com.google.cloud.automl.v1beta1.TablesDatasetMetadata Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of proto-google-cloud-automl-v1beta1 Show documentation
Show all versions of proto-google-cloud-automl-v1beta1 Show documentation
PROTO library for proto-google-cloud-automl-v1beta1
/*
* Copyright 2020 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: google/cloud/automl/v1beta1/tables.proto
package com.google.cloud.automl.v1beta1;
/**
*
*
*
* Metadata for a dataset used for AutoML Tables.
*
*
* Protobuf type {@code google.cloud.automl.v1beta1.TablesDatasetMetadata}
*/
public final class TablesDatasetMetadata extends com.google.protobuf.GeneratedMessageV3
implements
// @@protoc_insertion_point(message_implements:google.cloud.automl.v1beta1.TablesDatasetMetadata)
TablesDatasetMetadataOrBuilder {
private static final long serialVersionUID = 0L;
// Use TablesDatasetMetadata.newBuilder() to construct.
private TablesDatasetMetadata(com.google.protobuf.GeneratedMessageV3.Builder> builder) {
super(builder);
}
private TablesDatasetMetadata() {
primaryTableSpecId_ = "";
targetColumnSpecId_ = "";
weightColumnSpecId_ = "";
mlUseColumnSpecId_ = "";
}
@java.lang.Override
@SuppressWarnings({"unused"})
protected java.lang.Object newInstance(UnusedPrivateParameter unused) {
return new TablesDatasetMetadata();
}
@java.lang.Override
public final com.google.protobuf.UnknownFieldSet getUnknownFields() {
return this.unknownFields;
}
public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() {
return com.google.cloud.automl.v1beta1.Tables
.internal_static_google_cloud_automl_v1beta1_TablesDatasetMetadata_descriptor;
}
@SuppressWarnings({"rawtypes"})
@java.lang.Override
protected com.google.protobuf.MapField internalGetMapField(int number) {
switch (number) {
case 6:
return internalGetTargetColumnCorrelations();
default:
throw new RuntimeException("Invalid map field number: " + number);
}
}
@java.lang.Override
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable() {
return com.google.cloud.automl.v1beta1.Tables
.internal_static_google_cloud_automl_v1beta1_TablesDatasetMetadata_fieldAccessorTable
.ensureFieldAccessorsInitialized(
com.google.cloud.automl.v1beta1.TablesDatasetMetadata.class,
com.google.cloud.automl.v1beta1.TablesDatasetMetadata.Builder.class);
}
public static final int PRIMARY_TABLE_SPEC_ID_FIELD_NUMBER = 1;
private volatile java.lang.Object primaryTableSpecId_;
/**
*
*
*
* Output only. The table_spec_id of the primary table of this dataset.
*
*
* string primary_table_spec_id = 1;
*
* @return The primaryTableSpecId.
*/
@java.lang.Override
public java.lang.String getPrimaryTableSpecId() {
java.lang.Object ref = primaryTableSpecId_;
if (ref instanceof java.lang.String) {
return (java.lang.String) ref;
} else {
com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref;
java.lang.String s = bs.toStringUtf8();
primaryTableSpecId_ = s;
return s;
}
}
/**
*
*
*
* Output only. The table_spec_id of the primary table of this dataset.
*
*
* string primary_table_spec_id = 1;
*
* @return The bytes for primaryTableSpecId.
*/
@java.lang.Override
public com.google.protobuf.ByteString getPrimaryTableSpecIdBytes() {
java.lang.Object ref = primaryTableSpecId_;
if (ref instanceof java.lang.String) {
com.google.protobuf.ByteString b =
com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref);
primaryTableSpecId_ = b;
return b;
} else {
return (com.google.protobuf.ByteString) ref;
}
}
public static final int TARGET_COLUMN_SPEC_ID_FIELD_NUMBER = 2;
private volatile java.lang.Object targetColumnSpecId_;
/**
*
*
*
* column_spec_id of the primary table's column that should be used as the
* training & prediction target.
* This column must be non-nullable and have one of following data types
* (otherwise model creation will error):
* * CATEGORY
* * FLOAT64
* If the type is CATEGORY , only up to
* 100 unique values may exist in that column across all rows.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string target_column_spec_id = 2;
*
* @return The targetColumnSpecId.
*/
@java.lang.Override
public java.lang.String getTargetColumnSpecId() {
java.lang.Object ref = targetColumnSpecId_;
if (ref instanceof java.lang.String) {
return (java.lang.String) ref;
} else {
com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref;
java.lang.String s = bs.toStringUtf8();
targetColumnSpecId_ = s;
return s;
}
}
/**
*
*
*
* column_spec_id of the primary table's column that should be used as the
* training & prediction target.
* This column must be non-nullable and have one of following data types
* (otherwise model creation will error):
* * CATEGORY
* * FLOAT64
* If the type is CATEGORY , only up to
* 100 unique values may exist in that column across all rows.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string target_column_spec_id = 2;
*
* @return The bytes for targetColumnSpecId.
*/
@java.lang.Override
public com.google.protobuf.ByteString getTargetColumnSpecIdBytes() {
java.lang.Object ref = targetColumnSpecId_;
if (ref instanceof java.lang.String) {
com.google.protobuf.ByteString b =
com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref);
targetColumnSpecId_ = b;
return b;
} else {
return (com.google.protobuf.ByteString) ref;
}
}
public static final int WEIGHT_COLUMN_SPEC_ID_FIELD_NUMBER = 3;
private volatile java.lang.Object weightColumnSpecId_;
/**
*
*
*
* column_spec_id of the primary table's column that should be used as the
* weight column, i.e. the higher the value the more important the row will be
* during model training.
* Required type: FLOAT64.
* Allowed values: 0 to 10000, inclusive on both ends; 0 means the row is
* ignored for training.
* If not set all rows are assumed to have equal weight of 1.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string weight_column_spec_id = 3;
*
* @return The weightColumnSpecId.
*/
@java.lang.Override
public java.lang.String getWeightColumnSpecId() {
java.lang.Object ref = weightColumnSpecId_;
if (ref instanceof java.lang.String) {
return (java.lang.String) ref;
} else {
com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref;
java.lang.String s = bs.toStringUtf8();
weightColumnSpecId_ = s;
return s;
}
}
/**
*
*
*
* column_spec_id of the primary table's column that should be used as the
* weight column, i.e. the higher the value the more important the row will be
* during model training.
* Required type: FLOAT64.
* Allowed values: 0 to 10000, inclusive on both ends; 0 means the row is
* ignored for training.
* If not set all rows are assumed to have equal weight of 1.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string weight_column_spec_id = 3;
*
* @return The bytes for weightColumnSpecId.
*/
@java.lang.Override
public com.google.protobuf.ByteString getWeightColumnSpecIdBytes() {
java.lang.Object ref = weightColumnSpecId_;
if (ref instanceof java.lang.String) {
com.google.protobuf.ByteString b =
com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref);
weightColumnSpecId_ = b;
return b;
} else {
return (com.google.protobuf.ByteString) ref;
}
}
public static final int ML_USE_COLUMN_SPEC_ID_FIELD_NUMBER = 4;
private volatile java.lang.Object mlUseColumnSpecId_;
/**
*
*
*
* column_spec_id of the primary table column which specifies a possible ML
* use of the row, i.e. the column will be used to split the rows into TRAIN,
* VALIDATE and TEST sets.
* Required type: STRING.
* This column, if set, must either have all of `TRAIN`, `VALIDATE`, `TEST`
* among its values, or only have `TEST`, `UNASSIGNED` values. In the latter
* case the rows with `UNASSIGNED` value will be assigned by AutoML. Note
* that if a given ml use distribution makes it impossible to create a "good"
* model, that call will error describing the issue.
* If both this column_spec_id and primary table's time_column_spec_id are not
* set, then all rows are treated as `UNASSIGNED`.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string ml_use_column_spec_id = 4;
*
* @return The mlUseColumnSpecId.
*/
@java.lang.Override
public java.lang.String getMlUseColumnSpecId() {
java.lang.Object ref = mlUseColumnSpecId_;
if (ref instanceof java.lang.String) {
return (java.lang.String) ref;
} else {
com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref;
java.lang.String s = bs.toStringUtf8();
mlUseColumnSpecId_ = s;
return s;
}
}
/**
*
*
*
* column_spec_id of the primary table column which specifies a possible ML
* use of the row, i.e. the column will be used to split the rows into TRAIN,
* VALIDATE and TEST sets.
* Required type: STRING.
* This column, if set, must either have all of `TRAIN`, `VALIDATE`, `TEST`
* among its values, or only have `TEST`, `UNASSIGNED` values. In the latter
* case the rows with `UNASSIGNED` value will be assigned by AutoML. Note
* that if a given ml use distribution makes it impossible to create a "good"
* model, that call will error describing the issue.
* If both this column_spec_id and primary table's time_column_spec_id are not
* set, then all rows are treated as `UNASSIGNED`.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string ml_use_column_spec_id = 4;
*
* @return The bytes for mlUseColumnSpecId.
*/
@java.lang.Override
public com.google.protobuf.ByteString getMlUseColumnSpecIdBytes() {
java.lang.Object ref = mlUseColumnSpecId_;
if (ref instanceof java.lang.String) {
com.google.protobuf.ByteString b =
com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref);
mlUseColumnSpecId_ = b;
return b;
} else {
return (com.google.protobuf.ByteString) ref;
}
}
public static final int TARGET_COLUMN_CORRELATIONS_FIELD_NUMBER = 6;
private static final class TargetColumnCorrelationsDefaultEntryHolder {
static final com.google.protobuf.MapEntry<
java.lang.String, com.google.cloud.automl.v1beta1.CorrelationStats>
defaultEntry =
com.google.protobuf.MapEntry
.
newDefaultInstance(
com.google.cloud.automl.v1beta1.Tables
.internal_static_google_cloud_automl_v1beta1_TablesDatasetMetadata_TargetColumnCorrelationsEntry_descriptor,
com.google.protobuf.WireFormat.FieldType.STRING,
"",
com.google.protobuf.WireFormat.FieldType.MESSAGE,
com.google.cloud.automl.v1beta1.CorrelationStats.getDefaultInstance());
}
private com.google.protobuf.MapField<
java.lang.String, com.google.cloud.automl.v1beta1.CorrelationStats>
targetColumnCorrelations_;
private com.google.protobuf.MapField<
java.lang.String, com.google.cloud.automl.v1beta1.CorrelationStats>
internalGetTargetColumnCorrelations() {
if (targetColumnCorrelations_ == null) {
return com.google.protobuf.MapField.emptyMapField(
TargetColumnCorrelationsDefaultEntryHolder.defaultEntry);
}
return targetColumnCorrelations_;
}
public int getTargetColumnCorrelationsCount() {
return internalGetTargetColumnCorrelations().getMap().size();
}
/**
*
*
*
* Output only. Correlations between
* [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
* and other columns of the
* [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
* Only set if the target column is set. Mapping from other column spec id to
* its CorrelationStats with the target column.
* This field may be stale, see the stats_update_time field for
* for the timestamp at which these stats were last updated.
*
*
*
* map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6;
*
*/
@java.lang.Override
public boolean containsTargetColumnCorrelations(java.lang.String key) {
if (key == null) {
throw new NullPointerException("map key");
}
return internalGetTargetColumnCorrelations().getMap().containsKey(key);
}
/** Use {@link #getTargetColumnCorrelationsMap()} instead. */
@java.lang.Override
@java.lang.Deprecated
public java.util.Map
getTargetColumnCorrelations() {
return getTargetColumnCorrelationsMap();
}
/**
*
*
*
* Output only. Correlations between
* [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
* and other columns of the
* [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
* Only set if the target column is set. Mapping from other column spec id to
* its CorrelationStats with the target column.
* This field may be stale, see the stats_update_time field for
* for the timestamp at which these stats were last updated.
*
*
*
* map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6;
*
*/
@java.lang.Override
public java.util.Map
getTargetColumnCorrelationsMap() {
return internalGetTargetColumnCorrelations().getMap();
}
/**
*
*
*
* Output only. Correlations between
* [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
* and other columns of the
* [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
* Only set if the target column is set. Mapping from other column spec id to
* its CorrelationStats with the target column.
* This field may be stale, see the stats_update_time field for
* for the timestamp at which these stats were last updated.
*
*
*
* map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6;
*
*/
@java.lang.Override
public com.google.cloud.automl.v1beta1.CorrelationStats getTargetColumnCorrelationsOrDefault(
java.lang.String key, com.google.cloud.automl.v1beta1.CorrelationStats defaultValue) {
if (key == null) {
throw new NullPointerException("map key");
}
java.util.Map map =
internalGetTargetColumnCorrelations().getMap();
return map.containsKey(key) ? map.get(key) : defaultValue;
}
/**
*
*
*
* Output only. Correlations between
* [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
* and other columns of the
* [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
* Only set if the target column is set. Mapping from other column spec id to
* its CorrelationStats with the target column.
* This field may be stale, see the stats_update_time field for
* for the timestamp at which these stats were last updated.
*
*
*
* map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6;
*
*/
@java.lang.Override
public com.google.cloud.automl.v1beta1.CorrelationStats getTargetColumnCorrelationsOrThrow(
java.lang.String key) {
if (key == null) {
throw new NullPointerException("map key");
}
java.util.Map map =
internalGetTargetColumnCorrelations().getMap();
if (!map.containsKey(key)) {
throw new java.lang.IllegalArgumentException();
}
return map.get(key);
}
public static final int STATS_UPDATE_TIME_FIELD_NUMBER = 7;
private com.google.protobuf.Timestamp statsUpdateTime_;
/**
*
*
*
* Output only. The most recent timestamp when target_column_correlations
* field and all descendant ColumnSpec.data_stats and
* ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
* changes that happened to the dataset afterwards are not reflected in these
* fields values. The regeneration happens in the background on a best effort
* basis.
*
*
* .google.protobuf.Timestamp stats_update_time = 7;
*
* @return Whether the statsUpdateTime field is set.
*/
@java.lang.Override
public boolean hasStatsUpdateTime() {
return statsUpdateTime_ != null;
}
/**
*
*
*
* Output only. The most recent timestamp when target_column_correlations
* field and all descendant ColumnSpec.data_stats and
* ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
* changes that happened to the dataset afterwards are not reflected in these
* fields values. The regeneration happens in the background on a best effort
* basis.
*
*
* .google.protobuf.Timestamp stats_update_time = 7;
*
* @return The statsUpdateTime.
*/
@java.lang.Override
public com.google.protobuf.Timestamp getStatsUpdateTime() {
return statsUpdateTime_ == null
? com.google.protobuf.Timestamp.getDefaultInstance()
: statsUpdateTime_;
}
/**
*
*
*
* Output only. The most recent timestamp when target_column_correlations
* field and all descendant ColumnSpec.data_stats and
* ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
* changes that happened to the dataset afterwards are not reflected in these
* fields values. The regeneration happens in the background on a best effort
* basis.
*
*
* .google.protobuf.Timestamp stats_update_time = 7;
*/
@java.lang.Override
public com.google.protobuf.TimestampOrBuilder getStatsUpdateTimeOrBuilder() {
return getStatsUpdateTime();
}
private byte memoizedIsInitialized = -1;
@java.lang.Override
public final boolean isInitialized() {
byte isInitialized = memoizedIsInitialized;
if (isInitialized == 1) return true;
if (isInitialized == 0) return false;
memoizedIsInitialized = 1;
return true;
}
@java.lang.Override
public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException {
if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(primaryTableSpecId_)) {
com.google.protobuf.GeneratedMessageV3.writeString(output, 1, primaryTableSpecId_);
}
if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(targetColumnSpecId_)) {
com.google.protobuf.GeneratedMessageV3.writeString(output, 2, targetColumnSpecId_);
}
if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(weightColumnSpecId_)) {
com.google.protobuf.GeneratedMessageV3.writeString(output, 3, weightColumnSpecId_);
}
if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(mlUseColumnSpecId_)) {
com.google.protobuf.GeneratedMessageV3.writeString(output, 4, mlUseColumnSpecId_);
}
com.google.protobuf.GeneratedMessageV3.serializeStringMapTo(
output,
internalGetTargetColumnCorrelations(),
TargetColumnCorrelationsDefaultEntryHolder.defaultEntry,
6);
if (statsUpdateTime_ != null) {
output.writeMessage(7, getStatsUpdateTime());
}
getUnknownFields().writeTo(output);
}
@java.lang.Override
public int getSerializedSize() {
int size = memoizedSize;
if (size != -1) return size;
size = 0;
if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(primaryTableSpecId_)) {
size += com.google.protobuf.GeneratedMessageV3.computeStringSize(1, primaryTableSpecId_);
}
if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(targetColumnSpecId_)) {
size += com.google.protobuf.GeneratedMessageV3.computeStringSize(2, targetColumnSpecId_);
}
if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(weightColumnSpecId_)) {
size += com.google.protobuf.GeneratedMessageV3.computeStringSize(3, weightColumnSpecId_);
}
if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(mlUseColumnSpecId_)) {
size += com.google.protobuf.GeneratedMessageV3.computeStringSize(4, mlUseColumnSpecId_);
}
for (java.util.Map.Entry
entry : internalGetTargetColumnCorrelations().getMap().entrySet()) {
com.google.protobuf.MapEntry<
java.lang.String, com.google.cloud.automl.v1beta1.CorrelationStats>
targetColumnCorrelations__ =
TargetColumnCorrelationsDefaultEntryHolder.defaultEntry
.newBuilderForType()
.setKey(entry.getKey())
.setValue(entry.getValue())
.build();
size +=
com.google.protobuf.CodedOutputStream.computeMessageSize(6, targetColumnCorrelations__);
}
if (statsUpdateTime_ != null) {
size += com.google.protobuf.CodedOutputStream.computeMessageSize(7, getStatsUpdateTime());
}
size += getUnknownFields().getSerializedSize();
memoizedSize = size;
return size;
}
@java.lang.Override
public boolean equals(final java.lang.Object obj) {
if (obj == this) {
return true;
}
if (!(obj instanceof com.google.cloud.automl.v1beta1.TablesDatasetMetadata)) {
return super.equals(obj);
}
com.google.cloud.automl.v1beta1.TablesDatasetMetadata other =
(com.google.cloud.automl.v1beta1.TablesDatasetMetadata) obj;
if (!getPrimaryTableSpecId().equals(other.getPrimaryTableSpecId())) return false;
if (!getTargetColumnSpecId().equals(other.getTargetColumnSpecId())) return false;
if (!getWeightColumnSpecId().equals(other.getWeightColumnSpecId())) return false;
if (!getMlUseColumnSpecId().equals(other.getMlUseColumnSpecId())) return false;
if (!internalGetTargetColumnCorrelations().equals(other.internalGetTargetColumnCorrelations()))
return false;
if (hasStatsUpdateTime() != other.hasStatsUpdateTime()) return false;
if (hasStatsUpdateTime()) {
if (!getStatsUpdateTime().equals(other.getStatsUpdateTime())) return false;
}
if (!getUnknownFields().equals(other.getUnknownFields())) return false;
return true;
}
@java.lang.Override
public int hashCode() {
if (memoizedHashCode != 0) {
return memoizedHashCode;
}
int hash = 41;
hash = (19 * hash) + getDescriptor().hashCode();
hash = (37 * hash) + PRIMARY_TABLE_SPEC_ID_FIELD_NUMBER;
hash = (53 * hash) + getPrimaryTableSpecId().hashCode();
hash = (37 * hash) + TARGET_COLUMN_SPEC_ID_FIELD_NUMBER;
hash = (53 * hash) + getTargetColumnSpecId().hashCode();
hash = (37 * hash) + WEIGHT_COLUMN_SPEC_ID_FIELD_NUMBER;
hash = (53 * hash) + getWeightColumnSpecId().hashCode();
hash = (37 * hash) + ML_USE_COLUMN_SPEC_ID_FIELD_NUMBER;
hash = (53 * hash) + getMlUseColumnSpecId().hashCode();
if (!internalGetTargetColumnCorrelations().getMap().isEmpty()) {
hash = (37 * hash) + TARGET_COLUMN_CORRELATIONS_FIELD_NUMBER;
hash = (53 * hash) + internalGetTargetColumnCorrelations().hashCode();
}
if (hasStatsUpdateTime()) {
hash = (37 * hash) + STATS_UPDATE_TIME_FIELD_NUMBER;
hash = (53 * hash) + getStatsUpdateTime().hashCode();
}
hash = (29 * hash) + getUnknownFields().hashCode();
memoizedHashCode = hash;
return hash;
}
public static com.google.cloud.automl.v1beta1.TablesDatasetMetadata parseFrom(
java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static com.google.cloud.automl.v1beta1.TablesDatasetMetadata parseFrom(
java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static com.google.cloud.automl.v1beta1.TablesDatasetMetadata parseFrom(
com.google.protobuf.ByteString data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static com.google.cloud.automl.v1beta1.TablesDatasetMetadata parseFrom(
com.google.protobuf.ByteString data,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static com.google.cloud.automl.v1beta1.TablesDatasetMetadata parseFrom(byte[] data)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data);
}
public static com.google.cloud.automl.v1beta1.TablesDatasetMetadata parseFrom(
byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
return PARSER.parseFrom(data, extensionRegistry);
}
public static com.google.cloud.automl.v1beta1.TablesDatasetMetadata parseFrom(
java.io.InputStream input) throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input);
}
public static com.google.cloud.automl.v1beta1.TablesDatasetMetadata parseFrom(
java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3.parseWithIOException(
PARSER, input, extensionRegistry);
}
public static com.google.cloud.automl.v1beta1.TablesDatasetMetadata parseDelimitedFrom(
java.io.InputStream input) throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException(PARSER, input);
}
public static com.google.cloud.automl.v1beta1.TablesDatasetMetadata parseDelimitedFrom(
java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException(
PARSER, input, extensionRegistry);
}
public static com.google.cloud.automl.v1beta1.TablesDatasetMetadata parseFrom(
com.google.protobuf.CodedInputStream input) throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input);
}
public static com.google.cloud.automl.v1beta1.TablesDatasetMetadata parseFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
return com.google.protobuf.GeneratedMessageV3.parseWithIOException(
PARSER, input, extensionRegistry);
}
@java.lang.Override
public Builder newBuilderForType() {
return newBuilder();
}
public static Builder newBuilder() {
return DEFAULT_INSTANCE.toBuilder();
}
public static Builder newBuilder(
com.google.cloud.automl.v1beta1.TablesDatasetMetadata prototype) {
return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype);
}
@java.lang.Override
public Builder toBuilder() {
return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this);
}
@java.lang.Override
protected Builder newBuilderForType(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) {
Builder builder = new Builder(parent);
return builder;
}
/**
*
*
*
* Metadata for a dataset used for AutoML Tables.
*
*
* Protobuf type {@code google.cloud.automl.v1beta1.TablesDatasetMetadata}
*/
public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder
implements
// @@protoc_insertion_point(builder_implements:google.cloud.automl.v1beta1.TablesDatasetMetadata)
com.google.cloud.automl.v1beta1.TablesDatasetMetadataOrBuilder {
public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() {
return com.google.cloud.automl.v1beta1.Tables
.internal_static_google_cloud_automl_v1beta1_TablesDatasetMetadata_descriptor;
}
@SuppressWarnings({"rawtypes"})
protected com.google.protobuf.MapField internalGetMapField(int number) {
switch (number) {
case 6:
return internalGetTargetColumnCorrelations();
default:
throw new RuntimeException("Invalid map field number: " + number);
}
}
@SuppressWarnings({"rawtypes"})
protected com.google.protobuf.MapField internalGetMutableMapField(int number) {
switch (number) {
case 6:
return internalGetMutableTargetColumnCorrelations();
default:
throw new RuntimeException("Invalid map field number: " + number);
}
}
@java.lang.Override
protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
internalGetFieldAccessorTable() {
return com.google.cloud.automl.v1beta1.Tables
.internal_static_google_cloud_automl_v1beta1_TablesDatasetMetadata_fieldAccessorTable
.ensureFieldAccessorsInitialized(
com.google.cloud.automl.v1beta1.TablesDatasetMetadata.class,
com.google.cloud.automl.v1beta1.TablesDatasetMetadata.Builder.class);
}
// Construct using com.google.cloud.automl.v1beta1.TablesDatasetMetadata.newBuilder()
private Builder() {}
private Builder(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) {
super(parent);
}
@java.lang.Override
public Builder clear() {
super.clear();
primaryTableSpecId_ = "";
targetColumnSpecId_ = "";
weightColumnSpecId_ = "";
mlUseColumnSpecId_ = "";
internalGetMutableTargetColumnCorrelations().clear();
if (statsUpdateTimeBuilder_ == null) {
statsUpdateTime_ = null;
} else {
statsUpdateTime_ = null;
statsUpdateTimeBuilder_ = null;
}
return this;
}
@java.lang.Override
public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() {
return com.google.cloud.automl.v1beta1.Tables
.internal_static_google_cloud_automl_v1beta1_TablesDatasetMetadata_descriptor;
}
@java.lang.Override
public com.google.cloud.automl.v1beta1.TablesDatasetMetadata getDefaultInstanceForType() {
return com.google.cloud.automl.v1beta1.TablesDatasetMetadata.getDefaultInstance();
}
@java.lang.Override
public com.google.cloud.automl.v1beta1.TablesDatasetMetadata build() {
com.google.cloud.automl.v1beta1.TablesDatasetMetadata result = buildPartial();
if (!result.isInitialized()) {
throw newUninitializedMessageException(result);
}
return result;
}
@java.lang.Override
public com.google.cloud.automl.v1beta1.TablesDatasetMetadata buildPartial() {
com.google.cloud.automl.v1beta1.TablesDatasetMetadata result =
new com.google.cloud.automl.v1beta1.TablesDatasetMetadata(this);
int from_bitField0_ = bitField0_;
result.primaryTableSpecId_ = primaryTableSpecId_;
result.targetColumnSpecId_ = targetColumnSpecId_;
result.weightColumnSpecId_ = weightColumnSpecId_;
result.mlUseColumnSpecId_ = mlUseColumnSpecId_;
result.targetColumnCorrelations_ = internalGetTargetColumnCorrelations();
result.targetColumnCorrelations_.makeImmutable();
if (statsUpdateTimeBuilder_ == null) {
result.statsUpdateTime_ = statsUpdateTime_;
} else {
result.statsUpdateTime_ = statsUpdateTimeBuilder_.build();
}
onBuilt();
return result;
}
@java.lang.Override
public Builder clone() {
return super.clone();
}
@java.lang.Override
public Builder setField(
com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) {
return super.setField(field, value);
}
@java.lang.Override
public Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field) {
return super.clearField(field);
}
@java.lang.Override
public Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof) {
return super.clearOneof(oneof);
}
@java.lang.Override
public Builder setRepeatedField(
com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) {
return super.setRepeatedField(field, index, value);
}
@java.lang.Override
public Builder addRepeatedField(
com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) {
return super.addRepeatedField(field, value);
}
@java.lang.Override
public Builder mergeFrom(com.google.protobuf.Message other) {
if (other instanceof com.google.cloud.automl.v1beta1.TablesDatasetMetadata) {
return mergeFrom((com.google.cloud.automl.v1beta1.TablesDatasetMetadata) other);
} else {
super.mergeFrom(other);
return this;
}
}
public Builder mergeFrom(com.google.cloud.automl.v1beta1.TablesDatasetMetadata other) {
if (other == com.google.cloud.automl.v1beta1.TablesDatasetMetadata.getDefaultInstance())
return this;
if (!other.getPrimaryTableSpecId().isEmpty()) {
primaryTableSpecId_ = other.primaryTableSpecId_;
onChanged();
}
if (!other.getTargetColumnSpecId().isEmpty()) {
targetColumnSpecId_ = other.targetColumnSpecId_;
onChanged();
}
if (!other.getWeightColumnSpecId().isEmpty()) {
weightColumnSpecId_ = other.weightColumnSpecId_;
onChanged();
}
if (!other.getMlUseColumnSpecId().isEmpty()) {
mlUseColumnSpecId_ = other.mlUseColumnSpecId_;
onChanged();
}
internalGetMutableTargetColumnCorrelations()
.mergeFrom(other.internalGetTargetColumnCorrelations());
if (other.hasStatsUpdateTime()) {
mergeStatsUpdateTime(other.getStatsUpdateTime());
}
this.mergeUnknownFields(other.getUnknownFields());
onChanged();
return this;
}
@java.lang.Override
public final boolean isInitialized() {
return true;
}
@java.lang.Override
public Builder mergeFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws java.io.IOException {
if (extensionRegistry == null) {
throw new java.lang.NullPointerException();
}
try {
boolean done = false;
while (!done) {
int tag = input.readTag();
switch (tag) {
case 0:
done = true;
break;
case 10:
{
primaryTableSpecId_ = input.readStringRequireUtf8();
break;
} // case 10
case 18:
{
targetColumnSpecId_ = input.readStringRequireUtf8();
break;
} // case 18
case 26:
{
weightColumnSpecId_ = input.readStringRequireUtf8();
break;
} // case 26
case 34:
{
mlUseColumnSpecId_ = input.readStringRequireUtf8();
break;
} // case 34
case 50:
{
com.google.protobuf.MapEntry<
java.lang.String, com.google.cloud.automl.v1beta1.CorrelationStats>
targetColumnCorrelations__ =
input.readMessage(
TargetColumnCorrelationsDefaultEntryHolder.defaultEntry
.getParserForType(),
extensionRegistry);
internalGetMutableTargetColumnCorrelations()
.getMutableMap()
.put(
targetColumnCorrelations__.getKey(), targetColumnCorrelations__.getValue());
break;
} // case 50
case 58:
{
input.readMessage(getStatsUpdateTimeFieldBuilder().getBuilder(), extensionRegistry);
break;
} // case 58
default:
{
if (!super.parseUnknownField(input, extensionRegistry, tag)) {
done = true; // was an endgroup tag
}
break;
} // default:
} // switch (tag)
} // while (!done)
} catch (com.google.protobuf.InvalidProtocolBufferException e) {
throw e.unwrapIOException();
} finally {
onChanged();
} // finally
return this;
}
private int bitField0_;
private java.lang.Object primaryTableSpecId_ = "";
/**
*
*
*
* Output only. The table_spec_id of the primary table of this dataset.
*
*
* string primary_table_spec_id = 1;
*
* @return The primaryTableSpecId.
*/
public java.lang.String getPrimaryTableSpecId() {
java.lang.Object ref = primaryTableSpecId_;
if (!(ref instanceof java.lang.String)) {
com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref;
java.lang.String s = bs.toStringUtf8();
primaryTableSpecId_ = s;
return s;
} else {
return (java.lang.String) ref;
}
}
/**
*
*
*
* Output only. The table_spec_id of the primary table of this dataset.
*
*
* string primary_table_spec_id = 1;
*
* @return The bytes for primaryTableSpecId.
*/
public com.google.protobuf.ByteString getPrimaryTableSpecIdBytes() {
java.lang.Object ref = primaryTableSpecId_;
if (ref instanceof String) {
com.google.protobuf.ByteString b =
com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref);
primaryTableSpecId_ = b;
return b;
} else {
return (com.google.protobuf.ByteString) ref;
}
}
/**
*
*
*
* Output only. The table_spec_id of the primary table of this dataset.
*
*
* string primary_table_spec_id = 1;
*
* @param value The primaryTableSpecId to set.
* @return This builder for chaining.
*/
public Builder setPrimaryTableSpecId(java.lang.String value) {
if (value == null) {
throw new NullPointerException();
}
primaryTableSpecId_ = value;
onChanged();
return this;
}
/**
*
*
*
* Output only. The table_spec_id of the primary table of this dataset.
*
*
* string primary_table_spec_id = 1;
*
* @return This builder for chaining.
*/
public Builder clearPrimaryTableSpecId() {
primaryTableSpecId_ = getDefaultInstance().getPrimaryTableSpecId();
onChanged();
return this;
}
/**
*
*
*
* Output only. The table_spec_id of the primary table of this dataset.
*
*
* string primary_table_spec_id = 1;
*
* @param value The bytes for primaryTableSpecId to set.
* @return This builder for chaining.
*/
public Builder setPrimaryTableSpecIdBytes(com.google.protobuf.ByteString value) {
if (value == null) {
throw new NullPointerException();
}
checkByteStringIsUtf8(value);
primaryTableSpecId_ = value;
onChanged();
return this;
}
private java.lang.Object targetColumnSpecId_ = "";
/**
*
*
*
* column_spec_id of the primary table's column that should be used as the
* training & prediction target.
* This column must be non-nullable and have one of following data types
* (otherwise model creation will error):
* * CATEGORY
* * FLOAT64
* If the type is CATEGORY , only up to
* 100 unique values may exist in that column across all rows.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string target_column_spec_id = 2;
*
* @return The targetColumnSpecId.
*/
public java.lang.String getTargetColumnSpecId() {
java.lang.Object ref = targetColumnSpecId_;
if (!(ref instanceof java.lang.String)) {
com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref;
java.lang.String s = bs.toStringUtf8();
targetColumnSpecId_ = s;
return s;
} else {
return (java.lang.String) ref;
}
}
/**
*
*
*
* column_spec_id of the primary table's column that should be used as the
* training & prediction target.
* This column must be non-nullable and have one of following data types
* (otherwise model creation will error):
* * CATEGORY
* * FLOAT64
* If the type is CATEGORY , only up to
* 100 unique values may exist in that column across all rows.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string target_column_spec_id = 2;
*
* @return The bytes for targetColumnSpecId.
*/
public com.google.protobuf.ByteString getTargetColumnSpecIdBytes() {
java.lang.Object ref = targetColumnSpecId_;
if (ref instanceof String) {
com.google.protobuf.ByteString b =
com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref);
targetColumnSpecId_ = b;
return b;
} else {
return (com.google.protobuf.ByteString) ref;
}
}
/**
*
*
*
* column_spec_id of the primary table's column that should be used as the
* training & prediction target.
* This column must be non-nullable and have one of following data types
* (otherwise model creation will error):
* * CATEGORY
* * FLOAT64
* If the type is CATEGORY , only up to
* 100 unique values may exist in that column across all rows.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string target_column_spec_id = 2;
*
* @param value The targetColumnSpecId to set.
* @return This builder for chaining.
*/
public Builder setTargetColumnSpecId(java.lang.String value) {
if (value == null) {
throw new NullPointerException();
}
targetColumnSpecId_ = value;
onChanged();
return this;
}
/**
*
*
*
* column_spec_id of the primary table's column that should be used as the
* training & prediction target.
* This column must be non-nullable and have one of following data types
* (otherwise model creation will error):
* * CATEGORY
* * FLOAT64
* If the type is CATEGORY , only up to
* 100 unique values may exist in that column across all rows.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string target_column_spec_id = 2;
*
* @return This builder for chaining.
*/
public Builder clearTargetColumnSpecId() {
targetColumnSpecId_ = getDefaultInstance().getTargetColumnSpecId();
onChanged();
return this;
}
/**
*
*
*
* column_spec_id of the primary table's column that should be used as the
* training & prediction target.
* This column must be non-nullable and have one of following data types
* (otherwise model creation will error):
* * CATEGORY
* * FLOAT64
* If the type is CATEGORY , only up to
* 100 unique values may exist in that column across all rows.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string target_column_spec_id = 2;
*
* @param value The bytes for targetColumnSpecId to set.
* @return This builder for chaining.
*/
public Builder setTargetColumnSpecIdBytes(com.google.protobuf.ByteString value) {
if (value == null) {
throw new NullPointerException();
}
checkByteStringIsUtf8(value);
targetColumnSpecId_ = value;
onChanged();
return this;
}
private java.lang.Object weightColumnSpecId_ = "";
/**
*
*
*
* column_spec_id of the primary table's column that should be used as the
* weight column, i.e. the higher the value the more important the row will be
* during model training.
* Required type: FLOAT64.
* Allowed values: 0 to 10000, inclusive on both ends; 0 means the row is
* ignored for training.
* If not set all rows are assumed to have equal weight of 1.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string weight_column_spec_id = 3;
*
* @return The weightColumnSpecId.
*/
public java.lang.String getWeightColumnSpecId() {
java.lang.Object ref = weightColumnSpecId_;
if (!(ref instanceof java.lang.String)) {
com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref;
java.lang.String s = bs.toStringUtf8();
weightColumnSpecId_ = s;
return s;
} else {
return (java.lang.String) ref;
}
}
/**
*
*
*
* column_spec_id of the primary table's column that should be used as the
* weight column, i.e. the higher the value the more important the row will be
* during model training.
* Required type: FLOAT64.
* Allowed values: 0 to 10000, inclusive on both ends; 0 means the row is
* ignored for training.
* If not set all rows are assumed to have equal weight of 1.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string weight_column_spec_id = 3;
*
* @return The bytes for weightColumnSpecId.
*/
public com.google.protobuf.ByteString getWeightColumnSpecIdBytes() {
java.lang.Object ref = weightColumnSpecId_;
if (ref instanceof String) {
com.google.protobuf.ByteString b =
com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref);
weightColumnSpecId_ = b;
return b;
} else {
return (com.google.protobuf.ByteString) ref;
}
}
/**
*
*
*
* column_spec_id of the primary table's column that should be used as the
* weight column, i.e. the higher the value the more important the row will be
* during model training.
* Required type: FLOAT64.
* Allowed values: 0 to 10000, inclusive on both ends; 0 means the row is
* ignored for training.
* If not set all rows are assumed to have equal weight of 1.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string weight_column_spec_id = 3;
*
* @param value The weightColumnSpecId to set.
* @return This builder for chaining.
*/
public Builder setWeightColumnSpecId(java.lang.String value) {
if (value == null) {
throw new NullPointerException();
}
weightColumnSpecId_ = value;
onChanged();
return this;
}
/**
*
*
*
* column_spec_id of the primary table's column that should be used as the
* weight column, i.e. the higher the value the more important the row will be
* during model training.
* Required type: FLOAT64.
* Allowed values: 0 to 10000, inclusive on both ends; 0 means the row is
* ignored for training.
* If not set all rows are assumed to have equal weight of 1.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string weight_column_spec_id = 3;
*
* @return This builder for chaining.
*/
public Builder clearWeightColumnSpecId() {
weightColumnSpecId_ = getDefaultInstance().getWeightColumnSpecId();
onChanged();
return this;
}
/**
*
*
*
* column_spec_id of the primary table's column that should be used as the
* weight column, i.e. the higher the value the more important the row will be
* during model training.
* Required type: FLOAT64.
* Allowed values: 0 to 10000, inclusive on both ends; 0 means the row is
* ignored for training.
* If not set all rows are assumed to have equal weight of 1.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string weight_column_spec_id = 3;
*
* @param value The bytes for weightColumnSpecId to set.
* @return This builder for chaining.
*/
public Builder setWeightColumnSpecIdBytes(com.google.protobuf.ByteString value) {
if (value == null) {
throw new NullPointerException();
}
checkByteStringIsUtf8(value);
weightColumnSpecId_ = value;
onChanged();
return this;
}
private java.lang.Object mlUseColumnSpecId_ = "";
/**
*
*
*
* column_spec_id of the primary table column which specifies a possible ML
* use of the row, i.e. the column will be used to split the rows into TRAIN,
* VALIDATE and TEST sets.
* Required type: STRING.
* This column, if set, must either have all of `TRAIN`, `VALIDATE`, `TEST`
* among its values, or only have `TEST`, `UNASSIGNED` values. In the latter
* case the rows with `UNASSIGNED` value will be assigned by AutoML. Note
* that if a given ml use distribution makes it impossible to create a "good"
* model, that call will error describing the issue.
* If both this column_spec_id and primary table's time_column_spec_id are not
* set, then all rows are treated as `UNASSIGNED`.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string ml_use_column_spec_id = 4;
*
* @return The mlUseColumnSpecId.
*/
public java.lang.String getMlUseColumnSpecId() {
java.lang.Object ref = mlUseColumnSpecId_;
if (!(ref instanceof java.lang.String)) {
com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref;
java.lang.String s = bs.toStringUtf8();
mlUseColumnSpecId_ = s;
return s;
} else {
return (java.lang.String) ref;
}
}
/**
*
*
*
* column_spec_id of the primary table column which specifies a possible ML
* use of the row, i.e. the column will be used to split the rows into TRAIN,
* VALIDATE and TEST sets.
* Required type: STRING.
* This column, if set, must either have all of `TRAIN`, `VALIDATE`, `TEST`
* among its values, or only have `TEST`, `UNASSIGNED` values. In the latter
* case the rows with `UNASSIGNED` value will be assigned by AutoML. Note
* that if a given ml use distribution makes it impossible to create a "good"
* model, that call will error describing the issue.
* If both this column_spec_id and primary table's time_column_spec_id are not
* set, then all rows are treated as `UNASSIGNED`.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string ml_use_column_spec_id = 4;
*
* @return The bytes for mlUseColumnSpecId.
*/
public com.google.protobuf.ByteString getMlUseColumnSpecIdBytes() {
java.lang.Object ref = mlUseColumnSpecId_;
if (ref instanceof String) {
com.google.protobuf.ByteString b =
com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref);
mlUseColumnSpecId_ = b;
return b;
} else {
return (com.google.protobuf.ByteString) ref;
}
}
/**
*
*
*
* column_spec_id of the primary table column which specifies a possible ML
* use of the row, i.e. the column will be used to split the rows into TRAIN,
* VALIDATE and TEST sets.
* Required type: STRING.
* This column, if set, must either have all of `TRAIN`, `VALIDATE`, `TEST`
* among its values, or only have `TEST`, `UNASSIGNED` values. In the latter
* case the rows with `UNASSIGNED` value will be assigned by AutoML. Note
* that if a given ml use distribution makes it impossible to create a "good"
* model, that call will error describing the issue.
* If both this column_spec_id and primary table's time_column_spec_id are not
* set, then all rows are treated as `UNASSIGNED`.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string ml_use_column_spec_id = 4;
*
* @param value The mlUseColumnSpecId to set.
* @return This builder for chaining.
*/
public Builder setMlUseColumnSpecId(java.lang.String value) {
if (value == null) {
throw new NullPointerException();
}
mlUseColumnSpecId_ = value;
onChanged();
return this;
}
/**
*
*
*
* column_spec_id of the primary table column which specifies a possible ML
* use of the row, i.e. the column will be used to split the rows into TRAIN,
* VALIDATE and TEST sets.
* Required type: STRING.
* This column, if set, must either have all of `TRAIN`, `VALIDATE`, `TEST`
* among its values, or only have `TEST`, `UNASSIGNED` values. In the latter
* case the rows with `UNASSIGNED` value will be assigned by AutoML. Note
* that if a given ml use distribution makes it impossible to create a "good"
* model, that call will error describing the issue.
* If both this column_spec_id and primary table's time_column_spec_id are not
* set, then all rows are treated as `UNASSIGNED`.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string ml_use_column_spec_id = 4;
*
* @return This builder for chaining.
*/
public Builder clearMlUseColumnSpecId() {
mlUseColumnSpecId_ = getDefaultInstance().getMlUseColumnSpecId();
onChanged();
return this;
}
/**
*
*
*
* column_spec_id of the primary table column which specifies a possible ML
* use of the row, i.e. the column will be used to split the rows into TRAIN,
* VALIDATE and TEST sets.
* Required type: STRING.
* This column, if set, must either have all of `TRAIN`, `VALIDATE`, `TEST`
* among its values, or only have `TEST`, `UNASSIGNED` values. In the latter
* case the rows with `UNASSIGNED` value will be assigned by AutoML. Note
* that if a given ml use distribution makes it impossible to create a "good"
* model, that call will error describing the issue.
* If both this column_spec_id and primary table's time_column_spec_id are not
* set, then all rows are treated as `UNASSIGNED`.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string ml_use_column_spec_id = 4;
*
* @param value The bytes for mlUseColumnSpecId to set.
* @return This builder for chaining.
*/
public Builder setMlUseColumnSpecIdBytes(com.google.protobuf.ByteString value) {
if (value == null) {
throw new NullPointerException();
}
checkByteStringIsUtf8(value);
mlUseColumnSpecId_ = value;
onChanged();
return this;
}
private com.google.protobuf.MapField<
java.lang.String, com.google.cloud.automl.v1beta1.CorrelationStats>
targetColumnCorrelations_;
private com.google.protobuf.MapField<
java.lang.String, com.google.cloud.automl.v1beta1.CorrelationStats>
internalGetTargetColumnCorrelations() {
if (targetColumnCorrelations_ == null) {
return com.google.protobuf.MapField.emptyMapField(
TargetColumnCorrelationsDefaultEntryHolder.defaultEntry);
}
return targetColumnCorrelations_;
}
private com.google.protobuf.MapField<
java.lang.String, com.google.cloud.automl.v1beta1.CorrelationStats>
internalGetMutableTargetColumnCorrelations() {
onChanged();
;
if (targetColumnCorrelations_ == null) {
targetColumnCorrelations_ =
com.google.protobuf.MapField.newMapField(
TargetColumnCorrelationsDefaultEntryHolder.defaultEntry);
}
if (!targetColumnCorrelations_.isMutable()) {
targetColumnCorrelations_ = targetColumnCorrelations_.copy();
}
return targetColumnCorrelations_;
}
public int getTargetColumnCorrelationsCount() {
return internalGetTargetColumnCorrelations().getMap().size();
}
/**
*
*
*
* Output only. Correlations between
* [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
* and other columns of the
* [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
* Only set if the target column is set. Mapping from other column spec id to
* its CorrelationStats with the target column.
* This field may be stale, see the stats_update_time field for
* for the timestamp at which these stats were last updated.
*
*
*
* map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6;
*
*/
@java.lang.Override
public boolean containsTargetColumnCorrelations(java.lang.String key) {
if (key == null) {
throw new NullPointerException("map key");
}
return internalGetTargetColumnCorrelations().getMap().containsKey(key);
}
/** Use {@link #getTargetColumnCorrelationsMap()} instead. */
@java.lang.Override
@java.lang.Deprecated
public java.util.Map
getTargetColumnCorrelations() {
return getTargetColumnCorrelationsMap();
}
/**
*
*
*
* Output only. Correlations between
* [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
* and other columns of the
* [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
* Only set if the target column is set. Mapping from other column spec id to
* its CorrelationStats with the target column.
* This field may be stale, see the stats_update_time field for
* for the timestamp at which these stats were last updated.
*
*
*
* map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6;
*
*/
@java.lang.Override
public java.util.Map
getTargetColumnCorrelationsMap() {
return internalGetTargetColumnCorrelations().getMap();
}
/**
*
*
*
* Output only. Correlations between
* [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
* and other columns of the
* [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
* Only set if the target column is set. Mapping from other column spec id to
* its CorrelationStats with the target column.
* This field may be stale, see the stats_update_time field for
* for the timestamp at which these stats were last updated.
*
*
*
* map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6;
*
*/
@java.lang.Override
public com.google.cloud.automl.v1beta1.CorrelationStats getTargetColumnCorrelationsOrDefault(
java.lang.String key, com.google.cloud.automl.v1beta1.CorrelationStats defaultValue) {
if (key == null) {
throw new NullPointerException("map key");
}
java.util.Map map =
internalGetTargetColumnCorrelations().getMap();
return map.containsKey(key) ? map.get(key) : defaultValue;
}
/**
*
*
*
* Output only. Correlations between
* [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
* and other columns of the
* [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
* Only set if the target column is set. Mapping from other column spec id to
* its CorrelationStats with the target column.
* This field may be stale, see the stats_update_time field for
* for the timestamp at which these stats were last updated.
*
*
*
* map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6;
*
*/
@java.lang.Override
public com.google.cloud.automl.v1beta1.CorrelationStats getTargetColumnCorrelationsOrThrow(
java.lang.String key) {
if (key == null) {
throw new NullPointerException("map key");
}
java.util.Map map =
internalGetTargetColumnCorrelations().getMap();
if (!map.containsKey(key)) {
throw new java.lang.IllegalArgumentException();
}
return map.get(key);
}
public Builder clearTargetColumnCorrelations() {
internalGetMutableTargetColumnCorrelations().getMutableMap().clear();
return this;
}
/**
*
*
*
* Output only. Correlations between
* [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
* and other columns of the
* [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
* Only set if the target column is set. Mapping from other column spec id to
* its CorrelationStats with the target column.
* This field may be stale, see the stats_update_time field for
* for the timestamp at which these stats were last updated.
*
*
*
* map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6;
*
*/
public Builder removeTargetColumnCorrelations(java.lang.String key) {
if (key == null) {
throw new NullPointerException("map key");
}
internalGetMutableTargetColumnCorrelations().getMutableMap().remove(key);
return this;
}
/** Use alternate mutation accessors instead. */
@java.lang.Deprecated
public java.util.Map
getMutableTargetColumnCorrelations() {
return internalGetMutableTargetColumnCorrelations().getMutableMap();
}
/**
*
*
*
* Output only. Correlations between
* [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
* and other columns of the
* [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
* Only set if the target column is set. Mapping from other column spec id to
* its CorrelationStats with the target column.
* This field may be stale, see the stats_update_time field for
* for the timestamp at which these stats were last updated.
*
*
*
* map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6;
*
*/
public Builder putTargetColumnCorrelations(
java.lang.String key, com.google.cloud.automl.v1beta1.CorrelationStats value) {
if (key == null) {
throw new NullPointerException("map key");
}
if (value == null) {
throw new NullPointerException("map value");
}
internalGetMutableTargetColumnCorrelations().getMutableMap().put(key, value);
return this;
}
/**
*
*
*
* Output only. Correlations between
* [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
* and other columns of the
* [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
* Only set if the target column is set. Mapping from other column spec id to
* its CorrelationStats with the target column.
* This field may be stale, see the stats_update_time field for
* for the timestamp at which these stats were last updated.
*
*
*
* map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6;
*
*/
public Builder putAllTargetColumnCorrelations(
java.util.Map values) {
internalGetMutableTargetColumnCorrelations().getMutableMap().putAll(values);
return this;
}
private com.google.protobuf.Timestamp statsUpdateTime_;
private com.google.protobuf.SingleFieldBuilderV3<
com.google.protobuf.Timestamp,
com.google.protobuf.Timestamp.Builder,
com.google.protobuf.TimestampOrBuilder>
statsUpdateTimeBuilder_;
/**
*
*
*
* Output only. The most recent timestamp when target_column_correlations
* field and all descendant ColumnSpec.data_stats and
* ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
* changes that happened to the dataset afterwards are not reflected in these
* fields values. The regeneration happens in the background on a best effort
* basis.
*
*
* .google.protobuf.Timestamp stats_update_time = 7;
*
* @return Whether the statsUpdateTime field is set.
*/
public boolean hasStatsUpdateTime() {
return statsUpdateTimeBuilder_ != null || statsUpdateTime_ != null;
}
/**
*
*
*
* Output only. The most recent timestamp when target_column_correlations
* field and all descendant ColumnSpec.data_stats and
* ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
* changes that happened to the dataset afterwards are not reflected in these
* fields values. The regeneration happens in the background on a best effort
* basis.
*
*
* .google.protobuf.Timestamp stats_update_time = 7;
*
* @return The statsUpdateTime.
*/
public com.google.protobuf.Timestamp getStatsUpdateTime() {
if (statsUpdateTimeBuilder_ == null) {
return statsUpdateTime_ == null
? com.google.protobuf.Timestamp.getDefaultInstance()
: statsUpdateTime_;
} else {
return statsUpdateTimeBuilder_.getMessage();
}
}
/**
*
*
*
* Output only. The most recent timestamp when target_column_correlations
* field and all descendant ColumnSpec.data_stats and
* ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
* changes that happened to the dataset afterwards are not reflected in these
* fields values. The regeneration happens in the background on a best effort
* basis.
*
*
* .google.protobuf.Timestamp stats_update_time = 7;
*/
public Builder setStatsUpdateTime(com.google.protobuf.Timestamp value) {
if (statsUpdateTimeBuilder_ == null) {
if (value == null) {
throw new NullPointerException();
}
statsUpdateTime_ = value;
onChanged();
} else {
statsUpdateTimeBuilder_.setMessage(value);
}
return this;
}
/**
*
*
*
* Output only. The most recent timestamp when target_column_correlations
* field and all descendant ColumnSpec.data_stats and
* ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
* changes that happened to the dataset afterwards are not reflected in these
* fields values. The regeneration happens in the background on a best effort
* basis.
*
*
* .google.protobuf.Timestamp stats_update_time = 7;
*/
public Builder setStatsUpdateTime(com.google.protobuf.Timestamp.Builder builderForValue) {
if (statsUpdateTimeBuilder_ == null) {
statsUpdateTime_ = builderForValue.build();
onChanged();
} else {
statsUpdateTimeBuilder_.setMessage(builderForValue.build());
}
return this;
}
/**
*
*
*
* Output only. The most recent timestamp when target_column_correlations
* field and all descendant ColumnSpec.data_stats and
* ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
* changes that happened to the dataset afterwards are not reflected in these
* fields values. The regeneration happens in the background on a best effort
* basis.
*
*
* .google.protobuf.Timestamp stats_update_time = 7;
*/
public Builder mergeStatsUpdateTime(com.google.protobuf.Timestamp value) {
if (statsUpdateTimeBuilder_ == null) {
if (statsUpdateTime_ != null) {
statsUpdateTime_ =
com.google.protobuf.Timestamp.newBuilder(statsUpdateTime_)
.mergeFrom(value)
.buildPartial();
} else {
statsUpdateTime_ = value;
}
onChanged();
} else {
statsUpdateTimeBuilder_.mergeFrom(value);
}
return this;
}
/**
*
*
*
* Output only. The most recent timestamp when target_column_correlations
* field and all descendant ColumnSpec.data_stats and
* ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
* changes that happened to the dataset afterwards are not reflected in these
* fields values. The regeneration happens in the background on a best effort
* basis.
*
*
* .google.protobuf.Timestamp stats_update_time = 7;
*/
public Builder clearStatsUpdateTime() {
if (statsUpdateTimeBuilder_ == null) {
statsUpdateTime_ = null;
onChanged();
} else {
statsUpdateTime_ = null;
statsUpdateTimeBuilder_ = null;
}
return this;
}
/**
*
*
*
* Output only. The most recent timestamp when target_column_correlations
* field and all descendant ColumnSpec.data_stats and
* ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
* changes that happened to the dataset afterwards are not reflected in these
* fields values. The regeneration happens in the background on a best effort
* basis.
*
*
* .google.protobuf.Timestamp stats_update_time = 7;
*/
public com.google.protobuf.Timestamp.Builder getStatsUpdateTimeBuilder() {
onChanged();
return getStatsUpdateTimeFieldBuilder().getBuilder();
}
/**
*
*
*
* Output only. The most recent timestamp when target_column_correlations
* field and all descendant ColumnSpec.data_stats and
* ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
* changes that happened to the dataset afterwards are not reflected in these
* fields values. The regeneration happens in the background on a best effort
* basis.
*
*
* .google.protobuf.Timestamp stats_update_time = 7;
*/
public com.google.protobuf.TimestampOrBuilder getStatsUpdateTimeOrBuilder() {
if (statsUpdateTimeBuilder_ != null) {
return statsUpdateTimeBuilder_.getMessageOrBuilder();
} else {
return statsUpdateTime_ == null
? com.google.protobuf.Timestamp.getDefaultInstance()
: statsUpdateTime_;
}
}
/**
*
*
*
* Output only. The most recent timestamp when target_column_correlations
* field and all descendant ColumnSpec.data_stats and
* ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
* changes that happened to the dataset afterwards are not reflected in these
* fields values. The regeneration happens in the background on a best effort
* basis.
*
*
* .google.protobuf.Timestamp stats_update_time = 7;
*/
private com.google.protobuf.SingleFieldBuilderV3<
com.google.protobuf.Timestamp,
com.google.protobuf.Timestamp.Builder,
com.google.protobuf.TimestampOrBuilder>
getStatsUpdateTimeFieldBuilder() {
if (statsUpdateTimeBuilder_ == null) {
statsUpdateTimeBuilder_ =
new com.google.protobuf.SingleFieldBuilderV3<
com.google.protobuf.Timestamp,
com.google.protobuf.Timestamp.Builder,
com.google.protobuf.TimestampOrBuilder>(
getStatsUpdateTime(), getParentForChildren(), isClean());
statsUpdateTime_ = null;
}
return statsUpdateTimeBuilder_;
}
@java.lang.Override
public final Builder setUnknownFields(final com.google.protobuf.UnknownFieldSet unknownFields) {
return super.setUnknownFields(unknownFields);
}
@java.lang.Override
public final Builder mergeUnknownFields(
final com.google.protobuf.UnknownFieldSet unknownFields) {
return super.mergeUnknownFields(unknownFields);
}
// @@protoc_insertion_point(builder_scope:google.cloud.automl.v1beta1.TablesDatasetMetadata)
}
// @@protoc_insertion_point(class_scope:google.cloud.automl.v1beta1.TablesDatasetMetadata)
private static final com.google.cloud.automl.v1beta1.TablesDatasetMetadata DEFAULT_INSTANCE;
static {
DEFAULT_INSTANCE = new com.google.cloud.automl.v1beta1.TablesDatasetMetadata();
}
public static com.google.cloud.automl.v1beta1.TablesDatasetMetadata getDefaultInstance() {
return DEFAULT_INSTANCE;
}
private static final com.google.protobuf.Parser PARSER =
new com.google.protobuf.AbstractParser() {
@java.lang.Override
public TablesDatasetMetadata parsePartialFrom(
com.google.protobuf.CodedInputStream input,
com.google.protobuf.ExtensionRegistryLite extensionRegistry)
throws com.google.protobuf.InvalidProtocolBufferException {
Builder builder = newBuilder();
try {
builder.mergeFrom(input, extensionRegistry);
} catch (com.google.protobuf.InvalidProtocolBufferException e) {
throw e.setUnfinishedMessage(builder.buildPartial());
} catch (com.google.protobuf.UninitializedMessageException e) {
throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial());
} catch (java.io.IOException e) {
throw new com.google.protobuf.InvalidProtocolBufferException(e)
.setUnfinishedMessage(builder.buildPartial());
}
return builder.buildPartial();
}
};
public static com.google.protobuf.Parser parser() {
return PARSER;
}
@java.lang.Override
public com.google.protobuf.Parser getParserForType() {
return PARSER;
}
@java.lang.Override
public com.google.cloud.automl.v1beta1.TablesDatasetMetadata getDefaultInstanceForType() {
return DEFAULT_INSTANCE;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy