for the overall evaluation.
       * 
* * float au_roc = 6; * * @return This builder for chaining. */ public Builder clearAuRoc() { auRoc_ = 0F; onChanged(); return this; } private float logLoss_; /** * * *
       * Output only. The Log Loss metric.
       * 
* * float log_loss = 7; * * @return The logLoss. */ @java.lang.Override public float getLogLoss() { return logLoss_; } /** * * *
       * Output only. The Log Loss metric.
       * 
* * float log_loss = 7; * * @param value The logLoss to set. * @return This builder for chaining. */ public Builder setLogLoss(float value) { logLoss_ = value; onChanged(); return this; } /** * * *
       * Output only. The Log Loss metric.
       * 
* * float log_loss = 7; * * @return This builder for chaining. */ public Builder clearLogLoss() { logLoss_ = 0F; onChanged(); return this; } private java.util.List< com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry> confidenceMetricsEntry_ = java.util.Collections.emptyList(); private void ensureConfidenceMetricsEntryIsMutable() { if (!((bitField0_ & 0x00000001) != 0)) { confidenceMetricsEntry_ = new java.util.ArrayList< com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfidenceMetricsEntry>( confidenceMetricsEntry_); bitField0_ |= 0x00000001; } } private com.google.protobuf.RepeatedFieldBuilderV3< com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry.Builder, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntryOrBuilder> confidenceMetricsEntryBuilder_; /** * * *
       * Output only. Metrics for each confidence_threshold in
       * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
       * position_threshold = INT32_MAX_VALUE.
       * ROC and precision-recall curves, and other aggregated metrics are derived
       * from them. The confidence metrics entries may also be supplied for
       * additional values of position_threshold, but from these no aggregated
       * metrics are computed.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ public java.util.List< com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry> getConfidenceMetricsEntryList() { if (confidenceMetricsEntryBuilder_ == null) { return java.util.Collections.unmodifiableList(confidenceMetricsEntry_); } else { return confidenceMetricsEntryBuilder_.getMessageList(); } } /** * * *
       * Output only. Metrics for each confidence_threshold in
       * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
       * position_threshold = INT32_MAX_VALUE.
       * ROC and precision-recall curves, and other aggregated metrics are derived
       * from them. The confidence metrics entries may also be supplied for
       * additional values of position_threshold, but from these no aggregated
       * metrics are computed.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ public int getConfidenceMetricsEntryCount() { if (confidenceMetricsEntryBuilder_ == null) { return confidenceMetricsEntry_.size(); } else { return confidenceMetricsEntryBuilder_.getCount(); } } /** * * *
       * Output only. Metrics for each confidence_threshold in
       * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
       * position_threshold = INT32_MAX_VALUE.
       * ROC and precision-recall curves, and other aggregated metrics are derived
       * from them. The confidence metrics entries may also be supplied for
       * additional values of position_threshold, but from these no aggregated
       * metrics are computed.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry getConfidenceMetricsEntry(int index) { if (confidenceMetricsEntryBuilder_ == null) { return confidenceMetricsEntry_.get(index); } else { return confidenceMetricsEntryBuilder_.getMessage(index); } } /** * * *
       * Output only. Metrics for each confidence_threshold in
       * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
       * position_threshold = INT32_MAX_VALUE.
       * ROC and precision-recall curves, and other aggregated metrics are derived
       * from them. The confidence metrics entries may also be supplied for
       * additional values of position_threshold, but from these no aggregated
       * metrics are computed.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ public Builder setConfidenceMetricsEntry( int index, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry value) { if (confidenceMetricsEntryBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureConfidenceMetricsEntryIsMutable(); confidenceMetricsEntry_.set(index, value); onChanged(); } else { confidenceMetricsEntryBuilder_.setMessage(index, value); } return this; } /** * * *
       * Output only. Metrics for each confidence_threshold in
       * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
       * position_threshold = INT32_MAX_VALUE.
       * ROC and precision-recall curves, and other aggregated metrics are derived
       * from them. The confidence metrics entries may also be supplied for
       * additional values of position_threshold, but from these no aggregated
       * metrics are computed.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ public Builder setConfidenceMetricsEntry( int index, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry.Builder builderForValue) { if (confidenceMetricsEntryBuilder_ == null) { ensureConfidenceMetricsEntryIsMutable(); confidenceMetricsEntry_.set(index, builderForValue.build()); onChanged(); } else { confidenceMetricsEntryBuilder_.setMessage(index, builderForValue.build()); } return this; } /** * * *
       * Output only. Metrics for each confidence_threshold in
       * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
       * position_threshold = INT32_MAX_VALUE.
       * ROC and precision-recall curves, and other aggregated metrics are derived
       * from them. The confidence metrics entries may also be supplied for
       * additional values of position_threshold, but from these no aggregated
       * metrics are computed.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ public Builder addConfidenceMetricsEntry( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry value) { if (confidenceMetricsEntryBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureConfidenceMetricsEntryIsMutable(); confidenceMetricsEntry_.add(value); onChanged(); } else { confidenceMetricsEntryBuilder_.addMessage(value); } return this; } /** * * *
       * Output only. Metrics for each confidence_threshold in
       * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
       * position_threshold = INT32_MAX_VALUE.
       * ROC and precision-recall curves, and other aggregated metrics are derived
       * from them. The confidence metrics entries may also be supplied for
       * additional values of position_threshold, but from these no aggregated
       * metrics are computed.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ public Builder addConfidenceMetricsEntry( int index, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry value) { if (confidenceMetricsEntryBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureConfidenceMetricsEntryIsMutable(); confidenceMetricsEntry_.add(index, value); onChanged(); } else { confidenceMetricsEntryBuilder_.addMessage(index, value); } return this; } /** * * *
       * Output only. Metrics for each confidence_threshold in
       * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
       * position_threshold = INT32_MAX_VALUE.
       * ROC and precision-recall curves, and other aggregated metrics are derived
       * from them. The confidence metrics entries may also be supplied for
       * additional values of position_threshold, but from these no aggregated
       * metrics are computed.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ public Builder addConfidenceMetricsEntry( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry.Builder builderForValue) { if (confidenceMetricsEntryBuilder_ == null) { ensureConfidenceMetricsEntryIsMutable(); confidenceMetricsEntry_.add(builderForValue.build()); onChanged(); } else { confidenceMetricsEntryBuilder_.addMessage(builderForValue.build()); } return this; } /** * * *
       * Output only. Metrics for each confidence_threshold in
       * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
       * position_threshold = INT32_MAX_VALUE.
       * ROC and precision-recall curves, and other aggregated metrics are derived
       * from them. The confidence metrics entries may also be supplied for
       * additional values of position_threshold, but from these no aggregated
       * metrics are computed.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ public Builder addConfidenceMetricsEntry( int index, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry.Builder builderForValue) { if (confidenceMetricsEntryBuilder_ == null) { ensureConfidenceMetricsEntryIsMutable(); confidenceMetricsEntry_.add(index, builderForValue.build()); onChanged(); } else { confidenceMetricsEntryBuilder_.addMessage(index, builderForValue.build()); } return this; } /** * * *
       * Output only. Metrics for each confidence_threshold in
       * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
       * position_threshold = INT32_MAX_VALUE.
       * ROC and precision-recall curves, and other aggregated metrics are derived
       * from them. The confidence metrics entries may also be supplied for
       * additional values of position_threshold, but from these no aggregated
       * metrics are computed.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ public Builder addAllConfidenceMetricsEntry( java.lang.Iterable< ? extends com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfidenceMetricsEntry> values) { if (confidenceMetricsEntryBuilder_ == null) { ensureConfidenceMetricsEntryIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll(values, confidenceMetricsEntry_); onChanged(); } else { confidenceMetricsEntryBuilder_.addAllMessages(values); } return this; } /** * * *
       * Output only. Metrics for each confidence_threshold in
       * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
       * position_threshold = INT32_MAX_VALUE.
       * ROC and precision-recall curves, and other aggregated metrics are derived
       * from them. The confidence metrics entries may also be supplied for
       * additional values of position_threshold, but from these no aggregated
       * metrics are computed.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ public Builder clearConfidenceMetricsEntry() { if (confidenceMetricsEntryBuilder_ == null) { confidenceMetricsEntry_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000001); onChanged(); } else { confidenceMetricsEntryBuilder_.clear(); } return this; } /** * * *
       * Output only. Metrics for each confidence_threshold in
       * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
       * position_threshold = INT32_MAX_VALUE.
       * ROC and precision-recall curves, and other aggregated metrics are derived
       * from them. The confidence metrics entries may also be supplied for
       * additional values of position_threshold, but from these no aggregated
       * metrics are computed.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ public Builder removeConfidenceMetricsEntry(int index) { if (confidenceMetricsEntryBuilder_ == null) { ensureConfidenceMetricsEntryIsMutable(); confidenceMetricsEntry_.remove(index); onChanged(); } else { confidenceMetricsEntryBuilder_.remove(index); } return this; } /** * * *
       * Output only. Metrics for each confidence_threshold in
       * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
       * position_threshold = INT32_MAX_VALUE.
       * ROC and precision-recall curves, and other aggregated metrics are derived
       * from them. The confidence metrics entries may also be supplied for
       * additional values of position_threshold, but from these no aggregated
       * metrics are computed.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry.Builder getConfidenceMetricsEntryBuilder(int index) { return getConfidenceMetricsEntryFieldBuilder().getBuilder(index); } /** * * *
       * Output only. Metrics for each confidence_threshold in
       * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
       * position_threshold = INT32_MAX_VALUE.
       * ROC and precision-recall curves, and other aggregated metrics are derived
       * from them. The confidence metrics entries may also be supplied for
       * additional values of position_threshold, but from these no aggregated
       * metrics are computed.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntryOrBuilder getConfidenceMetricsEntryOrBuilder(int index) { if (confidenceMetricsEntryBuilder_ == null) { return confidenceMetricsEntry_.get(index); } else { return confidenceMetricsEntryBuilder_.getMessageOrBuilder(index); } } /** * * *
       * Output only. Metrics for each confidence_threshold in
       * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
       * position_threshold = INT32_MAX_VALUE.
       * ROC and precision-recall curves, and other aggregated metrics are derived
       * from them. The confidence metrics entries may also be supplied for
       * additional values of position_threshold, but from these no aggregated
       * metrics are computed.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ public java.util.List< ? extends com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfidenceMetricsEntryOrBuilder> getConfidenceMetricsEntryOrBuilderList() { if (confidenceMetricsEntryBuilder_ != null) { return confidenceMetricsEntryBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(confidenceMetricsEntry_); } } /** * * *
       * Output only. Metrics for each confidence_threshold in
       * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
       * position_threshold = INT32_MAX_VALUE.
       * ROC and precision-recall curves, and other aggregated metrics are derived
       * from them. The confidence metrics entries may also be supplied for
       * additional values of position_threshold, but from these no aggregated
       * metrics are computed.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry.Builder addConfidenceMetricsEntryBuilder() { return getConfidenceMetricsEntryFieldBuilder() .addBuilder( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry.getDefaultInstance()); } /** * * *
       * Output only. Metrics for each confidence_threshold in
       * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
       * position_threshold = INT32_MAX_VALUE.
       * ROC and precision-recall curves, and other aggregated metrics are derived
       * from them. The confidence metrics entries may also be supplied for
       * additional values of position_threshold, but from these no aggregated
       * metrics are computed.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry.Builder addConfidenceMetricsEntryBuilder(int index) { return getConfidenceMetricsEntryFieldBuilder() .addBuilder( index, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry.getDefaultInstance()); } /** * * *
       * Output only. Metrics for each confidence_threshold in
       * 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
       * position_threshold = INT32_MAX_VALUE.
       * ROC and precision-recall curves, and other aggregated metrics are derived
       * from them. The confidence metrics entries may also be supplied for
       * additional values of position_threshold, but from these no aggregated
       * metrics are computed.
       * 
* * * repeated .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry confidence_metrics_entry = 3; * */ public java.util.List< com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry.Builder> getConfidenceMetricsEntryBuilderList() { return getConfidenceMetricsEntryFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntry.Builder, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfidenceMetricsEntryOrBuilder> getConfidenceMetricsEntryFieldBuilder() { if (confidenceMetricsEntryBuilder_ == null) { confidenceMetricsEntryBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfidenceMetricsEntry, com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfidenceMetricsEntry.Builder, com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfidenceMetricsEntryOrBuilder>( confidenceMetricsEntry_, ((bitField0_ & 0x00000001) != 0), getParentForChildren(), isClean()); confidenceMetricsEntry_ = null; } return confidenceMetricsEntryBuilder_; } private com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix confusionMatrix_; private com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Builder, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrixOrBuilder> confusionMatrixBuilder_; /** * * *
       * Output only. Confusion matrix of the evaluation.
       * Only set for MULTICLASS classification problems where number
       * of labels is no more than 10.
       * Only set for model level evaluation, not for evaluation per label.
       * 
* * * .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 4; * * * @return Whether the confusionMatrix field is set. */ public boolean hasConfusionMatrix() { return confusionMatrixBuilder_ != null || confusionMatrix_ != null; } /** * * *
       * Output only. Confusion matrix of the evaluation.
       * Only set for MULTICLASS classification problems where number
       * of labels is no more than 10.
       * Only set for model level evaluation, not for evaluation per label.
       * 
* * * .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 4; * * * @return The confusionMatrix. */ public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix getConfusionMatrix() { if (confusionMatrixBuilder_ == null) { return confusionMatrix_ == null ? com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.getDefaultInstance() : confusionMatrix_; } else { return confusionMatrixBuilder_.getMessage(); } } /** * * *
       * Output only. Confusion matrix of the evaluation.
       * Only set for MULTICLASS classification problems where number
       * of labels is no more than 10.
       * Only set for model level evaluation, not for evaluation per label.
       * 
* * * .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 4; * */ public Builder setConfusionMatrix( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix value) { if (confusionMatrixBuilder_ == null) { if (value == null) { throw new NullPointerException(); } confusionMatrix_ = value; onChanged(); } else { confusionMatrixBuilder_.setMessage(value); } return this; } /** * * *
       * Output only. Confusion matrix of the evaluation.
       * Only set for MULTICLASS classification problems where number
       * of labels is no more than 10.
       * Only set for model level evaluation, not for evaluation per label.
       * 
* * * .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 4; * */ public Builder setConfusionMatrix( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Builder builderForValue) { if (confusionMatrixBuilder_ == null) { confusionMatrix_ = builderForValue.build(); onChanged(); } else { confusionMatrixBuilder_.setMessage(builderForValue.build()); } return this; } /** * * *
       * Output only. Confusion matrix of the evaluation.
       * Only set for MULTICLASS classification problems where number
       * of labels is no more than 10.
       * Only set for model level evaluation, not for evaluation per label.
       * 
* * * .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 4; * */ public Builder mergeConfusionMatrix( com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix value) { if (confusionMatrixBuilder_ == null) { if (confusionMatrix_ != null) { confusionMatrix_ = com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.newBuilder(confusionMatrix_) .mergeFrom(value) .buildPartial(); } else { confusionMatrix_ = value; } onChanged(); } else { confusionMatrixBuilder_.mergeFrom(value); } return this; } /** * * *
       * Output only. Confusion matrix of the evaluation.
       * Only set for MULTICLASS classification problems where number
       * of labels is no more than 10.
       * Only set for model level evaluation, not for evaluation per label.
       * 
* * * .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 4; * */ public Builder clearConfusionMatrix() { if (confusionMatrixBuilder_ == null) { confusionMatrix_ = null; onChanged(); } else { confusionMatrix_ = null; confusionMatrixBuilder_ = null; } return this; } /** * * *
       * Output only. Confusion matrix of the evaluation.
       * Only set for MULTICLASS classification problems where number
       * of labels is no more than 10.
       * Only set for model level evaluation, not for evaluation per label.
       * 
* * * .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 4; * */ public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Builder getConfusionMatrixBuilder() { onChanged(); return getConfusionMatrixFieldBuilder().getBuilder(); } /** * * *
       * Output only. Confusion matrix of the evaluation.
       * Only set for MULTICLASS classification problems where number
       * of labels is no more than 10.
       * Only set for model level evaluation, not for evaluation per label.
       * 
* * * .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 4; * */ public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrixOrBuilder getConfusionMatrixOrBuilder() { if (confusionMatrixBuilder_ != null) { return confusionMatrixBuilder_.getMessageOrBuilder(); } else { return confusionMatrix_ == null ? com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.getDefaultInstance() : confusionMatrix_; } } /** * * *
       * Output only. Confusion matrix of the evaluation.
       * Only set for MULTICLASS classification problems where number
       * of labels is no more than 10.
       * Only set for model level evaluation, not for evaluation per label.
       * 
* * * .google.cloud.automl.v1beta1.ClassificationEvaluationMetrics.ConfusionMatrix confusion_matrix = 4; * */ private com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrix.Builder, com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics .ConfusionMatrixOrBuilder> getConfusionMatrixFieldBuilder() { if (confusionMatrixBuilder_ == null) { confusionMatrixBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix, com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrix.Builder, com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics.ConfusionMatrixOrBuilder>( getConfusionMatrix(), getParentForChildren(), isClean()); confusionMatrix_ = null; } return confusionMatrixBuilder_; } private com.google.protobuf.LazyStringList annotationSpecId_ = com.google.protobuf.LazyStringArrayList.EMPTY; private void ensureAnnotationSpecIdIsMutable() { if (!((bitField0_ & 0x00000002) != 0)) { annotationSpecId_ = new com.google.protobuf.LazyStringArrayList(annotationSpecId_); bitField0_ |= 0x00000002; } } /** * * *
       * Output only. The annotation spec ids used for this evaluation.
       * 
* * repeated string annotation_spec_id = 5; * * @return A list containing the annotationSpecId. */ public com.google.protobuf.ProtocolStringList getAnnotationSpecIdList() { return annotationSpecId_.getUnmodifiableView(); } /** * * *
       * Output only. The annotation spec ids used for this evaluation.
       * 
* * repeated string annotation_spec_id = 5; * * @return The count of annotationSpecId. */ public int getAnnotationSpecIdCount() { return annotationSpecId_.size(); } /** * * *
       * Output only. The annotation spec ids used for this evaluation.
       * 
* * repeated string annotation_spec_id = 5; * * @param index The index of the element to return. * @return The annotationSpecId at the given index. */ public java.lang.String getAnnotationSpecId(int index) { return annotationSpecId_.get(index); } /** * * *
       * Output only. The annotation spec ids used for this evaluation.
       * 
* * repeated string annotation_spec_id = 5; * * @param index The index of the value to return. * @return The bytes of the annotationSpecId at the given index. */ public com.google.protobuf.ByteString getAnnotationSpecIdBytes(int index) { return annotationSpecId_.getByteString(index); } /** * * *
       * Output only. The annotation spec ids used for this evaluation.
       * 
* * repeated string annotation_spec_id = 5; * * @param index The index to set the value at. * @param value The annotationSpecId to set. * @return This builder for chaining. */ public Builder setAnnotationSpecId(int index, java.lang.String value) { if (value == null) { throw new NullPointerException(); } ensureAnnotationSpecIdIsMutable(); annotationSpecId_.set(index, value); onChanged(); return this; } /** * * *
       * Output only. The annotation spec ids used for this evaluation.
       * 
* * repeated string annotation_spec_id = 5; * * @param value The annotationSpecId to add. * @return This builder for chaining. */ public Builder addAnnotationSpecId(java.lang.String value) { if (value == null) { throw new NullPointerException(); } ensureAnnotationSpecIdIsMutable(); annotationSpecId_.add(value); onChanged(); return this; } /** * * *
       * Output only. The annotation spec ids used for this evaluation.
       * 
* * repeated string annotation_spec_id = 5; * * @param values The annotationSpecId to add. * @return This builder for chaining. */ public Builder addAllAnnotationSpecId(java.lang.Iterable values) { ensureAnnotationSpecIdIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll(values, annotationSpecId_); onChanged(); return this; } /** * * *
       * Output only. The annotation spec ids used for this evaluation.
       * 
* * repeated string annotation_spec_id = 5; * * @return This builder for chaining. */ public Builder clearAnnotationSpecId() { annotationSpecId_ = com.google.protobuf.LazyStringArrayList.EMPTY; bitField0_ = (bitField0_ & ~0x00000002); onChanged(); return this; } /** * * *
       * Output only. The annotation spec ids used for this evaluation.
       * 
* * repeated string annotation_spec_id = 5; * * @param value The bytes of the annotationSpecId to add. * @return This builder for chaining. */ public Builder addAnnotationSpecIdBytes(com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } checkByteStringIsUtf8(value); ensureAnnotationSpecIdIsMutable(); annotationSpecId_.add(value); onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:google.cloud.automl.v1beta1.ClassificationEvaluationMetrics) } // @@protoc_insertion_point(class_scope:google.cloud.automl.v1beta1.ClassificationEvaluationMetrics) private static final com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics(); } public static com.google.cloud.automl.v1beta1.ClassificationProto .ClassificationEvaluationMetrics getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public ClassificationEvaluationMetrics parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException() .setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public com.google.cloud.automl.v1beta1.ClassificationProto.ClassificationEvaluationMetrics getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } private static final com.google.protobuf.Descriptors.Descriptor internal_static_google_cloud_automl_v1beta1_ClassificationAnnotation_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_google_cloud_automl_v1beta1_ClassificationAnnotation_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_google_cloud_automl_v1beta1_VideoClassificationAnnotation_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_google_cloud_automl_v1beta1_VideoClassificationAnnotation_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfidenceMetricsEntry_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfidenceMetricsEntry_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfusionMatrix_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfusionMatrix_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfusionMatrix_Row_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfusionMatrix_Row_fieldAccessorTable; public static com.google.protobuf.Descriptors.FileDescriptor getDescriptor() { return descriptor; } private static com.google.protobuf.Descriptors.FileDescriptor descriptor; static { java.lang.String[] descriptorData = { "\n0google/cloud/automl/v1beta1/classifica" + "tion.proto\022\033google.cloud.automl.v1beta1\032" + "*google/cloud/automl/v1beta1/temporal.pr" + "oto\")\n\030ClassificationAnnotation\022\r\n\005score" + "\030\001 \001(\002\"\307\001\n\035VideoClassificationAnnotation" + "\022\014\n\004type\030\001 \001(\t\022X\n\031classification_annotat" + "ion\030\002 \001(\01325.google.cloud.automl.v1beta1." + "ClassificationAnnotation\022>\n\014time_segment" + "\030\003 \001(\0132(.google.cloud.automl.v1beta1.Tim" + "eSegment\"\251\007\n\037ClassificationEvaluationMet" + "rics\022\016\n\006au_prc\030\001 \001(\002\022\027\n\013base_au_prc\030\002 \001(" + "\002B\002\030\001\022\016\n\006au_roc\030\006 \001(\002\022\020\n\010log_loss\030\007 \001(\002\022" + "u\n\030confidence_metrics_entry\030\003 \003(\0132S.goog" + "le.cloud.automl.v1beta1.ClassificationEv" + "aluationMetrics.ConfidenceMetricsEntry\022f" + "\n\020confusion_matrix\030\004 \001(\0132L.google.cloud." + "automl.v1beta1.ClassificationEvaluationM" + "etrics.ConfusionMatrix\022\032\n\022annotation_spe" + "c_id\030\005 \003(\t\032\374\002\n\026ConfidenceMetricsEntry\022\034\n" + "\024confidence_threshold\030\001 \001(\002\022\032\n\022position_" + "threshold\030\016 \001(\005\022\016\n\006recall\030\002 \001(\002\022\021\n\tpreci" + "sion\030\003 \001(\002\022\033\n\023false_positive_rate\030\010 \001(\002\022" + "\020\n\010f1_score\030\004 \001(\002\022\022\n\nrecall_at1\030\005 \001(\002\022\025\n" + "\rprecision_at1\030\006 \001(\002\022\037\n\027false_positive_r" + "ate_at1\030\t \001(\002\022\024\n\014f1_score_at1\030\007 \001(\002\022\033\n\023t" + "rue_positive_count\030\n \001(\003\022\034\n\024false_positi" + "ve_count\030\013 \001(\003\022\034\n\024false_negative_count\030\014" + " \001(\003\022\033\n\023true_negative_count\030\r \001(\003\032\300\001\n\017Co" + "nfusionMatrix\022\032\n\022annotation_spec_id\030\001 \003(" + "\t\022\024\n\014display_name\030\003 \003(\t\022]\n\003row\030\002 \003(\0132P.g" + "oogle.cloud.automl.v1beta1.Classificatio" + "nEvaluationMetrics.ConfusionMatrix.Row\032\034" + "\n\003Row\022\025\n\rexample_count\030\001 \003(\005*Y\n\022Classifi" + "cationType\022#\n\037CLASSIFICATION_TYPE_UNSPEC" + "IFIED\020\000\022\016\n\nMULTICLASS\020\001\022\016\n\nMULTILABEL\020\002B" + "\270\001\n\037com.google.cloud.automl.v1beta1B\023Cla" + "ssificationProtoZAgoogle.golang.org/genp" + "roto/googleapis/cloud/automl/v1beta1;aut" + "oml\312\002\033Google\\Cloud\\AutoMl\\V1beta1\352\002\036Goog" + "le::Cloud::AutoML::V1beta1b\006proto3" }; descriptor = com.google.protobuf.Descriptors.FileDescriptor.internalBuildGeneratedFileFrom( descriptorData, new com.google.protobuf.Descriptors.FileDescriptor[] { com.google.cloud.automl.v1beta1.Temporal.getDescriptor(), }); internal_static_google_cloud_automl_v1beta1_ClassificationAnnotation_descriptor = getDescriptor().getMessageTypes().get(0); internal_static_google_cloud_automl_v1beta1_ClassificationAnnotation_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_google_cloud_automl_v1beta1_ClassificationAnnotation_descriptor, new java.lang.String[] { "Score", }); internal_static_google_cloud_automl_v1beta1_VideoClassificationAnnotation_descriptor = getDescriptor().getMessageTypes().get(1); internal_static_google_cloud_automl_v1beta1_VideoClassificationAnnotation_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_google_cloud_automl_v1beta1_VideoClassificationAnnotation_descriptor, new java.lang.String[] { "Type", "ClassificationAnnotation", "TimeSegment", }); internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_descriptor = getDescriptor().getMessageTypes().get(2); internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_descriptor, new java.lang.String[] { "AuPrc", "BaseAuPrc", "AuRoc", "LogLoss", "ConfidenceMetricsEntry", "ConfusionMatrix", "AnnotationSpecId", }); internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfidenceMetricsEntry_descriptor = internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_descriptor .getNestedTypes() .get(0); internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfidenceMetricsEntry_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfidenceMetricsEntry_descriptor, new java.lang.String[] { "ConfidenceThreshold", "PositionThreshold", "Recall", "Precision", "FalsePositiveRate", "F1Score", "RecallAt1", "PrecisionAt1", "FalsePositiveRateAt1", "F1ScoreAt1", "TruePositiveCount", "FalsePositiveCount", "FalseNegativeCount", "TrueNegativeCount", }); internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfusionMatrix_descriptor = internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_descriptor .getNestedTypes() .get(1); internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfusionMatrix_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfusionMatrix_descriptor, new java.lang.String[] { "AnnotationSpecId", "DisplayName", "Row", }); internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfusionMatrix_Row_descriptor = internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfusionMatrix_descriptor .getNestedTypes() .get(0); internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfusionMatrix_Row_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_google_cloud_automl_v1beta1_ClassificationEvaluationMetrics_ConfusionMatrix_Row_descriptor, new java.lang.String[] { "ExampleCount", }); com.google.cloud.automl.v1beta1.Temporal.getDescriptor(); } // @@protoc_insertion_point(outer_class_scope) }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy