All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.cloud.automl.v1beta1.RegressionProto Maven / Gradle / Ivy

There is a newer version: 0.142.0
Show newest version
/*
 * Copyright 2020 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: google/cloud/automl/v1beta1/regression.proto

package com.google.cloud.automl.v1beta1;

public final class RegressionProto {
  private RegressionProto() {}

  public static void registerAllExtensions(com.google.protobuf.ExtensionRegistryLite registry) {}

  public static void registerAllExtensions(com.google.protobuf.ExtensionRegistry registry) {
    registerAllExtensions((com.google.protobuf.ExtensionRegistryLite) registry);
  }

  public interface RegressionEvaluationMetricsOrBuilder
      extends
      // @@protoc_insertion_point(interface_extends:google.cloud.automl.v1beta1.RegressionEvaluationMetrics)
      com.google.protobuf.MessageOrBuilder {

    /**
     *
     *
     * 
     * Output only. Root Mean Squared Error (RMSE).
     * 
* * float root_mean_squared_error = 1; * * @return The rootMeanSquaredError. */ float getRootMeanSquaredError(); /** * * *
     * Output only. Mean Absolute Error (MAE).
     * 
* * float mean_absolute_error = 2; * * @return The meanAbsoluteError. */ float getMeanAbsoluteError(); /** * * *
     * Output only. Mean absolute percentage error. Only set if all ground truth
     * values are are positive.
     * 
* * float mean_absolute_percentage_error = 3; * * @return The meanAbsolutePercentageError. */ float getMeanAbsolutePercentageError(); /** * * *
     * Output only. R squared.
     * 
* * float r_squared = 4; * * @return The rSquared. */ float getRSquared(); /** * * *
     * Output only. Root mean squared log error.
     * 
* * float root_mean_squared_log_error = 5; * * @return The rootMeanSquaredLogError. */ float getRootMeanSquaredLogError(); } /** * * *
   * Metrics for regression problems.
   * 
* * Protobuf type {@code google.cloud.automl.v1beta1.RegressionEvaluationMetrics} */ public static final class RegressionEvaluationMetrics extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:google.cloud.automl.v1beta1.RegressionEvaluationMetrics) RegressionEvaluationMetricsOrBuilder { private static final long serialVersionUID = 0L; // Use RegressionEvaluationMetrics.newBuilder() to construct. private RegressionEvaluationMetrics(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private RegressionEvaluationMetrics() {} @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance(UnusedPrivateParameter unused) { return new RegressionEvaluationMetrics(); } @java.lang.Override public final com.google.protobuf.UnknownFieldSet getUnknownFields() { return this.unknownFields; } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.RegressionProto .internal_static_google_cloud_automl_v1beta1_RegressionEvaluationMetrics_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.RegressionProto .internal_static_google_cloud_automl_v1beta1_RegressionEvaluationMetrics_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics.class, com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics.Builder .class); } public static final int ROOT_MEAN_SQUARED_ERROR_FIELD_NUMBER = 1; private float rootMeanSquaredError_; /** * * *
     * Output only. Root Mean Squared Error (RMSE).
     * 
* * float root_mean_squared_error = 1; * * @return The rootMeanSquaredError. */ @java.lang.Override public float getRootMeanSquaredError() { return rootMeanSquaredError_; } public static final int MEAN_ABSOLUTE_ERROR_FIELD_NUMBER = 2; private float meanAbsoluteError_; /** * * *
     * Output only. Mean Absolute Error (MAE).
     * 
* * float mean_absolute_error = 2; * * @return The meanAbsoluteError. */ @java.lang.Override public float getMeanAbsoluteError() { return meanAbsoluteError_; } public static final int MEAN_ABSOLUTE_PERCENTAGE_ERROR_FIELD_NUMBER = 3; private float meanAbsolutePercentageError_; /** * * *
     * Output only. Mean absolute percentage error. Only set if all ground truth
     * values are are positive.
     * 
* * float mean_absolute_percentage_error = 3; * * @return The meanAbsolutePercentageError. */ @java.lang.Override public float getMeanAbsolutePercentageError() { return meanAbsolutePercentageError_; } public static final int R_SQUARED_FIELD_NUMBER = 4; private float rSquared_; /** * * *
     * Output only. R squared.
     * 
* * float r_squared = 4; * * @return The rSquared. */ @java.lang.Override public float getRSquared() { return rSquared_; } public static final int ROOT_MEAN_SQUARED_LOG_ERROR_FIELD_NUMBER = 5; private float rootMeanSquaredLogError_; /** * * *
     * Output only. Root mean squared log error.
     * 
* * float root_mean_squared_log_error = 5; * * @return The rootMeanSquaredLogError. */ @java.lang.Override public float getRootMeanSquaredLogError() { return rootMeanSquaredLogError_; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (java.lang.Float.floatToRawIntBits(rootMeanSquaredError_) != 0) { output.writeFloat(1, rootMeanSquaredError_); } if (java.lang.Float.floatToRawIntBits(meanAbsoluteError_) != 0) { output.writeFloat(2, meanAbsoluteError_); } if (java.lang.Float.floatToRawIntBits(meanAbsolutePercentageError_) != 0) { output.writeFloat(3, meanAbsolutePercentageError_); } if (java.lang.Float.floatToRawIntBits(rSquared_) != 0) { output.writeFloat(4, rSquared_); } if (java.lang.Float.floatToRawIntBits(rootMeanSquaredLogError_) != 0) { output.writeFloat(5, rootMeanSquaredLogError_); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (java.lang.Float.floatToRawIntBits(rootMeanSquaredError_) != 0) { size += com.google.protobuf.CodedOutputStream.computeFloatSize(1, rootMeanSquaredError_); } if (java.lang.Float.floatToRawIntBits(meanAbsoluteError_) != 0) { size += com.google.protobuf.CodedOutputStream.computeFloatSize(2, meanAbsoluteError_); } if (java.lang.Float.floatToRawIntBits(meanAbsolutePercentageError_) != 0) { size += com.google.protobuf.CodedOutputStream.computeFloatSize(3, meanAbsolutePercentageError_); } if (java.lang.Float.floatToRawIntBits(rSquared_) != 0) { size += com.google.protobuf.CodedOutputStream.computeFloatSize(4, rSquared_); } if (java.lang.Float.floatToRawIntBits(rootMeanSquaredLogError_) != 0) { size += com.google.protobuf.CodedOutputStream.computeFloatSize(5, rootMeanSquaredLogError_); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics)) { return super.equals(obj); } com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics other = (com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics) obj; if (java.lang.Float.floatToIntBits(getRootMeanSquaredError()) != java.lang.Float.floatToIntBits(other.getRootMeanSquaredError())) return false; if (java.lang.Float.floatToIntBits(getMeanAbsoluteError()) != java.lang.Float.floatToIntBits(other.getMeanAbsoluteError())) return false; if (java.lang.Float.floatToIntBits(getMeanAbsolutePercentageError()) != java.lang.Float.floatToIntBits(other.getMeanAbsolutePercentageError())) return false; if (java.lang.Float.floatToIntBits(getRSquared()) != java.lang.Float.floatToIntBits(other.getRSquared())) return false; if (java.lang.Float.floatToIntBits(getRootMeanSquaredLogError()) != java.lang.Float.floatToIntBits(other.getRootMeanSquaredLogError())) return false; if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); hash = (37 * hash) + ROOT_MEAN_SQUARED_ERROR_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits(getRootMeanSquaredError()); hash = (37 * hash) + MEAN_ABSOLUTE_ERROR_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits(getMeanAbsoluteError()); hash = (37 * hash) + MEAN_ABSOLUTE_PERCENTAGE_ERROR_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits(getMeanAbsolutePercentageError()); hash = (37 * hash) + R_SQUARED_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits(getRSquared()); hash = (37 * hash) + ROOT_MEAN_SQUARED_LOG_ERROR_FIELD_NUMBER; hash = (53 * hash) + java.lang.Float.floatToIntBits(getRootMeanSquaredLogError()); hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics parseFrom(java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics parseFrom(com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics parseFrom(byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics parseDelimitedFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics parseFrom(com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder( com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType( com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * * *
     * Metrics for regression problems.
     * 
* * Protobuf type {@code google.cloud.automl.v1beta1.RegressionEvaluationMetrics} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:google.cloud.automl.v1beta1.RegressionEvaluationMetrics) com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetricsOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.automl.v1beta1.RegressionProto .internal_static_google_cloud_automl_v1beta1_RegressionEvaluationMetrics_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.automl.v1beta1.RegressionProto .internal_static_google_cloud_automl_v1beta1_RegressionEvaluationMetrics_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics.class, com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics.Builder .class); } // Construct using // com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics.newBuilder() private Builder() {} private Builder(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); } @java.lang.Override public Builder clear() { super.clear(); rootMeanSquaredError_ = 0F; meanAbsoluteError_ = 0F; meanAbsolutePercentageError_ = 0F; rSquared_ = 0F; rootMeanSquaredLogError_ = 0F; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return com.google.cloud.automl.v1beta1.RegressionProto .internal_static_google_cloud_automl_v1beta1_RegressionEvaluationMetrics_descriptor; } @java.lang.Override public com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics getDefaultInstanceForType() { return com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics .getDefaultInstance(); } @java.lang.Override public com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics build() { com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics buildPartial() { com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics result = new com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics(this); result.rootMeanSquaredError_ = rootMeanSquaredError_; result.meanAbsoluteError_ = meanAbsoluteError_; result.meanAbsolutePercentageError_ = meanAbsolutePercentageError_; result.rSquared_ = rSquared_; result.rootMeanSquaredLogError_ = rootMeanSquaredLogError_; onBuilt(); return result; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics) { return mergeFrom( (com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics) other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom( com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics other) { if (other == com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics .getDefaultInstance()) return this; if (other.getRootMeanSquaredError() != 0F) { setRootMeanSquaredError(other.getRootMeanSquaredError()); } if (other.getMeanAbsoluteError() != 0F) { setMeanAbsoluteError(other.getMeanAbsoluteError()); } if (other.getMeanAbsolutePercentageError() != 0F) { setMeanAbsolutePercentageError(other.getMeanAbsolutePercentageError()); } if (other.getRSquared() != 0F) { setRSquared(other.getRSquared()); } if (other.getRootMeanSquaredLogError() != 0F) { setRootMeanSquaredLogError(other.getRootMeanSquaredLogError()); } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 13: { rootMeanSquaredError_ = input.readFloat(); break; } // case 13 case 21: { meanAbsoluteError_ = input.readFloat(); break; } // case 21 case 29: { meanAbsolutePercentageError_ = input.readFloat(); break; } // case 29 case 37: { rSquared_ = input.readFloat(); break; } // case 37 case 45: { rootMeanSquaredLogError_ = input.readFloat(); break; } // case 45 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private float rootMeanSquaredError_; /** * * *
       * Output only. Root Mean Squared Error (RMSE).
       * 
* * float root_mean_squared_error = 1; * * @return The rootMeanSquaredError. */ @java.lang.Override public float getRootMeanSquaredError() { return rootMeanSquaredError_; } /** * * *
       * Output only. Root Mean Squared Error (RMSE).
       * 
* * float root_mean_squared_error = 1; * * @param value The rootMeanSquaredError to set. * @return This builder for chaining. */ public Builder setRootMeanSquaredError(float value) { rootMeanSquaredError_ = value; onChanged(); return this; } /** * * *
       * Output only. Root Mean Squared Error (RMSE).
       * 
* * float root_mean_squared_error = 1; * * @return This builder for chaining. */ public Builder clearRootMeanSquaredError() { rootMeanSquaredError_ = 0F; onChanged(); return this; } private float meanAbsoluteError_; /** * * *
       * Output only. Mean Absolute Error (MAE).
       * 
* * float mean_absolute_error = 2; * * @return The meanAbsoluteError. */ @java.lang.Override public float getMeanAbsoluteError() { return meanAbsoluteError_; } /** * * *
       * Output only. Mean Absolute Error (MAE).
       * 
* * float mean_absolute_error = 2; * * @param value The meanAbsoluteError to set. * @return This builder for chaining. */ public Builder setMeanAbsoluteError(float value) { meanAbsoluteError_ = value; onChanged(); return this; } /** * * *
       * Output only. Mean Absolute Error (MAE).
       * 
* * float mean_absolute_error = 2; * * @return This builder for chaining. */ public Builder clearMeanAbsoluteError() { meanAbsoluteError_ = 0F; onChanged(); return this; } private float meanAbsolutePercentageError_; /** * * *
       * Output only. Mean absolute percentage error. Only set if all ground truth
       * values are are positive.
       * 
* * float mean_absolute_percentage_error = 3; * * @return The meanAbsolutePercentageError. */ @java.lang.Override public float getMeanAbsolutePercentageError() { return meanAbsolutePercentageError_; } /** * * *
       * Output only. Mean absolute percentage error. Only set if all ground truth
       * values are are positive.
       * 
* * float mean_absolute_percentage_error = 3; * * @param value The meanAbsolutePercentageError to set. * @return This builder for chaining. */ public Builder setMeanAbsolutePercentageError(float value) { meanAbsolutePercentageError_ = value; onChanged(); return this; } /** * * *
       * Output only. Mean absolute percentage error. Only set if all ground truth
       * values are are positive.
       * 
* * float mean_absolute_percentage_error = 3; * * @return This builder for chaining. */ public Builder clearMeanAbsolutePercentageError() { meanAbsolutePercentageError_ = 0F; onChanged(); return this; } private float rSquared_; /** * * *
       * Output only. R squared.
       * 
* * float r_squared = 4; * * @return The rSquared. */ @java.lang.Override public float getRSquared() { return rSquared_; } /** * * *
       * Output only. R squared.
       * 
* * float r_squared = 4; * * @param value The rSquared to set. * @return This builder for chaining. */ public Builder setRSquared(float value) { rSquared_ = value; onChanged(); return this; } /** * * *
       * Output only. R squared.
       * 
* * float r_squared = 4; * * @return This builder for chaining. */ public Builder clearRSquared() { rSquared_ = 0F; onChanged(); return this; } private float rootMeanSquaredLogError_; /** * * *
       * Output only. Root mean squared log error.
       * 
* * float root_mean_squared_log_error = 5; * * @return The rootMeanSquaredLogError. */ @java.lang.Override public float getRootMeanSquaredLogError() { return rootMeanSquaredLogError_; } /** * * *
       * Output only. Root mean squared log error.
       * 
* * float root_mean_squared_log_error = 5; * * @param value The rootMeanSquaredLogError to set. * @return This builder for chaining. */ public Builder setRootMeanSquaredLogError(float value) { rootMeanSquaredLogError_ = value; onChanged(); return this; } /** * * *
       * Output only. Root mean squared log error.
       * 
* * float root_mean_squared_log_error = 5; * * @return This builder for chaining. */ public Builder clearRootMeanSquaredLogError() { rootMeanSquaredLogError_ = 0F; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:google.cloud.automl.v1beta1.RegressionEvaluationMetrics) } // @@protoc_insertion_point(class_scope:google.cloud.automl.v1beta1.RegressionEvaluationMetrics) private static final com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics(); } public static com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public RegressionEvaluationMetrics parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException() .setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public com.google.cloud.automl.v1beta1.RegressionProto.RegressionEvaluationMetrics getDefaultInstanceForType() { return DEFAULT_INSTANCE; } } private static final com.google.protobuf.Descriptors.Descriptor internal_static_google_cloud_automl_v1beta1_RegressionEvaluationMetrics_descriptor; private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_google_cloud_automl_v1beta1_RegressionEvaluationMetrics_fieldAccessorTable; public static com.google.protobuf.Descriptors.FileDescriptor getDescriptor() { return descriptor; } private static com.google.protobuf.Descriptors.FileDescriptor descriptor; static { java.lang.String[] descriptorData = { "\n,google/cloud/automl/v1beta1/regression" + ".proto\022\033google.cloud.automl.v1beta1\"\273\001\n\033" + "RegressionEvaluationMetrics\022\037\n\027root_mean" + "_squared_error\030\001 \001(\002\022\033\n\023mean_absolute_er" + "ror\030\002 \001(\002\022&\n\036mean_absolute_percentage_er" + "ror\030\003 \001(\002\022\021\n\tr_squared\030\004 \001(\002\022#\n\033root_mea" + "n_squared_log_error\030\005 \001(\002B\264\001\n\037com.google" + ".cloud.automl.v1beta1B\017RegressionProtoZA" + "google.golang.org/genproto/googleapis/cl" + "oud/automl/v1beta1;automl\312\002\033Google\\Cloud" + "\\AutoMl\\V1beta1\352\002\036Google::Cloud::AutoML:" + ":V1beta1b\006proto3" }; descriptor = com.google.protobuf.Descriptors.FileDescriptor.internalBuildGeneratedFileFrom( descriptorData, new com.google.protobuf.Descriptors.FileDescriptor[] {}); internal_static_google_cloud_automl_v1beta1_RegressionEvaluationMetrics_descriptor = getDescriptor().getMessageTypes().get(0); internal_static_google_cloud_automl_v1beta1_RegressionEvaluationMetrics_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_google_cloud_automl_v1beta1_RegressionEvaluationMetrics_descriptor, new java.lang.String[] { "RootMeanSquaredError", "MeanAbsoluteError", "MeanAbsolutePercentageError", "RSquared", "RootMeanSquaredLogError", }); } // @@protoc_insertion_point(outer_class_scope) }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy