google.cloud.vertexai.v1.prediction_service.proto Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of proto-google-cloud-vertexai-v1 Show documentation
Show all versions of proto-google-cloud-vertexai-v1 Show documentation
Proto library for google-cloud-vertexai
// Copyright 2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
syntax = "proto3";
package google.cloud.vertexai.v1;
import "google/api/annotations.proto";
import "google/api/client.proto";
import "google/api/field_behavior.proto";
import "google/api/httpbody.proto";
import "google/api/resource.proto";
import "google/cloud/vertexai/v1/content.proto";
import "google/cloud/vertexai/v1/explanation.proto";
import "google/cloud/vertexai/v1/tool.proto";
import "google/cloud/vertexai/v1/types.proto";
import "google/protobuf/struct.proto";
option csharp_namespace = "Google.Cloud.AIPlatform.V1";
option go_package = "cloud.google.com/go/aiplatform/apiv1/aiplatformpb;aiplatformpb";
option java_multiple_files = true;
option java_outer_classname = "PredictionServiceProto";
option java_package = "com.google.cloud.vertexai.api";
option php_namespace = "Google\\Cloud\\AIPlatform\\V1";
option ruby_package = "Google::Cloud::AIPlatform::V1";
// A service for online predictions and explanations.
service PredictionService {
option (google.api.default_host) = "aiplatform.googleapis.com";
option (google.api.oauth_scopes) =
"https://www.googleapis.com/auth/cloud-platform,"
"https://www.googleapis.com/auth/cloud-platform.read-only";
// Perform an online prediction.
rpc Predict(PredictRequest) returns (PredictResponse) {
option (google.api.http) = {
post: "/v1/{endpoint=projects/*/locations/*/endpoints/*}:predict"
body: "*"
additional_bindings {
post: "/v1/{endpoint=projects/*/locations/*/publishers/*/models/*}:predict"
body: "*"
}
};
option (google.api.method_signature) = "endpoint,instances,parameters";
}
// Perform an online prediction with an arbitrary HTTP payload.
//
// The response includes the following HTTP headers:
//
// * `X-Vertex-AI-Endpoint-Id`: ID of the
// [Endpoint][google.cloud.aiplatform.v1.Endpoint] that served this
// prediction.
//
// * `X-Vertex-AI-Deployed-Model-Id`: ID of the Endpoint's
// [DeployedModel][google.cloud.aiplatform.v1.DeployedModel] that served this
// prediction.
rpc RawPredict(RawPredictRequest) returns (google.api.HttpBody) {
option (google.api.http) = {
post: "/v1/{endpoint=projects/*/locations/*/endpoints/*}:rawPredict"
body: "*"
additional_bindings {
post: "/v1/{endpoint=projects/*/locations/*/publishers/*/models/*}:rawPredict"
body: "*"
}
};
option (google.api.method_signature) = "endpoint,http_body";
}
// Perform a streaming online prediction with an arbitrary HTTP payload.
rpc StreamRawPredict(StreamRawPredictRequest)
returns (stream google.api.HttpBody) {
option (google.api.http) = {
post: "/v1/{endpoint=projects/*/locations/*/endpoints/*}:streamRawPredict"
body: "*"
additional_bindings {
post: "/v1/{endpoint=projects/*/locations/*/publishers/*/models/*}:streamRawPredict"
body: "*"
}
};
option (google.api.method_signature) = "endpoint,http_body";
}
// Perform an unary online prediction request to a gRPC model server for
// Vertex first-party products and frameworks.
rpc DirectPredict(DirectPredictRequest) returns (DirectPredictResponse) {
option (google.api.http) = {
post: "/v1/{endpoint=projects/*/locations/*/endpoints/*}:directPredict"
body: "*"
};
}
// Perform an unary online prediction request to a gRPC model server for
// custom containers.
rpc DirectRawPredict(DirectRawPredictRequest)
returns (DirectRawPredictResponse) {
option (google.api.http) = {
post: "/v1/{endpoint=projects/*/locations/*/endpoints/*}:directRawPredict"
body: "*"
};
}
// Perform a streaming online prediction request to a gRPC model server for
// Vertex first-party products and frameworks.
rpc StreamDirectPredict(stream StreamDirectPredictRequest)
returns (stream StreamDirectPredictResponse) {}
// Perform a streaming online prediction request to a gRPC model server for
// custom containers.
rpc StreamDirectRawPredict(stream StreamDirectRawPredictRequest)
returns (stream StreamDirectRawPredictResponse) {}
// Perform a streaming online prediction request for Vertex first-party
// products and frameworks.
rpc StreamingPredict(stream StreamingPredictRequest)
returns (stream StreamingPredictResponse) {}
// Perform a server-side streaming online prediction request for Vertex
// LLM streaming.
rpc ServerStreamingPredict(StreamingPredictRequest)
returns (stream StreamingPredictResponse) {
option (google.api.http) = {
post: "/v1/{endpoint=projects/*/locations/*/endpoints/*}:serverStreamingPredict"
body: "*"
additional_bindings {
post: "/v1/{endpoint=projects/*/locations/*/publishers/*/models/*}:serverStreamingPredict"
body: "*"
}
};
}
// Perform a streaming online prediction request through gRPC.
rpc StreamingRawPredict(stream StreamingRawPredictRequest)
returns (stream StreamingRawPredictResponse) {}
// Perform an online explanation.
//
// If
// [deployed_model_id][google.cloud.aiplatform.v1.ExplainRequest.deployed_model_id]
// is specified, the corresponding DeployModel must have
// [explanation_spec][google.cloud.aiplatform.v1.DeployedModel.explanation_spec]
// populated. If
// [deployed_model_id][google.cloud.aiplatform.v1.ExplainRequest.deployed_model_id]
// is not specified, all DeployedModels must have
// [explanation_spec][google.cloud.aiplatform.v1.DeployedModel.explanation_spec]
// populated.
rpc Explain(ExplainRequest) returns (ExplainResponse) {
option (google.api.http) = {
post: "/v1/{endpoint=projects/*/locations/*/endpoints/*}:explain"
body: "*"
};
option (google.api.method_signature) =
"endpoint,instances,parameters,deployed_model_id";
}
// Generate content with multimodal inputs.
rpc GenerateContent(GenerateContentRequest)
returns (GenerateContentResponse) {
option (google.api.http) = {
post: "/v1/{model=projects/*/locations/*/endpoints/*}:generateContent"
body: "*"
additional_bindings {
post: "/v1/{model=projects/*/locations/*/publishers/*/models/*}:generateContent"
body: "*"
}
additional_bindings {
post: "/v1/{model=endpoints/*}:generateContent"
body: "*"
}
additional_bindings {
post: "/v1/{model=publishers/*/models/*}:generateContent"
body: "*"
}
};
option (google.api.method_signature) = "model,contents";
}
// Generate content with multimodal inputs with streaming support.
rpc StreamGenerateContent(GenerateContentRequest)
returns (stream GenerateContentResponse) {
option (google.api.http) = {
post: "/v1/{model=projects/*/locations/*/endpoints/*}:streamGenerateContent"
body: "*"
additional_bindings {
post: "/v1/{model=projects/*/locations/*/publishers/*/models/*}:streamGenerateContent"
body: "*"
}
additional_bindings {
post: "/v1/{model=endpoints/*}:streamGenerateContent"
body: "*"
}
additional_bindings {
post: "/v1/{model=publishers/*/models/*}:streamGenerateContent"
body: "*"
}
};
option (google.api.method_signature) = "model,contents";
}
}
// Request message for
// [PredictionService.Predict][google.cloud.aiplatform.v1.PredictionService.Predict].
message PredictRequest {
// Required. The name of the Endpoint requested to serve the prediction.
// Format:
// `projects/{project}/locations/{location}/endpoints/{endpoint}`
string endpoint = 1 [
(google.api.field_behavior) = REQUIRED,
(google.api.resource_reference) = {
type: "aiplatform.googleapis.com/Endpoint"
}
];
// Required. The instances that are the input to the prediction call.
// A DeployedModel may have an upper limit on the number of instances it
// supports per request, and when it is exceeded the prediction call errors
// in case of AutoML Models, or, in case of customer created Models, the
// behaviour is as documented by that Model.
// The schema of any single instance may be specified via Endpoint's
// DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model]
// [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata]
// [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
repeated google.protobuf.Value instances = 2
[(google.api.field_behavior) = REQUIRED];
// The parameters that govern the prediction. The schema of the parameters may
// be specified via Endpoint's DeployedModels' [Model's
// ][google.cloud.aiplatform.v1.DeployedModel.model]
// [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata]
// [parameters_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.parameters_schema_uri].
google.protobuf.Value parameters = 3;
}
// Response message for
// [PredictionService.Predict][google.cloud.aiplatform.v1.PredictionService.Predict].
message PredictResponse {
// The predictions that are the output of the predictions call.
// The schema of any single prediction may be specified via Endpoint's
// DeployedModels' [Model's ][google.cloud.aiplatform.v1.DeployedModel.model]
// [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata]
// [prediction_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.prediction_schema_uri].
repeated google.protobuf.Value predictions = 1;
// ID of the Endpoint's DeployedModel that served this prediction.
string deployed_model_id = 2;
// Output only. The resource name of the Model which is deployed as the
// DeployedModel that this prediction hits.
string model = 3 [
(google.api.field_behavior) = OUTPUT_ONLY,
(google.api.resource_reference) = {
type: "aiplatform.googleapis.com/Model"
}
];
// Output only. The version ID of the Model which is deployed as the
// DeployedModel that this prediction hits.
string model_version_id = 5 [(google.api.field_behavior) = OUTPUT_ONLY];
// Output only. The [display
// name][google.cloud.aiplatform.v1.Model.display_name] of the Model which is
// deployed as the DeployedModel that this prediction hits.
string model_display_name = 4 [(google.api.field_behavior) = OUTPUT_ONLY];
// Output only. Request-level metadata returned by the model. The metadata
// type will be dependent upon the model implementation.
google.protobuf.Value metadata = 6
[(google.api.field_behavior) = OUTPUT_ONLY];
}
// Request message for
// [PredictionService.RawPredict][google.cloud.aiplatform.v1.PredictionService.RawPredict].
message RawPredictRequest {
// Required. The name of the Endpoint requested to serve the prediction.
// Format:
// `projects/{project}/locations/{location}/endpoints/{endpoint}`
string endpoint = 1 [
(google.api.field_behavior) = REQUIRED,
(google.api.resource_reference) = {
type: "aiplatform.googleapis.com/Endpoint"
}
];
// The prediction input. Supports HTTP headers and arbitrary data payload.
//
// A [DeployedModel][google.cloud.aiplatform.v1.DeployedModel] may have an
// upper limit on the number of instances it supports per request. When this
// limit it is exceeded for an AutoML model, the
// [RawPredict][google.cloud.aiplatform.v1.PredictionService.RawPredict]
// method returns an error. When this limit is exceeded for a custom-trained
// model, the behavior varies depending on the model.
//
// You can specify the schema for each instance in the
// [predict_schemata.instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri]
// field when you create a [Model][google.cloud.aiplatform.v1.Model]. This
// schema applies when you deploy the `Model` as a `DeployedModel` to an
// [Endpoint][google.cloud.aiplatform.v1.Endpoint] and use the `RawPredict`
// method.
google.api.HttpBody http_body = 2;
}
// Request message for
// [PredictionService.StreamRawPredict][google.cloud.aiplatform.v1.PredictionService.StreamRawPredict].
message StreamRawPredictRequest {
// Required. The name of the Endpoint requested to serve the prediction.
// Format:
// `projects/{project}/locations/{location}/endpoints/{endpoint}`
string endpoint = 1 [
(google.api.field_behavior) = REQUIRED,
(google.api.resource_reference) = {
type: "aiplatform.googleapis.com/Endpoint"
}
];
// The prediction input. Supports HTTP headers and arbitrary data payload.
google.api.HttpBody http_body = 2;
}
// Request message for
// [PredictionService.DirectPredict][google.cloud.aiplatform.v1.PredictionService.DirectPredict].
message DirectPredictRequest {
// Required. The name of the Endpoint requested to serve the prediction.
// Format:
// `projects/{project}/locations/{location}/endpoints/{endpoint}`
string endpoint = 1 [
(google.api.field_behavior) = REQUIRED,
(google.api.resource_reference) = {
type: "aiplatform.googleapis.com/Endpoint"
}
];
// The prediction input.
repeated Tensor inputs = 2;
// The parameters that govern the prediction.
Tensor parameters = 3;
}
// Response message for
// [PredictionService.DirectPredict][google.cloud.aiplatform.v1.PredictionService.DirectPredict].
message DirectPredictResponse {
// The prediction output.
repeated Tensor outputs = 1;
// The parameters that govern the prediction.
Tensor parameters = 2;
}
// Request message for
// [PredictionService.DirectRawPredict][google.cloud.aiplatform.v1.PredictionService.DirectRawPredict].
message DirectRawPredictRequest {
// Required. The name of the Endpoint requested to serve the prediction.
// Format:
// `projects/{project}/locations/{location}/endpoints/{endpoint}`
string endpoint = 1 [
(google.api.field_behavior) = REQUIRED,
(google.api.resource_reference) = {
type: "aiplatform.googleapis.com/Endpoint"
}
];
// Fully qualified name of the API method being invoked to perform
// predictions.
//
// Format:
// `/namespace.Service/Method/`
// Example:
// `/tensorflow.serving.PredictionService/Predict`
string method_name = 2;
// The prediction input.
bytes input = 3;
}
// Response message for
// [PredictionService.DirectRawPredict][google.cloud.aiplatform.v1.PredictionService.DirectRawPredict].
message DirectRawPredictResponse {
// The prediction output.
bytes output = 1;
}
// Request message for
// [PredictionService.StreamDirectPredict][google.cloud.aiplatform.v1.PredictionService.StreamDirectPredict].
//
// The first message must contain
// [endpoint][google.cloud.aiplatform.v1.StreamDirectPredictRequest.endpoint]
// field and optionally [input][]. The subsequent messages must contain
// [input][].
message StreamDirectPredictRequest {
// Required. The name of the Endpoint requested to serve the prediction.
// Format:
// `projects/{project}/locations/{location}/endpoints/{endpoint}`
string endpoint = 1 [
(google.api.field_behavior) = REQUIRED,
(google.api.resource_reference) = {
type: "aiplatform.googleapis.com/Endpoint"
}
];
// Optional. The prediction input.
repeated Tensor inputs = 2 [(google.api.field_behavior) = OPTIONAL];
// Optional. The parameters that govern the prediction.
Tensor parameters = 3 [(google.api.field_behavior) = OPTIONAL];
}
// Response message for
// [PredictionService.StreamDirectPredict][google.cloud.aiplatform.v1.PredictionService.StreamDirectPredict].
message StreamDirectPredictResponse {
// The prediction output.
repeated Tensor outputs = 1;
// The parameters that govern the prediction.
Tensor parameters = 2;
}
// Request message for
// [PredictionService.StreamDirectRawPredict][google.cloud.aiplatform.v1.PredictionService.StreamDirectRawPredict].
//
// The first message must contain
// [endpoint][google.cloud.aiplatform.v1.StreamDirectRawPredictRequest.endpoint]
// and
// [method_name][google.cloud.aiplatform.v1.StreamDirectRawPredictRequest.method_name]
// fields and optionally
// [input][google.cloud.aiplatform.v1.StreamDirectRawPredictRequest.input]. The
// subsequent messages must contain
// [input][google.cloud.aiplatform.v1.StreamDirectRawPredictRequest.input].
// [method_name][google.cloud.aiplatform.v1.StreamDirectRawPredictRequest.method_name]
// in the subsequent messages have no effect.
message StreamDirectRawPredictRequest {
// Required. The name of the Endpoint requested to serve the prediction.
// Format:
// `projects/{project}/locations/{location}/endpoints/{endpoint}`
string endpoint = 1 [
(google.api.field_behavior) = REQUIRED,
(google.api.resource_reference) = {
type: "aiplatform.googleapis.com/Endpoint"
}
];
// Optional. Fully qualified name of the API method being invoked to perform
// predictions.
//
// Format:
// `/namespace.Service/Method/`
// Example:
// `/tensorflow.serving.PredictionService/Predict`
string method_name = 2 [(google.api.field_behavior) = OPTIONAL];
// Optional. The prediction input.
bytes input = 3 [(google.api.field_behavior) = OPTIONAL];
}
// Response message for
// [PredictionService.StreamDirectRawPredict][google.cloud.aiplatform.v1.PredictionService.StreamDirectRawPredict].
message StreamDirectRawPredictResponse {
// The prediction output.
bytes output = 1;
}
// Request message for
// [PredictionService.StreamingPredict][google.cloud.aiplatform.v1.PredictionService.StreamingPredict].
//
// The first message must contain
// [endpoint][google.cloud.aiplatform.v1.StreamingPredictRequest.endpoint] field
// and optionally [input][]. The subsequent messages must contain [input][].
message StreamingPredictRequest {
// Required. The name of the Endpoint requested to serve the prediction.
// Format:
// `projects/{project}/locations/{location}/endpoints/{endpoint}`
string endpoint = 1 [
(google.api.field_behavior) = REQUIRED,
(google.api.resource_reference) = {
type: "aiplatform.googleapis.com/Endpoint"
}
];
// The prediction input.
repeated Tensor inputs = 2;
// The parameters that govern the prediction.
Tensor parameters = 3;
}
// Response message for
// [PredictionService.StreamingPredict][google.cloud.aiplatform.v1.PredictionService.StreamingPredict].
message StreamingPredictResponse {
// The prediction output.
repeated Tensor outputs = 1;
// The parameters that govern the prediction.
Tensor parameters = 2;
}
// Request message for
// [PredictionService.StreamingRawPredict][google.cloud.aiplatform.v1.PredictionService.StreamingRawPredict].
//
// The first message must contain
// [endpoint][google.cloud.aiplatform.v1.StreamingRawPredictRequest.endpoint]
// and
// [method_name][google.cloud.aiplatform.v1.StreamingRawPredictRequest.method_name]
// fields and optionally
// [input][google.cloud.aiplatform.v1.StreamingRawPredictRequest.input]. The
// subsequent messages must contain
// [input][google.cloud.aiplatform.v1.StreamingRawPredictRequest.input].
// [method_name][google.cloud.aiplatform.v1.StreamingRawPredictRequest.method_name]
// in the subsequent messages have no effect.
message StreamingRawPredictRequest {
// Required. The name of the Endpoint requested to serve the prediction.
// Format:
// `projects/{project}/locations/{location}/endpoints/{endpoint}`
string endpoint = 1 [
(google.api.field_behavior) = REQUIRED,
(google.api.resource_reference) = {
type: "aiplatform.googleapis.com/Endpoint"
}
];
// Fully qualified name of the API method being invoked to perform
// predictions.
//
// Format:
// `/namespace.Service/Method/`
// Example:
// `/tensorflow.serving.PredictionService/Predict`
string method_name = 2;
// The prediction input.
bytes input = 3;
}
// Response message for
// [PredictionService.StreamingRawPredict][google.cloud.aiplatform.v1.PredictionService.StreamingRawPredict].
message StreamingRawPredictResponse {
// The prediction output.
bytes output = 1;
}
// Request message for
// [PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain].
message ExplainRequest {
// Required. The name of the Endpoint requested to serve the explanation.
// Format:
// `projects/{project}/locations/{location}/endpoints/{endpoint}`
string endpoint = 1 [
(google.api.field_behavior) = REQUIRED,
(google.api.resource_reference) = {
type: "aiplatform.googleapis.com/Endpoint"
}
];
// Required. The instances that are the input to the explanation call.
// A DeployedModel may have an upper limit on the number of instances it
// supports per request, and when it is exceeded the explanation call errors
// in case of AutoML Models, or, in case of customer created Models, the
// behaviour is as documented by that Model.
// The schema of any single instance may be specified via Endpoint's
// DeployedModels' [Model's][google.cloud.aiplatform.v1.DeployedModel.model]
// [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata]
// [instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri].
repeated google.protobuf.Value instances = 2
[(google.api.field_behavior) = REQUIRED];
// The parameters that govern the prediction. The schema of the parameters may
// be specified via Endpoint's DeployedModels' [Model's
// ][google.cloud.aiplatform.v1.DeployedModel.model]
// [PredictSchemata's][google.cloud.aiplatform.v1.Model.predict_schemata]
// [parameters_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.parameters_schema_uri].
google.protobuf.Value parameters = 4;
// If specified, overrides the
// [explanation_spec][google.cloud.aiplatform.v1.DeployedModel.explanation_spec]
// of the DeployedModel. Can be used for explaining prediction results with
// different configurations, such as:
// - Explaining top-5 predictions results as opposed to top-1;
// - Increasing path count or step count of the attribution methods to reduce
// approximate errors;
// - Using different baselines for explaining the prediction results.
ExplanationSpecOverride explanation_spec_override = 5;
// If specified, this ExplainRequest will be served by the chosen
// DeployedModel, overriding
// [Endpoint.traffic_split][google.cloud.aiplatform.v1.Endpoint.traffic_split].
string deployed_model_id = 3;
}
// Response message for
// [PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain].
message ExplainResponse {
// The explanations of the Model's
// [PredictResponse.predictions][google.cloud.aiplatform.v1.PredictResponse.predictions].
//
// It has the same number of elements as
// [instances][google.cloud.aiplatform.v1.ExplainRequest.instances] to be
// explained.
repeated Explanation explanations = 1;
// ID of the Endpoint's DeployedModel that served this explanation.
string deployed_model_id = 2;
// The predictions that are the output of the predictions call.
// Same as
// [PredictResponse.predictions][google.cloud.aiplatform.v1.PredictResponse.predictions].
repeated google.protobuf.Value predictions = 3;
}
// Request message for [PredictionService.CountTokens][].
message CountTokensRequest {
// Required. The name of the Endpoint requested to perform token counting.
// Format:
// `projects/{project}/locations/{location}/endpoints/{endpoint}`
string endpoint = 1 [
(google.api.field_behavior) = REQUIRED,
(google.api.resource_reference) = {
type: "aiplatform.googleapis.com/Endpoint"
}
];
// Optional. The name of the publisher model requested to serve the
// prediction. Format:
// `projects/{project}/locations/{location}/publishers/*/models/*`
string model = 3 [(google.api.field_behavior) = OPTIONAL];
// Optional. The instances that are the input to token counting call.
// Schema is identical to the prediction schema of the underlying model.
repeated google.protobuf.Value instances = 2
[(google.api.field_behavior) = OPTIONAL];
// Optional. Input content.
repeated Content contents = 4 [(google.api.field_behavior) = OPTIONAL];
// Optional. The user provided system instructions for the model.
// Note: only text should be used in parts and content in each part will be in
// a separate paragraph.
optional Content system_instruction = 5
[(google.api.field_behavior) = OPTIONAL];
// Optional. A list of `Tools` the model may use to generate the next
// response.
//
// A `Tool` is a piece of code that enables the system to interact with
// external systems to perform an action, or set of actions, outside of
// knowledge and scope of the model.
repeated Tool tools = 6 [(google.api.field_behavior) = OPTIONAL];
}
// Response message for [PredictionService.CountTokens][].
message CountTokensResponse {
// The total number of tokens counted across all instances from the request.
int32 total_tokens = 1;
// The total number of billable characters counted across all instances from
// the request.
int32 total_billable_characters = 2;
}
// Request message for [PredictionService.GenerateContent].
message GenerateContentRequest {
// Required. The fully qualified name of the publisher model or tuned model
// endpoint to use.
//
// Publisher model format:
// `projects/{project}/locations/{location}/publishers/*/models/*`
//
// Tuned model endpoint format:
// `projects/{project}/locations/{location}/endpoints/{endpoint}`
string model = 5 [(google.api.field_behavior) = REQUIRED];
// Required. The content of the current conversation with the model.
//
// For single-turn queries, this is a single instance. For multi-turn queries,
// this is a repeated field that contains conversation history + latest
// request.
repeated Content contents = 2 [(google.api.field_behavior) = REQUIRED];
// Optional. The user provided system instructions for the model.
// Note: only text should be used in parts and content in each part will be in
// a separate paragraph.
optional Content system_instruction = 8
[(google.api.field_behavior) = OPTIONAL];
// Optional. A list of `Tools` the model may use to generate the next
// response.
//
// A `Tool` is a piece of code that enables the system to interact with
// external systems to perform an action, or set of actions, outside of
// knowledge and scope of the model.
repeated Tool tools = 6 [(google.api.field_behavior) = OPTIONAL];
// Optional. Tool config. This config is shared for all tools provided in the
// request.
ToolConfig tool_config = 7 [(google.api.field_behavior) = OPTIONAL];
// Optional. Per request settings for blocking unsafe content.
// Enforced on GenerateContentResponse.candidates.
repeated SafetySetting safety_settings = 3
[(google.api.field_behavior) = OPTIONAL];
// Optional. Generation config.
GenerationConfig generation_config = 4
[(google.api.field_behavior) = OPTIONAL];
}
// Response message for [PredictionService.GenerateContent].
message GenerateContentResponse {
// Content filter results for a prompt sent in the request.
message PromptFeedback {
// Blocked reason enumeration.
enum BlockedReason {
// Unspecified blocked reason.
BLOCKED_REASON_UNSPECIFIED = 0;
// Candidates blocked due to safety.
SAFETY = 1;
// Candidates blocked due to other reason.
OTHER = 2;
// Candidates blocked due to the terms which are included from the
// terminology blocklist.
BLOCKLIST = 3;
// Candidates blocked due to prohibited content.
PROHIBITED_CONTENT = 4;
}
// Output only. Blocked reason.
BlockedReason block_reason = 1 [(google.api.field_behavior) = OUTPUT_ONLY];
// Output only. Safety ratings.
repeated SafetyRating safety_ratings = 2
[(google.api.field_behavior) = OUTPUT_ONLY];
// Output only. A readable block reason message.
string block_reason_message = 3 [(google.api.field_behavior) = OUTPUT_ONLY];
}
// Usage metadata about response(s).
message UsageMetadata {
// Number of tokens in the request. When `cached_content` is set, this is
// still the total effective prompt size meaning this includes the number of
// tokens in the cached content.
int32 prompt_token_count = 1;
// Number of tokens in the response(s).
int32 candidates_token_count = 2;
int32 total_token_count = 3;
}
// Output only. Generated candidates.
repeated Candidate candidates = 2 [(google.api.field_behavior) = OUTPUT_ONLY];
// Output only. Content filter results for a prompt sent in the request.
// Note: Sent only in the first stream chunk.
// Only happens when no candidates were generated due to content violations.
PromptFeedback prompt_feedback = 3
[(google.api.field_behavior) = OUTPUT_ONLY];
// Usage metadata about the response(s).
UsageMetadata usage_metadata = 4;
}