google.cloud.notebooks.v1.execution.proto Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of proto-google-cloud-notebooks-v1 Show documentation
Show all versions of proto-google-cloud-notebooks-v1 Show documentation
Proto library for google-cloud-notebooks
The newest version!
// Copyright 2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax = "proto3";
package google.cloud.notebooks.v1;
import "google/api/field_behavior.proto";
import "google/api/resource.proto";
import "google/protobuf/timestamp.proto";
option go_package = "cloud.google.com/go/notebooks/apiv1/notebookspb;notebookspb";
option java_multiple_files = true;
option java_outer_classname = "ExecutionProto";
option java_package = "com.google.cloud.notebooks.v1";
option (google.api.resource_definition) = {
type: "aiplatform.googleapis.com/Tensorboard"
pattern: "projects/{project}/locations/{location}/tensorboards/{tensorboard}"
};
// The description a notebook execution workload.
message ExecutionTemplate {
// Required. Specifies the machine types, the number of replicas for workers
// and parameter servers.
enum ScaleTier {
// Unspecified Scale Tier.
SCALE_TIER_UNSPECIFIED = 0;
// A single worker instance. This tier is suitable for learning how to use
// Cloud ML, and for experimenting with new models using small datasets.
BASIC = 1;
// Many workers and a few parameter servers.
STANDARD_1 = 2;
// A large number of workers with many parameter servers.
PREMIUM_1 = 3;
// A single worker instance with a K80 GPU.
BASIC_GPU = 4;
// A single worker instance with a Cloud TPU.
BASIC_TPU = 5;
// The CUSTOM tier is not a set tier, but rather enables you to use your
// own cluster specification. When you use this tier, set values to
// configure your processing cluster according to these guidelines:
//
// * You _must_ set `ExecutionTemplate.masterType` to specify the type
// of machine to use for your master node. This is the only required
// setting.
CUSTOM = 6;
}
// Hardware accelerator types for AI Platform Training jobs.
enum SchedulerAcceleratorType {
// Unspecified accelerator type. Default to no GPU.
SCHEDULER_ACCELERATOR_TYPE_UNSPECIFIED = 0;
// Nvidia Tesla K80 GPU.
NVIDIA_TESLA_K80 = 1;
// Nvidia Tesla P100 GPU.
NVIDIA_TESLA_P100 = 2;
// Nvidia Tesla V100 GPU.
NVIDIA_TESLA_V100 = 3;
// Nvidia Tesla P4 GPU.
NVIDIA_TESLA_P4 = 4;
// Nvidia Tesla T4 GPU.
NVIDIA_TESLA_T4 = 5;
// Nvidia Tesla A100 GPU.
NVIDIA_TESLA_A100 = 10;
// TPU v2.
TPU_V2 = 6;
// TPU v3.
TPU_V3 = 7;
}
// Definition of a hardware accelerator. Note that not all combinations
// of `type` and `core_count` are valid. Check [GPUs on
// Compute Engine](https://cloud.google.com/compute/docs/gpus) to find a valid
// combination. TPUs are not supported.
message SchedulerAcceleratorConfig {
// Type of this accelerator.
SchedulerAcceleratorType type = 1;
// Count of cores of this accelerator.
int64 core_count = 2;
}
// The backend used for this execution.
enum JobType {
// No type specified.
JOB_TYPE_UNSPECIFIED = 0;
// Custom Job in `aiplatform.googleapis.com`.
// Default value for an execution.
VERTEX_AI = 1;
// Run execution on a cluster with Dataproc as a job.
// https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.jobs
DATAPROC = 2;
}
// Parameters used in Dataproc JobType executions.
message DataprocParameters {
// URI for cluster used to run Dataproc execution.
// Format: `projects/{PROJECT_ID}/regions/{REGION}/clusters/{CLUSTER_NAME}`
string cluster = 1;
}
// Parameters used in Vertex AI JobType executions.
message VertexAIParameters {
// The full name of the Compute Engine
// [network](https://cloud.google.com/compute/docs/networks-and-firewalls#networks)
// to which the Job should be peered. For example,
// `projects/12345/global/networks/myVPC`.
// [Format](https://cloud.google.com/compute/docs/reference/rest/v1/networks/insert)
// is of the form `projects/{project}/global/networks/{network}`.
// Where `{project}` is a project number, as in `12345`, and `{network}` is
// a network name.
//
// Private services access must already be configured for the network. If
// left unspecified, the job is not peered with any network.
string network = 1;
// Environment variables.
// At most 100 environment variables can be specified and unique.
// Example: `GCP_BUCKET=gs://my-bucket/samples/`
map env = 2;
}
// Required. Scale tier of the hardware used for notebook execution.
// DEPRECATED Will be discontinued. As right now only CUSTOM is supported.
ScaleTier scale_tier = 1 [
deprecated = true,
(google.api.field_behavior) = REQUIRED
];
// Specifies the type of virtual machine to use for your training
// job's master worker. You must specify this field when `scaleTier` is set to
// `CUSTOM`.
//
// You can use certain Compute Engine machine types directly in this field.
// The following types are supported:
//
// - `n1-standard-4`
// - `n1-standard-8`
// - `n1-standard-16`
// - `n1-standard-32`
// - `n1-standard-64`
// - `n1-standard-96`
// - `n1-highmem-2`
// - `n1-highmem-4`
// - `n1-highmem-8`
// - `n1-highmem-16`
// - `n1-highmem-32`
// - `n1-highmem-64`
// - `n1-highmem-96`
// - `n1-highcpu-16`
// - `n1-highcpu-32`
// - `n1-highcpu-64`
// - `n1-highcpu-96`
//
//
// Alternatively, you can use the following legacy machine types:
//
// - `standard`
// - `large_model`
// - `complex_model_s`
// - `complex_model_m`
// - `complex_model_l`
// - `standard_gpu`
// - `complex_model_m_gpu`
// - `complex_model_l_gpu`
// - `standard_p100`
// - `complex_model_m_p100`
// - `standard_v100`
// - `large_model_v100`
// - `complex_model_m_v100`
// - `complex_model_l_v100`
//
//
// Finally, if you want to use a TPU for training, specify `cloud_tpu` in this
// field. Learn more about the [special configuration options for training
// with
// TPU](https://cloud.google.com/ai-platform/training/docs/using-tpus#configuring_a_custom_tpu_machine).
string master_type = 2;
// Configuration (count and accelerator type) for hardware running notebook
// execution.
SchedulerAcceleratorConfig accelerator_config = 3;
// Labels for execution.
// If execution is scheduled, a field included will be 'nbs-scheduled'.
// Otherwise, it is an immediate execution, and an included field will be
// 'nbs-immediate'. Use fields to efficiently index between various types of
// executions.
map labels = 4;
// Path to the notebook file to execute.
// Must be in a Google Cloud Storage bucket.
// Format: `gs://{bucket_name}/{folder}/{notebook_file_name}`
// Ex: `gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb`
string input_notebook_file = 5;
// Container Image URI to a DLVM
// Example: 'gcr.io/deeplearning-platform-release/base-cu100'
// More examples can be found at:
// https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container
string container_image_uri = 6;
// Path to the notebook folder to write to.
// Must be in a Google Cloud Storage bucket path.
// Format: `gs://{bucket_name}/{folder}`
// Ex: `gs://notebook_user/scheduled_notebooks`
string output_notebook_folder = 7;
// Parameters to be overridden in the notebook during execution.
// Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html on
// how to specifying parameters in the input notebook and pass them here
// in an YAML file.
// Ex: `gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml`
string params_yaml_file = 8;
// Parameters used within the 'input_notebook_file' notebook.
string parameters = 9;
// The email address of a service account to use when running the execution.
// You must have the `iam.serviceAccounts.actAs` permission for the specified
// service account.
string service_account = 10;
// The type of Job to be used on this execution.
JobType job_type = 11;
// Parameters for an execution type.
// NOTE: There are currently no extra parameters for VertexAI jobs.
oneof job_parameters {
// Parameters used in Dataproc JobType executions.
DataprocParameters dataproc_parameters = 12;
// Parameters used in Vertex AI JobType executions.
VertexAIParameters vertex_ai_parameters = 13;
}
// Name of the kernel spec to use. This must be specified if the
// kernel spec name on the execution target does not match the name in the
// input notebook file.
string kernel_spec = 14;
// The name of a Vertex AI [Tensorboard] resource to which this execution
// will upload Tensorboard logs.
// Format:
// `projects/{project}/locations/{location}/tensorboards/{tensorboard}`
string tensorboard = 15 [(google.api.resource_reference) = {
type: "aiplatform.googleapis.com/Tensorboard"
}];
}
// The definition of a single executed notebook.
message Execution {
option (google.api.resource) = {
type: "notebooks.googleapis.com/Execution"
pattern: "projects/{project}/location/{location}/executions/{execution}"
};
// Enum description of the state of the underlying AIP job.
enum State {
// The job state is unspecified.
STATE_UNSPECIFIED = 0;
// The job has been just created and processing has not yet begun.
QUEUED = 1;
// The service is preparing to execution the job.
PREPARING = 2;
// The job is in progress.
RUNNING = 3;
// The job completed successfully.
SUCCEEDED = 4;
// The job failed.
// `error_message` should contain the details of the failure.
FAILED = 5;
// The job is being cancelled.
// `error_message` should describe the reason for the cancellation.
CANCELLING = 6;
// The job has been cancelled.
// `error_message` should describe the reason for the cancellation.
CANCELLED = 7;
// The job has become expired (relevant to Vertex AI jobs)
// https://cloud.google.com/vertex-ai/docs/reference/rest/v1/JobState
EXPIRED = 9;
// The Execution is being created.
INITIALIZING = 10;
}
// execute metadata including name, hardware spec, region, labels, etc.
ExecutionTemplate execution_template = 1;
// Output only. The resource name of the execute. Format:
// `projects/{project_id}/locations/{location}/executions/{execution_id}`
string name = 2 [(google.api.field_behavior) = OUTPUT_ONLY];
// Output only. Name used for UI purposes.
// Name can only contain alphanumeric characters and underscores '_'.
string display_name = 3 [(google.api.field_behavior) = OUTPUT_ONLY];
// A brief description of this execution.
string description = 4;
// Output only. Time the Execution was instantiated.
google.protobuf.Timestamp create_time = 5 [(google.api.field_behavior) = OUTPUT_ONLY];
// Output only. Time the Execution was last updated.
google.protobuf.Timestamp update_time = 6 [(google.api.field_behavior) = OUTPUT_ONLY];
// Output only. State of the underlying AI Platform job.
State state = 7 [(google.api.field_behavior) = OUTPUT_ONLY];
// Output notebook file generated by this execution
string output_notebook_file = 8;
// Output only. The URI of the external job used to execute the notebook.
string job_uri = 9 [(google.api.field_behavior) = OUTPUT_ONLY];
}