All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.cloud.dialogflow.v2.InferenceParameter Maven / Gradle / Ivy

There is a newer version: 4.61.0
Show newest version
/*
 * Copyright 2024 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: google/cloud/dialogflow/v2/generator.proto

// Protobuf Java Version: 3.25.5
package com.google.cloud.dialogflow.v2;

/**
 *
 *
 * 
 * The parameters of inference.
 * 
* * Protobuf type {@code google.cloud.dialogflow.v2.InferenceParameter} */ public final class InferenceParameter extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:google.cloud.dialogflow.v2.InferenceParameter) InferenceParameterOrBuilder { private static final long serialVersionUID = 0L; // Use InferenceParameter.newBuilder() to construct. private InferenceParameter(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private InferenceParameter() {} @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance(UnusedPrivateParameter unused) { return new InferenceParameter(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.dialogflow.v2.GeneratorProto .internal_static_google_cloud_dialogflow_v2_InferenceParameter_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.dialogflow.v2.GeneratorProto .internal_static_google_cloud_dialogflow_v2_InferenceParameter_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.dialogflow.v2.InferenceParameter.class, com.google.cloud.dialogflow.v2.InferenceParameter.Builder.class); } private int bitField0_; public static final int MAX_OUTPUT_TOKENS_FIELD_NUMBER = 1; private int maxOutputTokens_ = 0; /** * * *
   * Optional. Maximum number of the output tokens for the generator.
   * 
* * optional int32 max_output_tokens = 1 [(.google.api.field_behavior) = OPTIONAL]; * * @return Whether the maxOutputTokens field is set. */ @java.lang.Override public boolean hasMaxOutputTokens() { return ((bitField0_ & 0x00000001) != 0); } /** * * *
   * Optional. Maximum number of the output tokens for the generator.
   * 
* * optional int32 max_output_tokens = 1 [(.google.api.field_behavior) = OPTIONAL]; * * @return The maxOutputTokens. */ @java.lang.Override public int getMaxOutputTokens() { return maxOutputTokens_; } public static final int TEMPERATURE_FIELD_NUMBER = 2; private double temperature_ = 0D; /** * * *
   * Optional. Controls the randomness of LLM predictions.
   * Low temperature = less random. High temperature = more random.
   * If unset (or 0), uses a default value of 0.
   * 
* * optional double temperature = 2 [(.google.api.field_behavior) = OPTIONAL]; * * @return Whether the temperature field is set. */ @java.lang.Override public boolean hasTemperature() { return ((bitField0_ & 0x00000002) != 0); } /** * * *
   * Optional. Controls the randomness of LLM predictions.
   * Low temperature = less random. High temperature = more random.
   * If unset (or 0), uses a default value of 0.
   * 
* * optional double temperature = 2 [(.google.api.field_behavior) = OPTIONAL]; * * @return The temperature. */ @java.lang.Override public double getTemperature() { return temperature_; } public static final int TOP_K_FIELD_NUMBER = 3; private int topK_ = 0; /** * * *
   * Optional. Top-k changes how the model selects tokens for output. A top-k of
   * 1 means the selected token is the most probable among all tokens in the
   * model's vocabulary (also called greedy decoding), while a top-k of 3 means
   * that the next token is selected from among the 3 most probable tokens
   * (using temperature). For each token selection step, the top K tokens with
   * the highest probabilities are sampled. Then tokens are further filtered
   * based on topP with the final token selected using temperature sampling.
   * Specify a lower value for less random responses and a higher value for more
   * random responses. Acceptable value is [1, 40], default to 40.
   * 
* * optional int32 top_k = 3 [(.google.api.field_behavior) = OPTIONAL]; * * @return Whether the topK field is set. */ @java.lang.Override public boolean hasTopK() { return ((bitField0_ & 0x00000004) != 0); } /** * * *
   * Optional. Top-k changes how the model selects tokens for output. A top-k of
   * 1 means the selected token is the most probable among all tokens in the
   * model's vocabulary (also called greedy decoding), while a top-k of 3 means
   * that the next token is selected from among the 3 most probable tokens
   * (using temperature). For each token selection step, the top K tokens with
   * the highest probabilities are sampled. Then tokens are further filtered
   * based on topP with the final token selected using temperature sampling.
   * Specify a lower value for less random responses and a higher value for more
   * random responses. Acceptable value is [1, 40], default to 40.
   * 
* * optional int32 top_k = 3 [(.google.api.field_behavior) = OPTIONAL]; * * @return The topK. */ @java.lang.Override public int getTopK() { return topK_; } public static final int TOP_P_FIELD_NUMBER = 4; private double topP_ = 0D; /** * * *
   * Optional. Top-p changes how the model selects tokens for output. Tokens are
   * selected from most K (see topK parameter) probable to least until the sum
   * of their probabilities equals the top-p value. For example, if tokens A, B,
   * and C have a probability of 0.3, 0.2, and 0.1 and the top-p value is 0.5,
   * then the model will select either A or B as the next token (using
   * temperature) and doesn't consider C. The default top-p value is 0.95.
   * Specify a lower value for less random responses and a higher value for more
   * random responses. Acceptable value is [0.0, 1.0], default to 0.95.
   * 
* * optional double top_p = 4 [(.google.api.field_behavior) = OPTIONAL]; * * @return Whether the topP field is set. */ @java.lang.Override public boolean hasTopP() { return ((bitField0_ & 0x00000008) != 0); } /** * * *
   * Optional. Top-p changes how the model selects tokens for output. Tokens are
   * selected from most K (see topK parameter) probable to least until the sum
   * of their probabilities equals the top-p value. For example, if tokens A, B,
   * and C have a probability of 0.3, 0.2, and 0.1 and the top-p value is 0.5,
   * then the model will select either A or B as the next token (using
   * temperature) and doesn't consider C. The default top-p value is 0.95.
   * Specify a lower value for less random responses and a higher value for more
   * random responses. Acceptable value is [0.0, 1.0], default to 0.95.
   * 
* * optional double top_p = 4 [(.google.api.field_behavior) = OPTIONAL]; * * @return The topP. */ @java.lang.Override public double getTopP() { return topP_; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (((bitField0_ & 0x00000001) != 0)) { output.writeInt32(1, maxOutputTokens_); } if (((bitField0_ & 0x00000002) != 0)) { output.writeDouble(2, temperature_); } if (((bitField0_ & 0x00000004) != 0)) { output.writeInt32(3, topK_); } if (((bitField0_ & 0x00000008) != 0)) { output.writeDouble(4, topP_); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.CodedOutputStream.computeInt32Size(1, maxOutputTokens_); } if (((bitField0_ & 0x00000002) != 0)) { size += com.google.protobuf.CodedOutputStream.computeDoubleSize(2, temperature_); } if (((bitField0_ & 0x00000004) != 0)) { size += com.google.protobuf.CodedOutputStream.computeInt32Size(3, topK_); } if (((bitField0_ & 0x00000008) != 0)) { size += com.google.protobuf.CodedOutputStream.computeDoubleSize(4, topP_); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof com.google.cloud.dialogflow.v2.InferenceParameter)) { return super.equals(obj); } com.google.cloud.dialogflow.v2.InferenceParameter other = (com.google.cloud.dialogflow.v2.InferenceParameter) obj; if (hasMaxOutputTokens() != other.hasMaxOutputTokens()) return false; if (hasMaxOutputTokens()) { if (getMaxOutputTokens() != other.getMaxOutputTokens()) return false; } if (hasTemperature() != other.hasTemperature()) return false; if (hasTemperature()) { if (java.lang.Double.doubleToLongBits(getTemperature()) != java.lang.Double.doubleToLongBits(other.getTemperature())) return false; } if (hasTopK() != other.hasTopK()) return false; if (hasTopK()) { if (getTopK() != other.getTopK()) return false; } if (hasTopP() != other.hasTopP()) return false; if (hasTopP()) { if (java.lang.Double.doubleToLongBits(getTopP()) != java.lang.Double.doubleToLongBits(other.getTopP())) return false; } if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (hasMaxOutputTokens()) { hash = (37 * hash) + MAX_OUTPUT_TOKENS_FIELD_NUMBER; hash = (53 * hash) + getMaxOutputTokens(); } if (hasTemperature()) { hash = (37 * hash) + TEMPERATURE_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong( java.lang.Double.doubleToLongBits(getTemperature())); } if (hasTopK()) { hash = (37 * hash) + TOP_K_FIELD_NUMBER; hash = (53 * hash) + getTopK(); } if (hasTopP()) { hash = (37 * hash) + TOP_P_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashLong(java.lang.Double.doubleToLongBits(getTopP())); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static com.google.cloud.dialogflow.v2.InferenceParameter parseFrom( java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.dialogflow.v2.InferenceParameter parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.dialogflow.v2.InferenceParameter parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.dialogflow.v2.InferenceParameter parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.dialogflow.v2.InferenceParameter parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.dialogflow.v2.InferenceParameter parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.dialogflow.v2.InferenceParameter parseFrom( java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.dialogflow.v2.InferenceParameter parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.dialogflow.v2.InferenceParameter parseDelimitedFrom( java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException(PARSER, input); } public static com.google.cloud.dialogflow.v2.InferenceParameter parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.dialogflow.v2.InferenceParameter parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.dialogflow.v2.InferenceParameter parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(com.google.cloud.dialogflow.v2.InferenceParameter prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * * *
   * The parameters of inference.
   * 
* * Protobuf type {@code google.cloud.dialogflow.v2.InferenceParameter} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:google.cloud.dialogflow.v2.InferenceParameter) com.google.cloud.dialogflow.v2.InferenceParameterOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.dialogflow.v2.GeneratorProto .internal_static_google_cloud_dialogflow_v2_InferenceParameter_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.dialogflow.v2.GeneratorProto .internal_static_google_cloud_dialogflow_v2_InferenceParameter_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.dialogflow.v2.InferenceParameter.class, com.google.cloud.dialogflow.v2.InferenceParameter.Builder.class); } // Construct using com.google.cloud.dialogflow.v2.InferenceParameter.newBuilder() private Builder() {} private Builder(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; maxOutputTokens_ = 0; temperature_ = 0D; topK_ = 0; topP_ = 0D; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return com.google.cloud.dialogflow.v2.GeneratorProto .internal_static_google_cloud_dialogflow_v2_InferenceParameter_descriptor; } @java.lang.Override public com.google.cloud.dialogflow.v2.InferenceParameter getDefaultInstanceForType() { return com.google.cloud.dialogflow.v2.InferenceParameter.getDefaultInstance(); } @java.lang.Override public com.google.cloud.dialogflow.v2.InferenceParameter build() { com.google.cloud.dialogflow.v2.InferenceParameter result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public com.google.cloud.dialogflow.v2.InferenceParameter buildPartial() { com.google.cloud.dialogflow.v2.InferenceParameter result = new com.google.cloud.dialogflow.v2.InferenceParameter(this); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartial0(com.google.cloud.dialogflow.v2.InferenceParameter result) { int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000001) != 0)) { result.maxOutputTokens_ = maxOutputTokens_; to_bitField0_ |= 0x00000001; } if (((from_bitField0_ & 0x00000002) != 0)) { result.temperature_ = temperature_; to_bitField0_ |= 0x00000002; } if (((from_bitField0_ & 0x00000004) != 0)) { result.topK_ = topK_; to_bitField0_ |= 0x00000004; } if (((from_bitField0_ & 0x00000008) != 0)) { result.topP_ = topP_; to_bitField0_ |= 0x00000008; } result.bitField0_ |= to_bitField0_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof com.google.cloud.dialogflow.v2.InferenceParameter) { return mergeFrom((com.google.cloud.dialogflow.v2.InferenceParameter) other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(com.google.cloud.dialogflow.v2.InferenceParameter other) { if (other == com.google.cloud.dialogflow.v2.InferenceParameter.getDefaultInstance()) return this; if (other.hasMaxOutputTokens()) { setMaxOutputTokens(other.getMaxOutputTokens()); } if (other.hasTemperature()) { setTemperature(other.getTemperature()); } if (other.hasTopK()) { setTopK(other.getTopK()); } if (other.hasTopP()) { setTopP(other.getTopP()); } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 8: { maxOutputTokens_ = input.readInt32(); bitField0_ |= 0x00000001; break; } // case 8 case 17: { temperature_ = input.readDouble(); bitField0_ |= 0x00000002; break; } // case 17 case 24: { topK_ = input.readInt32(); bitField0_ |= 0x00000004; break; } // case 24 case 33: { topP_ = input.readDouble(); bitField0_ |= 0x00000008; break; } // case 33 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private int maxOutputTokens_; /** * * *
     * Optional. Maximum number of the output tokens for the generator.
     * 
* * optional int32 max_output_tokens = 1 [(.google.api.field_behavior) = OPTIONAL]; * * @return Whether the maxOutputTokens field is set. */ @java.lang.Override public boolean hasMaxOutputTokens() { return ((bitField0_ & 0x00000001) != 0); } /** * * *
     * Optional. Maximum number of the output tokens for the generator.
     * 
* * optional int32 max_output_tokens = 1 [(.google.api.field_behavior) = OPTIONAL]; * * @return The maxOutputTokens. */ @java.lang.Override public int getMaxOutputTokens() { return maxOutputTokens_; } /** * * *
     * Optional. Maximum number of the output tokens for the generator.
     * 
* * optional int32 max_output_tokens = 1 [(.google.api.field_behavior) = OPTIONAL]; * * @param value The maxOutputTokens to set. * @return This builder for chaining. */ public Builder setMaxOutputTokens(int value) { maxOutputTokens_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } /** * * *
     * Optional. Maximum number of the output tokens for the generator.
     * 
* * optional int32 max_output_tokens = 1 [(.google.api.field_behavior) = OPTIONAL]; * * @return This builder for chaining. */ public Builder clearMaxOutputTokens() { bitField0_ = (bitField0_ & ~0x00000001); maxOutputTokens_ = 0; onChanged(); return this; } private double temperature_; /** * * *
     * Optional. Controls the randomness of LLM predictions.
     * Low temperature = less random. High temperature = more random.
     * If unset (or 0), uses a default value of 0.
     * 
* * optional double temperature = 2 [(.google.api.field_behavior) = OPTIONAL]; * * @return Whether the temperature field is set. */ @java.lang.Override public boolean hasTemperature() { return ((bitField0_ & 0x00000002) != 0); } /** * * *
     * Optional. Controls the randomness of LLM predictions.
     * Low temperature = less random. High temperature = more random.
     * If unset (or 0), uses a default value of 0.
     * 
* * optional double temperature = 2 [(.google.api.field_behavior) = OPTIONAL]; * * @return The temperature. */ @java.lang.Override public double getTemperature() { return temperature_; } /** * * *
     * Optional. Controls the randomness of LLM predictions.
     * Low temperature = less random. High temperature = more random.
     * If unset (or 0), uses a default value of 0.
     * 
* * optional double temperature = 2 [(.google.api.field_behavior) = OPTIONAL]; * * @param value The temperature to set. * @return This builder for chaining. */ public Builder setTemperature(double value) { temperature_ = value; bitField0_ |= 0x00000002; onChanged(); return this; } /** * * *
     * Optional. Controls the randomness of LLM predictions.
     * Low temperature = less random. High temperature = more random.
     * If unset (or 0), uses a default value of 0.
     * 
* * optional double temperature = 2 [(.google.api.field_behavior) = OPTIONAL]; * * @return This builder for chaining. */ public Builder clearTemperature() { bitField0_ = (bitField0_ & ~0x00000002); temperature_ = 0D; onChanged(); return this; } private int topK_; /** * * *
     * Optional. Top-k changes how the model selects tokens for output. A top-k of
     * 1 means the selected token is the most probable among all tokens in the
     * model's vocabulary (also called greedy decoding), while a top-k of 3 means
     * that the next token is selected from among the 3 most probable tokens
     * (using temperature). For each token selection step, the top K tokens with
     * the highest probabilities are sampled. Then tokens are further filtered
     * based on topP with the final token selected using temperature sampling.
     * Specify a lower value for less random responses and a higher value for more
     * random responses. Acceptable value is [1, 40], default to 40.
     * 
* * optional int32 top_k = 3 [(.google.api.field_behavior) = OPTIONAL]; * * @return Whether the topK field is set. */ @java.lang.Override public boolean hasTopK() { return ((bitField0_ & 0x00000004) != 0); } /** * * *
     * Optional. Top-k changes how the model selects tokens for output. A top-k of
     * 1 means the selected token is the most probable among all tokens in the
     * model's vocabulary (also called greedy decoding), while a top-k of 3 means
     * that the next token is selected from among the 3 most probable tokens
     * (using temperature). For each token selection step, the top K tokens with
     * the highest probabilities are sampled. Then tokens are further filtered
     * based on topP with the final token selected using temperature sampling.
     * Specify a lower value for less random responses and a higher value for more
     * random responses. Acceptable value is [1, 40], default to 40.
     * 
* * optional int32 top_k = 3 [(.google.api.field_behavior) = OPTIONAL]; * * @return The topK. */ @java.lang.Override public int getTopK() { return topK_; } /** * * *
     * Optional. Top-k changes how the model selects tokens for output. A top-k of
     * 1 means the selected token is the most probable among all tokens in the
     * model's vocabulary (also called greedy decoding), while a top-k of 3 means
     * that the next token is selected from among the 3 most probable tokens
     * (using temperature). For each token selection step, the top K tokens with
     * the highest probabilities are sampled. Then tokens are further filtered
     * based on topP with the final token selected using temperature sampling.
     * Specify a lower value for less random responses and a higher value for more
     * random responses. Acceptable value is [1, 40], default to 40.
     * 
* * optional int32 top_k = 3 [(.google.api.field_behavior) = OPTIONAL]; * * @param value The topK to set. * @return This builder for chaining. */ public Builder setTopK(int value) { topK_ = value; bitField0_ |= 0x00000004; onChanged(); return this; } /** * * *
     * Optional. Top-k changes how the model selects tokens for output. A top-k of
     * 1 means the selected token is the most probable among all tokens in the
     * model's vocabulary (also called greedy decoding), while a top-k of 3 means
     * that the next token is selected from among the 3 most probable tokens
     * (using temperature). For each token selection step, the top K tokens with
     * the highest probabilities are sampled. Then tokens are further filtered
     * based on topP with the final token selected using temperature sampling.
     * Specify a lower value for less random responses and a higher value for more
     * random responses. Acceptable value is [1, 40], default to 40.
     * 
* * optional int32 top_k = 3 [(.google.api.field_behavior) = OPTIONAL]; * * @return This builder for chaining. */ public Builder clearTopK() { bitField0_ = (bitField0_ & ~0x00000004); topK_ = 0; onChanged(); return this; } private double topP_; /** * * *
     * Optional. Top-p changes how the model selects tokens for output. Tokens are
     * selected from most K (see topK parameter) probable to least until the sum
     * of their probabilities equals the top-p value. For example, if tokens A, B,
     * and C have a probability of 0.3, 0.2, and 0.1 and the top-p value is 0.5,
     * then the model will select either A or B as the next token (using
     * temperature) and doesn't consider C. The default top-p value is 0.95.
     * Specify a lower value for less random responses and a higher value for more
     * random responses. Acceptable value is [0.0, 1.0], default to 0.95.
     * 
* * optional double top_p = 4 [(.google.api.field_behavior) = OPTIONAL]; * * @return Whether the topP field is set. */ @java.lang.Override public boolean hasTopP() { return ((bitField0_ & 0x00000008) != 0); } /** * * *
     * Optional. Top-p changes how the model selects tokens for output. Tokens are
     * selected from most K (see topK parameter) probable to least until the sum
     * of their probabilities equals the top-p value. For example, if tokens A, B,
     * and C have a probability of 0.3, 0.2, and 0.1 and the top-p value is 0.5,
     * then the model will select either A or B as the next token (using
     * temperature) and doesn't consider C. The default top-p value is 0.95.
     * Specify a lower value for less random responses and a higher value for more
     * random responses. Acceptable value is [0.0, 1.0], default to 0.95.
     * 
* * optional double top_p = 4 [(.google.api.field_behavior) = OPTIONAL]; * * @return The topP. */ @java.lang.Override public double getTopP() { return topP_; } /** * * *
     * Optional. Top-p changes how the model selects tokens for output. Tokens are
     * selected from most K (see topK parameter) probable to least until the sum
     * of their probabilities equals the top-p value. For example, if tokens A, B,
     * and C have a probability of 0.3, 0.2, and 0.1 and the top-p value is 0.5,
     * then the model will select either A or B as the next token (using
     * temperature) and doesn't consider C. The default top-p value is 0.95.
     * Specify a lower value for less random responses and a higher value for more
     * random responses. Acceptable value is [0.0, 1.0], default to 0.95.
     * 
* * optional double top_p = 4 [(.google.api.field_behavior) = OPTIONAL]; * * @param value The topP to set. * @return This builder for chaining. */ public Builder setTopP(double value) { topP_ = value; bitField0_ |= 0x00000008; onChanged(); return this; } /** * * *
     * Optional. Top-p changes how the model selects tokens for output. Tokens are
     * selected from most K (see topK parameter) probable to least until the sum
     * of their probabilities equals the top-p value. For example, if tokens A, B,
     * and C have a probability of 0.3, 0.2, and 0.1 and the top-p value is 0.5,
     * then the model will select either A or B as the next token (using
     * temperature) and doesn't consider C. The default top-p value is 0.95.
     * Specify a lower value for less random responses and a higher value for more
     * random responses. Acceptable value is [0.0, 1.0], default to 0.95.
     * 
* * optional double top_p = 4 [(.google.api.field_behavior) = OPTIONAL]; * * @return This builder for chaining. */ public Builder clearTopP() { bitField0_ = (bitField0_ & ~0x00000008); topP_ = 0D; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields(final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:google.cloud.dialogflow.v2.InferenceParameter) } // @@protoc_insertion_point(class_scope:google.cloud.dialogflow.v2.InferenceParameter) private static final com.google.cloud.dialogflow.v2.InferenceParameter DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new com.google.cloud.dialogflow.v2.InferenceParameter(); } public static com.google.cloud.dialogflow.v2.InferenceParameter getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public InferenceParameter parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public com.google.cloud.dialogflow.v2.InferenceParameter getDefaultInstanceForType() { return DEFAULT_INSTANCE; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy