com.google.cloud.automl.v1beta1.TablesAnnotationOrBuilder Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of proto-google-cloud-automl-v1beta1 Show documentation
Show all versions of proto-google-cloud-automl-v1beta1 Show documentation
PROTO library for proto-google-cloud-automl-v1beta1
/*
* Copyright 2020 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: google/cloud/automl/v1beta1/tables.proto
package com.google.cloud.automl.v1beta1;
public interface TablesAnnotationOrBuilder
extends
// @@protoc_insertion_point(interface_extends:google.cloud.automl.v1beta1.TablesAnnotation)
com.google.protobuf.MessageOrBuilder {
/**
*
*
*
* Output only. A confidence estimate between 0.0 and 1.0, inclusive. A higher
* value means greater confidence in the returned value.
* For
* [target_column_spec][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
* of FLOAT64 data type the score is not populated.
*
*
* float score = 1;
*
* @return The score.
*/
float getScore();
/**
*
*
*
* Output only. Only populated when
* [target_column_spec][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
* has FLOAT64 data type. An interval in which the exactly correct target
* value has 95% chance to be in.
*
*
* .google.cloud.automl.v1beta1.DoubleRange prediction_interval = 4;
*
* @return Whether the predictionInterval field is set.
*/
boolean hasPredictionInterval();
/**
*
*
*
* Output only. Only populated when
* [target_column_spec][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
* has FLOAT64 data type. An interval in which the exactly correct target
* value has 95% chance to be in.
*
*
* .google.cloud.automl.v1beta1.DoubleRange prediction_interval = 4;
*
* @return The predictionInterval.
*/
com.google.cloud.automl.v1beta1.DoubleRange getPredictionInterval();
/**
*
*
*
* Output only. Only populated when
* [target_column_spec][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]
* has FLOAT64 data type. An interval in which the exactly correct target
* value has 95% chance to be in.
*
*
* .google.cloud.automl.v1beta1.DoubleRange prediction_interval = 4;
*/
com.google.cloud.automl.v1beta1.DoubleRangeOrBuilder getPredictionIntervalOrBuilder();
/**
*
*
*
* The predicted value of the row's
* [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec].
* The value depends on the column's DataType:
* * CATEGORY - the predicted (with the above confidence `score`) CATEGORY
* value.
* * FLOAT64 - the predicted (with above `prediction_interval`) FLOAT64 value.
*
*
* .google.protobuf.Value value = 2;
*
* @return Whether the value field is set.
*/
boolean hasValue();
/**
*
*
*
* The predicted value of the row's
* [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec].
* The value depends on the column's DataType:
* * CATEGORY - the predicted (with the above confidence `score`) CATEGORY
* value.
* * FLOAT64 - the predicted (with above `prediction_interval`) FLOAT64 value.
*
*
* .google.protobuf.Value value = 2;
*
* @return The value.
*/
com.google.protobuf.Value getValue();
/**
*
*
*
* The predicted value of the row's
* [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec].
* The value depends on the column's DataType:
* * CATEGORY - the predicted (with the above confidence `score`) CATEGORY
* value.
* * FLOAT64 - the predicted (with above `prediction_interval`) FLOAT64 value.
*
*
* .google.protobuf.Value value = 2;
*/
com.google.protobuf.ValueOrBuilder getValueOrBuilder();
/**
*
*
*
* Output only. Auxiliary information for each of the model's
* [input_feature_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
* with respect to this particular prediction.
* If no other fields than
* [column_spec_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_spec_name]
* and
* [column_display_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_display_name]
* would be populated, then this whole field is not.
*
*
* repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 3;
*
*/
java.util.List
getTablesModelColumnInfoList();
/**
*
*
*
* Output only. Auxiliary information for each of the model's
* [input_feature_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
* with respect to this particular prediction.
* If no other fields than
* [column_spec_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_spec_name]
* and
* [column_display_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_display_name]
* would be populated, then this whole field is not.
*
*
* repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 3;
*
*/
com.google.cloud.automl.v1beta1.TablesModelColumnInfo getTablesModelColumnInfo(int index);
/**
*
*
*
* Output only. Auxiliary information for each of the model's
* [input_feature_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
* with respect to this particular prediction.
* If no other fields than
* [column_spec_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_spec_name]
* and
* [column_display_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_display_name]
* would be populated, then this whole field is not.
*
*
* repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 3;
*
*/
int getTablesModelColumnInfoCount();
/**
*
*
*
* Output only. Auxiliary information for each of the model's
* [input_feature_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
* with respect to this particular prediction.
* If no other fields than
* [column_spec_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_spec_name]
* and
* [column_display_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_display_name]
* would be populated, then this whole field is not.
*
*
* repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 3;
*
*/
java.util.List extends com.google.cloud.automl.v1beta1.TablesModelColumnInfoOrBuilder>
getTablesModelColumnInfoOrBuilderList();
/**
*
*
*
* Output only. Auxiliary information for each of the model's
* [input_feature_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
* with respect to this particular prediction.
* If no other fields than
* [column_spec_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_spec_name]
* and
* [column_display_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_display_name]
* would be populated, then this whole field is not.
*
*
* repeated .google.cloud.automl.v1beta1.TablesModelColumnInfo tables_model_column_info = 3;
*
*/
com.google.cloud.automl.v1beta1.TablesModelColumnInfoOrBuilder getTablesModelColumnInfoOrBuilder(
int index);
/**
*
*
*
* Output only. Stores the prediction score for the baseline example, which
* is defined as the example with all values set to their baseline values.
* This is used as part of the Sampled Shapley explanation of the model's
* prediction. This field is populated only when feature importance is
* requested. For regression models, this holds the baseline prediction for
* the baseline example. For classification models, this holds the baseline
* prediction for the baseline example for the argmax class.
*
*
* float baseline_score = 5;
*
* @return The baselineScore.
*/
float getBaselineScore();
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy