com.google.cloud.automl.v1beta1.TablesDatasetMetadataOrBuilder Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of proto-google-cloud-automl-v1beta1 Show documentation
Show all versions of proto-google-cloud-automl-v1beta1 Show documentation
PROTO library for proto-google-cloud-automl-v1beta1
/*
* Copyright 2020 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: google/cloud/automl/v1beta1/tables.proto
package com.google.cloud.automl.v1beta1;
public interface TablesDatasetMetadataOrBuilder
extends
// @@protoc_insertion_point(interface_extends:google.cloud.automl.v1beta1.TablesDatasetMetadata)
com.google.protobuf.MessageOrBuilder {
/**
*
*
*
* Output only. The table_spec_id of the primary table of this dataset.
*
*
* string primary_table_spec_id = 1;
*
* @return The primaryTableSpecId.
*/
java.lang.String getPrimaryTableSpecId();
/**
*
*
*
* Output only. The table_spec_id of the primary table of this dataset.
*
*
* string primary_table_spec_id = 1;
*
* @return The bytes for primaryTableSpecId.
*/
com.google.protobuf.ByteString getPrimaryTableSpecIdBytes();
/**
*
*
*
* column_spec_id of the primary table's column that should be used as the
* training & prediction target.
* This column must be non-nullable and have one of following data types
* (otherwise model creation will error):
* * CATEGORY
* * FLOAT64
* If the type is CATEGORY , only up to
* 100 unique values may exist in that column across all rows.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string target_column_spec_id = 2;
*
* @return The targetColumnSpecId.
*/
java.lang.String getTargetColumnSpecId();
/**
*
*
*
* column_spec_id of the primary table's column that should be used as the
* training & prediction target.
* This column must be non-nullable and have one of following data types
* (otherwise model creation will error):
* * CATEGORY
* * FLOAT64
* If the type is CATEGORY , only up to
* 100 unique values may exist in that column across all rows.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string target_column_spec_id = 2;
*
* @return The bytes for targetColumnSpecId.
*/
com.google.protobuf.ByteString getTargetColumnSpecIdBytes();
/**
*
*
*
* column_spec_id of the primary table's column that should be used as the
* weight column, i.e. the higher the value the more important the row will be
* during model training.
* Required type: FLOAT64.
* Allowed values: 0 to 10000, inclusive on both ends; 0 means the row is
* ignored for training.
* If not set all rows are assumed to have equal weight of 1.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string weight_column_spec_id = 3;
*
* @return The weightColumnSpecId.
*/
java.lang.String getWeightColumnSpecId();
/**
*
*
*
* column_spec_id of the primary table's column that should be used as the
* weight column, i.e. the higher the value the more important the row will be
* during model training.
* Required type: FLOAT64.
* Allowed values: 0 to 10000, inclusive on both ends; 0 means the row is
* ignored for training.
* If not set all rows are assumed to have equal weight of 1.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string weight_column_spec_id = 3;
*
* @return The bytes for weightColumnSpecId.
*/
com.google.protobuf.ByteString getWeightColumnSpecIdBytes();
/**
*
*
*
* column_spec_id of the primary table column which specifies a possible ML
* use of the row, i.e. the column will be used to split the rows into TRAIN,
* VALIDATE and TEST sets.
* Required type: STRING.
* This column, if set, must either have all of `TRAIN`, `VALIDATE`, `TEST`
* among its values, or only have `TEST`, `UNASSIGNED` values. In the latter
* case the rows with `UNASSIGNED` value will be assigned by AutoML. Note
* that if a given ml use distribution makes it impossible to create a "good"
* model, that call will error describing the issue.
* If both this column_spec_id and primary table's time_column_spec_id are not
* set, then all rows are treated as `UNASSIGNED`.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string ml_use_column_spec_id = 4;
*
* @return The mlUseColumnSpecId.
*/
java.lang.String getMlUseColumnSpecId();
/**
*
*
*
* column_spec_id of the primary table column which specifies a possible ML
* use of the row, i.e. the column will be used to split the rows into TRAIN,
* VALIDATE and TEST sets.
* Required type: STRING.
* This column, if set, must either have all of `TRAIN`, `VALIDATE`, `TEST`
* among its values, or only have `TEST`, `UNASSIGNED` values. In the latter
* case the rows with `UNASSIGNED` value will be assigned by AutoML. Note
* that if a given ml use distribution makes it impossible to create a "good"
* model, that call will error describing the issue.
* If both this column_spec_id and primary table's time_column_spec_id are not
* set, then all rows are treated as `UNASSIGNED`.
* NOTE: Updates of this field will instantly affect any other users
* concurrently working with the dataset.
*
*
* string ml_use_column_spec_id = 4;
*
* @return The bytes for mlUseColumnSpecId.
*/
com.google.protobuf.ByteString getMlUseColumnSpecIdBytes();
/**
*
*
*
* Output only. Correlations between
* [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
* and other columns of the
* [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
* Only set if the target column is set. Mapping from other column spec id to
* its CorrelationStats with the target column.
* This field may be stale, see the stats_update_time field for
* for the timestamp at which these stats were last updated.
*
*
*
* map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6;
*
*/
int getTargetColumnCorrelationsCount();
/**
*
*
*
* Output only. Correlations between
* [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
* and other columns of the
* [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
* Only set if the target column is set. Mapping from other column spec id to
* its CorrelationStats with the target column.
* This field may be stale, see the stats_update_time field for
* for the timestamp at which these stats were last updated.
*
*
*
* map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6;
*
*/
boolean containsTargetColumnCorrelations(java.lang.String key);
/** Use {@link #getTargetColumnCorrelationsMap()} instead. */
@java.lang.Deprecated
java.util.Map
getTargetColumnCorrelations();
/**
*
*
*
* Output only. Correlations between
* [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
* and other columns of the
* [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
* Only set if the target column is set. Mapping from other column spec id to
* its CorrelationStats with the target column.
* This field may be stale, see the stats_update_time field for
* for the timestamp at which these stats were last updated.
*
*
*
* map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6;
*
*/
java.util.Map
getTargetColumnCorrelationsMap();
/**
*
*
*
* Output only. Correlations between
* [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
* and other columns of the
* [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
* Only set if the target column is set. Mapping from other column spec id to
* its CorrelationStats with the target column.
* This field may be stale, see the stats_update_time field for
* for the timestamp at which these stats were last updated.
*
*
*
* map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6;
*
*/
/* nullable */
com.google.cloud.automl.v1beta1.CorrelationStats getTargetColumnCorrelationsOrDefault(
java.lang.String key,
/* nullable */
com.google.cloud.automl.v1beta1.CorrelationStats defaultValue);
/**
*
*
*
* Output only. Correlations between
* [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id],
* and other columns of the
* [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id].
* Only set if the target column is set. Mapping from other column spec id to
* its CorrelationStats with the target column.
* This field may be stale, see the stats_update_time field for
* for the timestamp at which these stats were last updated.
*
*
*
* map<string, .google.cloud.automl.v1beta1.CorrelationStats> target_column_correlations = 6;
*
*/
com.google.cloud.automl.v1beta1.CorrelationStats getTargetColumnCorrelationsOrThrow(
java.lang.String key);
/**
*
*
*
* Output only. The most recent timestamp when target_column_correlations
* field and all descendant ColumnSpec.data_stats and
* ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
* changes that happened to the dataset afterwards are not reflected in these
* fields values. The regeneration happens in the background on a best effort
* basis.
*
*
* .google.protobuf.Timestamp stats_update_time = 7;
*
* @return Whether the statsUpdateTime field is set.
*/
boolean hasStatsUpdateTime();
/**
*
*
*
* Output only. The most recent timestamp when target_column_correlations
* field and all descendant ColumnSpec.data_stats and
* ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
* changes that happened to the dataset afterwards are not reflected in these
* fields values. The regeneration happens in the background on a best effort
* basis.
*
*
* .google.protobuf.Timestamp stats_update_time = 7;
*
* @return The statsUpdateTime.
*/
com.google.protobuf.Timestamp getStatsUpdateTime();
/**
*
*
*
* Output only. The most recent timestamp when target_column_correlations
* field and all descendant ColumnSpec.data_stats and
* ColumnSpec.top_correlated_columns fields were last (re-)generated. Any
* changes that happened to the dataset afterwards are not reflected in these
* fields values. The regeneration happens in the background on a best effort
* basis.
*
*
* .google.protobuf.Timestamp stats_update_time = 7;
*/
com.google.protobuf.TimestampOrBuilder getStatsUpdateTimeOrBuilder();
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy