All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.cloud.visionai.v1.BigQueryConfig Maven / Gradle / Ivy

/*
 * Copyright 2024 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: google/cloud/visionai/v1/platform.proto

// Protobuf Java Version: 3.25.3
package com.google.cloud.visionai.v1;

/**
 *
 *
 * 
 * Message of configurations for BigQuery processor.
 * 
* * Protobuf type {@code google.cloud.visionai.v1.BigQueryConfig} */ public final class BigQueryConfig extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:google.cloud.visionai.v1.BigQueryConfig) BigQueryConfigOrBuilder { private static final long serialVersionUID = 0L; // Use BigQueryConfig.newBuilder() to construct. private BigQueryConfig(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private BigQueryConfig() { table_ = ""; } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance(UnusedPrivateParameter unused) { return new BigQueryConfig(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.visionai.v1.PlatformProto .internal_static_google_cloud_visionai_v1_BigQueryConfig_descriptor; } @SuppressWarnings({"rawtypes"}) @java.lang.Override protected com.google.protobuf.MapFieldReflectionAccessor internalGetMapFieldReflection( int number) { switch (number) { case 2: return internalGetCloudFunctionMapping(); default: throw new RuntimeException("Invalid map field number: " + number); } } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.visionai.v1.PlatformProto .internal_static_google_cloud_visionai_v1_BigQueryConfig_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.visionai.v1.BigQueryConfig.class, com.google.cloud.visionai.v1.BigQueryConfig.Builder.class); } public static final int TABLE_FIELD_NUMBER = 1; @SuppressWarnings("serial") private volatile java.lang.Object table_ = ""; /** * * *
   * BigQuery table resource for Vision AI Platform to ingest annotations to.
   * 
* * string table = 1; * * @return The table. */ @java.lang.Override public java.lang.String getTable() { java.lang.Object ref = table_; if (ref instanceof java.lang.String) { return (java.lang.String) ref; } else { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); table_ = s; return s; } } /** * * *
   * BigQuery table resource for Vision AI Platform to ingest annotations to.
   * 
* * string table = 1; * * @return The bytes for table. */ @java.lang.Override public com.google.protobuf.ByteString getTableBytes() { java.lang.Object ref = table_; if (ref instanceof java.lang.String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref); table_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } public static final int CLOUD_FUNCTION_MAPPING_FIELD_NUMBER = 2; private static final class CloudFunctionMappingDefaultEntryHolder { static final com.google.protobuf.MapEntry defaultEntry = com.google.protobuf.MapEntry.newDefaultInstance( com.google.cloud.visionai.v1.PlatformProto .internal_static_google_cloud_visionai_v1_BigQueryConfig_CloudFunctionMappingEntry_descriptor, com.google.protobuf.WireFormat.FieldType.STRING, "", com.google.protobuf.WireFormat.FieldType.STRING, ""); } @SuppressWarnings("serial") private com.google.protobuf.MapField cloudFunctionMapping_; private com.google.protobuf.MapField internalGetCloudFunctionMapping() { if (cloudFunctionMapping_ == null) { return com.google.protobuf.MapField.emptyMapField( CloudFunctionMappingDefaultEntryHolder.defaultEntry); } return cloudFunctionMapping_; } public int getCloudFunctionMappingCount() { return internalGetCloudFunctionMapping().getMap().size(); } /** * * *
   * Data Schema
   * By default, Vision AI Application will try to write annotations to the
   * target BigQuery table using the following schema:
   *
   * ingestion_time: TIMESTAMP, the ingestion time of the original data.
   *
   * application: STRING, name of the application which produces the annotation.
   *
   * instance: STRING, Id of the instance which produces the annotation.
   *
   * node: STRING, name of the application graph node which produces the
   * annotation.
   *
   * annotation: STRING or JSON, the actual annotation protobuf will be
   * converted to json string with bytes field as 64 encoded string. It can be
   * written to both String or Json type column.
   *
   * To forward annotation data to an existing BigQuery table, customer needs to
   * make sure the compatibility of the schema.
   * The map maps application node name to its corresponding cloud function
   * endpoint to transform the annotations directly to the
   * google.cloud.bigquery.storage.v1.AppendRowsRequest (only avro_rows or
   * proto_rows should be set). If configured, annotations produced by
   * corresponding application node will sent to the Cloud Function at first
   * before be forwarded to BigQuery.
   *
   * If the default table schema doesn't fit, customer is able to transform the
   * annotation output from Vision AI Application to arbitrary BigQuery table
   * schema with CloudFunction.
   * * The cloud function will receive AppPlatformCloudFunctionRequest where
   * the annotations field will be the json format of Vision AI annotation.
   * * The cloud function should return AppPlatformCloudFunctionResponse with
   * AppendRowsRequest stored in the annotations field.
   * * To drop the annotation, simply clear the annotations field in the
   * returned AppPlatformCloudFunctionResponse.
   * 
* * map<string, string> cloud_function_mapping = 2; */ @java.lang.Override public boolean containsCloudFunctionMapping(java.lang.String key) { if (key == null) { throw new NullPointerException("map key"); } return internalGetCloudFunctionMapping().getMap().containsKey(key); } /** Use {@link #getCloudFunctionMappingMap()} instead. */ @java.lang.Override @java.lang.Deprecated public java.util.Map getCloudFunctionMapping() { return getCloudFunctionMappingMap(); } /** * * *
   * Data Schema
   * By default, Vision AI Application will try to write annotations to the
   * target BigQuery table using the following schema:
   *
   * ingestion_time: TIMESTAMP, the ingestion time of the original data.
   *
   * application: STRING, name of the application which produces the annotation.
   *
   * instance: STRING, Id of the instance which produces the annotation.
   *
   * node: STRING, name of the application graph node which produces the
   * annotation.
   *
   * annotation: STRING or JSON, the actual annotation protobuf will be
   * converted to json string with bytes field as 64 encoded string. It can be
   * written to both String or Json type column.
   *
   * To forward annotation data to an existing BigQuery table, customer needs to
   * make sure the compatibility of the schema.
   * The map maps application node name to its corresponding cloud function
   * endpoint to transform the annotations directly to the
   * google.cloud.bigquery.storage.v1.AppendRowsRequest (only avro_rows or
   * proto_rows should be set). If configured, annotations produced by
   * corresponding application node will sent to the Cloud Function at first
   * before be forwarded to BigQuery.
   *
   * If the default table schema doesn't fit, customer is able to transform the
   * annotation output from Vision AI Application to arbitrary BigQuery table
   * schema with CloudFunction.
   * * The cloud function will receive AppPlatformCloudFunctionRequest where
   * the annotations field will be the json format of Vision AI annotation.
   * * The cloud function should return AppPlatformCloudFunctionResponse with
   * AppendRowsRequest stored in the annotations field.
   * * To drop the annotation, simply clear the annotations field in the
   * returned AppPlatformCloudFunctionResponse.
   * 
* * map<string, string> cloud_function_mapping = 2; */ @java.lang.Override public java.util.Map getCloudFunctionMappingMap() { return internalGetCloudFunctionMapping().getMap(); } /** * * *
   * Data Schema
   * By default, Vision AI Application will try to write annotations to the
   * target BigQuery table using the following schema:
   *
   * ingestion_time: TIMESTAMP, the ingestion time of the original data.
   *
   * application: STRING, name of the application which produces the annotation.
   *
   * instance: STRING, Id of the instance which produces the annotation.
   *
   * node: STRING, name of the application graph node which produces the
   * annotation.
   *
   * annotation: STRING or JSON, the actual annotation protobuf will be
   * converted to json string with bytes field as 64 encoded string. It can be
   * written to both String or Json type column.
   *
   * To forward annotation data to an existing BigQuery table, customer needs to
   * make sure the compatibility of the schema.
   * The map maps application node name to its corresponding cloud function
   * endpoint to transform the annotations directly to the
   * google.cloud.bigquery.storage.v1.AppendRowsRequest (only avro_rows or
   * proto_rows should be set). If configured, annotations produced by
   * corresponding application node will sent to the Cloud Function at first
   * before be forwarded to BigQuery.
   *
   * If the default table schema doesn't fit, customer is able to transform the
   * annotation output from Vision AI Application to arbitrary BigQuery table
   * schema with CloudFunction.
   * * The cloud function will receive AppPlatformCloudFunctionRequest where
   * the annotations field will be the json format of Vision AI annotation.
   * * The cloud function should return AppPlatformCloudFunctionResponse with
   * AppendRowsRequest stored in the annotations field.
   * * To drop the annotation, simply clear the annotations field in the
   * returned AppPlatformCloudFunctionResponse.
   * 
* * map<string, string> cloud_function_mapping = 2; */ @java.lang.Override public /* nullable */ java.lang.String getCloudFunctionMappingOrDefault( java.lang.String key, /* nullable */ java.lang.String defaultValue) { if (key == null) { throw new NullPointerException("map key"); } java.util.Map map = internalGetCloudFunctionMapping().getMap(); return map.containsKey(key) ? map.get(key) : defaultValue; } /** * * *
   * Data Schema
   * By default, Vision AI Application will try to write annotations to the
   * target BigQuery table using the following schema:
   *
   * ingestion_time: TIMESTAMP, the ingestion time of the original data.
   *
   * application: STRING, name of the application which produces the annotation.
   *
   * instance: STRING, Id of the instance which produces the annotation.
   *
   * node: STRING, name of the application graph node which produces the
   * annotation.
   *
   * annotation: STRING or JSON, the actual annotation protobuf will be
   * converted to json string with bytes field as 64 encoded string. It can be
   * written to both String or Json type column.
   *
   * To forward annotation data to an existing BigQuery table, customer needs to
   * make sure the compatibility of the schema.
   * The map maps application node name to its corresponding cloud function
   * endpoint to transform the annotations directly to the
   * google.cloud.bigquery.storage.v1.AppendRowsRequest (only avro_rows or
   * proto_rows should be set). If configured, annotations produced by
   * corresponding application node will sent to the Cloud Function at first
   * before be forwarded to BigQuery.
   *
   * If the default table schema doesn't fit, customer is able to transform the
   * annotation output from Vision AI Application to arbitrary BigQuery table
   * schema with CloudFunction.
   * * The cloud function will receive AppPlatformCloudFunctionRequest where
   * the annotations field will be the json format of Vision AI annotation.
   * * The cloud function should return AppPlatformCloudFunctionResponse with
   * AppendRowsRequest stored in the annotations field.
   * * To drop the annotation, simply clear the annotations field in the
   * returned AppPlatformCloudFunctionResponse.
   * 
* * map<string, string> cloud_function_mapping = 2; */ @java.lang.Override public java.lang.String getCloudFunctionMappingOrThrow(java.lang.String key) { if (key == null) { throw new NullPointerException("map key"); } java.util.Map map = internalGetCloudFunctionMapping().getMap(); if (!map.containsKey(key)) { throw new java.lang.IllegalArgumentException(); } return map.get(key); } public static final int CREATE_DEFAULT_TABLE_IF_NOT_EXISTS_FIELD_NUMBER = 3; private boolean createDefaultTableIfNotExists_ = false; /** * * *
   * If true, App Platform will create the BigQuery DataSet and the
   * BigQuery Table with default schema if the specified table doesn't exist.
   * This doesn't work if any cloud function customized schema is specified
   * since the system doesn't know your desired schema.
   * JSON column will be used in the default table created by App Platform.
   * 
* * bool create_default_table_if_not_exists = 3; * * @return The createDefaultTableIfNotExists. */ @java.lang.Override public boolean getCreateDefaultTableIfNotExists() { return createDefaultTableIfNotExists_; } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(table_)) { com.google.protobuf.GeneratedMessageV3.writeString(output, 1, table_); } com.google.protobuf.GeneratedMessageV3.serializeStringMapTo( output, internalGetCloudFunctionMapping(), CloudFunctionMappingDefaultEntryHolder.defaultEntry, 2); if (createDefaultTableIfNotExists_ != false) { output.writeBool(3, createDefaultTableIfNotExists_); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (!com.google.protobuf.GeneratedMessageV3.isStringEmpty(table_)) { size += com.google.protobuf.GeneratedMessageV3.computeStringSize(1, table_); } for (java.util.Map.Entry entry : internalGetCloudFunctionMapping().getMap().entrySet()) { com.google.protobuf.MapEntry cloudFunctionMapping__ = CloudFunctionMappingDefaultEntryHolder.defaultEntry .newBuilderForType() .setKey(entry.getKey()) .setValue(entry.getValue()) .build(); size += com.google.protobuf.CodedOutputStream.computeMessageSize(2, cloudFunctionMapping__); } if (createDefaultTableIfNotExists_ != false) { size += com.google.protobuf.CodedOutputStream.computeBoolSize(3, createDefaultTableIfNotExists_); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof com.google.cloud.visionai.v1.BigQueryConfig)) { return super.equals(obj); } com.google.cloud.visionai.v1.BigQueryConfig other = (com.google.cloud.visionai.v1.BigQueryConfig) obj; if (!getTable().equals(other.getTable())) return false; if (!internalGetCloudFunctionMapping().equals(other.internalGetCloudFunctionMapping())) return false; if (getCreateDefaultTableIfNotExists() != other.getCreateDefaultTableIfNotExists()) return false; if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); hash = (37 * hash) + TABLE_FIELD_NUMBER; hash = (53 * hash) + getTable().hashCode(); if (!internalGetCloudFunctionMapping().getMap().isEmpty()) { hash = (37 * hash) + CLOUD_FUNCTION_MAPPING_FIELD_NUMBER; hash = (53 * hash) + internalGetCloudFunctionMapping().hashCode(); } hash = (37 * hash) + CREATE_DEFAULT_TABLE_IF_NOT_EXISTS_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean(getCreateDefaultTableIfNotExists()); hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static com.google.cloud.visionai.v1.BigQueryConfig parseFrom(java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.visionai.v1.BigQueryConfig parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.visionai.v1.BigQueryConfig parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.visionai.v1.BigQueryConfig parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.visionai.v1.BigQueryConfig parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.visionai.v1.BigQueryConfig parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.visionai.v1.BigQueryConfig parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.visionai.v1.BigQueryConfig parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.visionai.v1.BigQueryConfig parseDelimitedFrom( java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException(PARSER, input); } public static com.google.cloud.visionai.v1.BigQueryConfig parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.visionai.v1.BigQueryConfig parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.visionai.v1.BigQueryConfig parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(com.google.cloud.visionai.v1.BigQueryConfig prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * * *
   * Message of configurations for BigQuery processor.
   * 
* * Protobuf type {@code google.cloud.visionai.v1.BigQueryConfig} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:google.cloud.visionai.v1.BigQueryConfig) com.google.cloud.visionai.v1.BigQueryConfigOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.visionai.v1.PlatformProto .internal_static_google_cloud_visionai_v1_BigQueryConfig_descriptor; } @SuppressWarnings({"rawtypes"}) protected com.google.protobuf.MapFieldReflectionAccessor internalGetMapFieldReflection( int number) { switch (number) { case 2: return internalGetCloudFunctionMapping(); default: throw new RuntimeException("Invalid map field number: " + number); } } @SuppressWarnings({"rawtypes"}) protected com.google.protobuf.MapFieldReflectionAccessor internalGetMutableMapFieldReflection( int number) { switch (number) { case 2: return internalGetMutableCloudFunctionMapping(); default: throw new RuntimeException("Invalid map field number: " + number); } } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.visionai.v1.PlatformProto .internal_static_google_cloud_visionai_v1_BigQueryConfig_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.visionai.v1.BigQueryConfig.class, com.google.cloud.visionai.v1.BigQueryConfig.Builder.class); } // Construct using com.google.cloud.visionai.v1.BigQueryConfig.newBuilder() private Builder() {} private Builder(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; table_ = ""; internalGetMutableCloudFunctionMapping().clear(); createDefaultTableIfNotExists_ = false; return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return com.google.cloud.visionai.v1.PlatformProto .internal_static_google_cloud_visionai_v1_BigQueryConfig_descriptor; } @java.lang.Override public com.google.cloud.visionai.v1.BigQueryConfig getDefaultInstanceForType() { return com.google.cloud.visionai.v1.BigQueryConfig.getDefaultInstance(); } @java.lang.Override public com.google.cloud.visionai.v1.BigQueryConfig build() { com.google.cloud.visionai.v1.BigQueryConfig result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public com.google.cloud.visionai.v1.BigQueryConfig buildPartial() { com.google.cloud.visionai.v1.BigQueryConfig result = new com.google.cloud.visionai.v1.BigQueryConfig(this); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartial0(com.google.cloud.visionai.v1.BigQueryConfig result) { int from_bitField0_ = bitField0_; if (((from_bitField0_ & 0x00000001) != 0)) { result.table_ = table_; } if (((from_bitField0_ & 0x00000002) != 0)) { result.cloudFunctionMapping_ = internalGetCloudFunctionMapping(); result.cloudFunctionMapping_.makeImmutable(); } if (((from_bitField0_ & 0x00000004) != 0)) { result.createDefaultTableIfNotExists_ = createDefaultTableIfNotExists_; } } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof com.google.cloud.visionai.v1.BigQueryConfig) { return mergeFrom((com.google.cloud.visionai.v1.BigQueryConfig) other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(com.google.cloud.visionai.v1.BigQueryConfig other) { if (other == com.google.cloud.visionai.v1.BigQueryConfig.getDefaultInstance()) return this; if (!other.getTable().isEmpty()) { table_ = other.table_; bitField0_ |= 0x00000001; onChanged(); } internalGetMutableCloudFunctionMapping().mergeFrom(other.internalGetCloudFunctionMapping()); bitField0_ |= 0x00000002; if (other.getCreateDefaultTableIfNotExists() != false) { setCreateDefaultTableIfNotExists(other.getCreateDefaultTableIfNotExists()); } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { table_ = input.readStringRequireUtf8(); bitField0_ |= 0x00000001; break; } // case 10 case 18: { com.google.protobuf.MapEntry cloudFunctionMapping__ = input.readMessage( CloudFunctionMappingDefaultEntryHolder.defaultEntry.getParserForType(), extensionRegistry); internalGetMutableCloudFunctionMapping() .getMutableMap() .put(cloudFunctionMapping__.getKey(), cloudFunctionMapping__.getValue()); bitField0_ |= 0x00000002; break; } // case 18 case 24: { createDefaultTableIfNotExists_ = input.readBool(); bitField0_ |= 0x00000004; break; } // case 24 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private java.lang.Object table_ = ""; /** * * *
     * BigQuery table resource for Vision AI Platform to ingest annotations to.
     * 
* * string table = 1; * * @return The table. */ public java.lang.String getTable() { java.lang.Object ref = table_; if (!(ref instanceof java.lang.String)) { com.google.protobuf.ByteString bs = (com.google.protobuf.ByteString) ref; java.lang.String s = bs.toStringUtf8(); table_ = s; return s; } else { return (java.lang.String) ref; } } /** * * *
     * BigQuery table resource for Vision AI Platform to ingest annotations to.
     * 
* * string table = 1; * * @return The bytes for table. */ public com.google.protobuf.ByteString getTableBytes() { java.lang.Object ref = table_; if (ref instanceof String) { com.google.protobuf.ByteString b = com.google.protobuf.ByteString.copyFromUtf8((java.lang.String) ref); table_ = b; return b; } else { return (com.google.protobuf.ByteString) ref; } } /** * * *
     * BigQuery table resource for Vision AI Platform to ingest annotations to.
     * 
* * string table = 1; * * @param value The table to set. * @return This builder for chaining. */ public Builder setTable(java.lang.String value) { if (value == null) { throw new NullPointerException(); } table_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } /** * * *
     * BigQuery table resource for Vision AI Platform to ingest annotations to.
     * 
* * string table = 1; * * @return This builder for chaining. */ public Builder clearTable() { table_ = getDefaultInstance().getTable(); bitField0_ = (bitField0_ & ~0x00000001); onChanged(); return this; } /** * * *
     * BigQuery table resource for Vision AI Platform to ingest annotations to.
     * 
* * string table = 1; * * @param value The bytes for table to set. * @return This builder for chaining. */ public Builder setTableBytes(com.google.protobuf.ByteString value) { if (value == null) { throw new NullPointerException(); } checkByteStringIsUtf8(value); table_ = value; bitField0_ |= 0x00000001; onChanged(); return this; } private com.google.protobuf.MapField cloudFunctionMapping_; private com.google.protobuf.MapField internalGetCloudFunctionMapping() { if (cloudFunctionMapping_ == null) { return com.google.protobuf.MapField.emptyMapField( CloudFunctionMappingDefaultEntryHolder.defaultEntry); } return cloudFunctionMapping_; } private com.google.protobuf.MapField internalGetMutableCloudFunctionMapping() { if (cloudFunctionMapping_ == null) { cloudFunctionMapping_ = com.google.protobuf.MapField.newMapField( CloudFunctionMappingDefaultEntryHolder.defaultEntry); } if (!cloudFunctionMapping_.isMutable()) { cloudFunctionMapping_ = cloudFunctionMapping_.copy(); } bitField0_ |= 0x00000002; onChanged(); return cloudFunctionMapping_; } public int getCloudFunctionMappingCount() { return internalGetCloudFunctionMapping().getMap().size(); } /** * * *
     * Data Schema
     * By default, Vision AI Application will try to write annotations to the
     * target BigQuery table using the following schema:
     *
     * ingestion_time: TIMESTAMP, the ingestion time of the original data.
     *
     * application: STRING, name of the application which produces the annotation.
     *
     * instance: STRING, Id of the instance which produces the annotation.
     *
     * node: STRING, name of the application graph node which produces the
     * annotation.
     *
     * annotation: STRING or JSON, the actual annotation protobuf will be
     * converted to json string with bytes field as 64 encoded string. It can be
     * written to both String or Json type column.
     *
     * To forward annotation data to an existing BigQuery table, customer needs to
     * make sure the compatibility of the schema.
     * The map maps application node name to its corresponding cloud function
     * endpoint to transform the annotations directly to the
     * google.cloud.bigquery.storage.v1.AppendRowsRequest (only avro_rows or
     * proto_rows should be set). If configured, annotations produced by
     * corresponding application node will sent to the Cloud Function at first
     * before be forwarded to BigQuery.
     *
     * If the default table schema doesn't fit, customer is able to transform the
     * annotation output from Vision AI Application to arbitrary BigQuery table
     * schema with CloudFunction.
     * * The cloud function will receive AppPlatformCloudFunctionRequest where
     * the annotations field will be the json format of Vision AI annotation.
     * * The cloud function should return AppPlatformCloudFunctionResponse with
     * AppendRowsRequest stored in the annotations field.
     * * To drop the annotation, simply clear the annotations field in the
     * returned AppPlatformCloudFunctionResponse.
     * 
* * map<string, string> cloud_function_mapping = 2; */ @java.lang.Override public boolean containsCloudFunctionMapping(java.lang.String key) { if (key == null) { throw new NullPointerException("map key"); } return internalGetCloudFunctionMapping().getMap().containsKey(key); } /** Use {@link #getCloudFunctionMappingMap()} instead. */ @java.lang.Override @java.lang.Deprecated public java.util.Map getCloudFunctionMapping() { return getCloudFunctionMappingMap(); } /** * * *
     * Data Schema
     * By default, Vision AI Application will try to write annotations to the
     * target BigQuery table using the following schema:
     *
     * ingestion_time: TIMESTAMP, the ingestion time of the original data.
     *
     * application: STRING, name of the application which produces the annotation.
     *
     * instance: STRING, Id of the instance which produces the annotation.
     *
     * node: STRING, name of the application graph node which produces the
     * annotation.
     *
     * annotation: STRING or JSON, the actual annotation protobuf will be
     * converted to json string with bytes field as 64 encoded string. It can be
     * written to both String or Json type column.
     *
     * To forward annotation data to an existing BigQuery table, customer needs to
     * make sure the compatibility of the schema.
     * The map maps application node name to its corresponding cloud function
     * endpoint to transform the annotations directly to the
     * google.cloud.bigquery.storage.v1.AppendRowsRequest (only avro_rows or
     * proto_rows should be set). If configured, annotations produced by
     * corresponding application node will sent to the Cloud Function at first
     * before be forwarded to BigQuery.
     *
     * If the default table schema doesn't fit, customer is able to transform the
     * annotation output from Vision AI Application to arbitrary BigQuery table
     * schema with CloudFunction.
     * * The cloud function will receive AppPlatformCloudFunctionRequest where
     * the annotations field will be the json format of Vision AI annotation.
     * * The cloud function should return AppPlatformCloudFunctionResponse with
     * AppendRowsRequest stored in the annotations field.
     * * To drop the annotation, simply clear the annotations field in the
     * returned AppPlatformCloudFunctionResponse.
     * 
* * map<string, string> cloud_function_mapping = 2; */ @java.lang.Override public java.util.Map getCloudFunctionMappingMap() { return internalGetCloudFunctionMapping().getMap(); } /** * * *
     * Data Schema
     * By default, Vision AI Application will try to write annotations to the
     * target BigQuery table using the following schema:
     *
     * ingestion_time: TIMESTAMP, the ingestion time of the original data.
     *
     * application: STRING, name of the application which produces the annotation.
     *
     * instance: STRING, Id of the instance which produces the annotation.
     *
     * node: STRING, name of the application graph node which produces the
     * annotation.
     *
     * annotation: STRING or JSON, the actual annotation protobuf will be
     * converted to json string with bytes field as 64 encoded string. It can be
     * written to both String or Json type column.
     *
     * To forward annotation data to an existing BigQuery table, customer needs to
     * make sure the compatibility of the schema.
     * The map maps application node name to its corresponding cloud function
     * endpoint to transform the annotations directly to the
     * google.cloud.bigquery.storage.v1.AppendRowsRequest (only avro_rows or
     * proto_rows should be set). If configured, annotations produced by
     * corresponding application node will sent to the Cloud Function at first
     * before be forwarded to BigQuery.
     *
     * If the default table schema doesn't fit, customer is able to transform the
     * annotation output from Vision AI Application to arbitrary BigQuery table
     * schema with CloudFunction.
     * * The cloud function will receive AppPlatformCloudFunctionRequest where
     * the annotations field will be the json format of Vision AI annotation.
     * * The cloud function should return AppPlatformCloudFunctionResponse with
     * AppendRowsRequest stored in the annotations field.
     * * To drop the annotation, simply clear the annotations field in the
     * returned AppPlatformCloudFunctionResponse.
     * 
* * map<string, string> cloud_function_mapping = 2; */ @java.lang.Override public /* nullable */ java.lang.String getCloudFunctionMappingOrDefault( java.lang.String key, /* nullable */ java.lang.String defaultValue) { if (key == null) { throw new NullPointerException("map key"); } java.util.Map map = internalGetCloudFunctionMapping().getMap(); return map.containsKey(key) ? map.get(key) : defaultValue; } /** * * *
     * Data Schema
     * By default, Vision AI Application will try to write annotations to the
     * target BigQuery table using the following schema:
     *
     * ingestion_time: TIMESTAMP, the ingestion time of the original data.
     *
     * application: STRING, name of the application which produces the annotation.
     *
     * instance: STRING, Id of the instance which produces the annotation.
     *
     * node: STRING, name of the application graph node which produces the
     * annotation.
     *
     * annotation: STRING or JSON, the actual annotation protobuf will be
     * converted to json string with bytes field as 64 encoded string. It can be
     * written to both String or Json type column.
     *
     * To forward annotation data to an existing BigQuery table, customer needs to
     * make sure the compatibility of the schema.
     * The map maps application node name to its corresponding cloud function
     * endpoint to transform the annotations directly to the
     * google.cloud.bigquery.storage.v1.AppendRowsRequest (only avro_rows or
     * proto_rows should be set). If configured, annotations produced by
     * corresponding application node will sent to the Cloud Function at first
     * before be forwarded to BigQuery.
     *
     * If the default table schema doesn't fit, customer is able to transform the
     * annotation output from Vision AI Application to arbitrary BigQuery table
     * schema with CloudFunction.
     * * The cloud function will receive AppPlatformCloudFunctionRequest where
     * the annotations field will be the json format of Vision AI annotation.
     * * The cloud function should return AppPlatformCloudFunctionResponse with
     * AppendRowsRequest stored in the annotations field.
     * * To drop the annotation, simply clear the annotations field in the
     * returned AppPlatformCloudFunctionResponse.
     * 
* * map<string, string> cloud_function_mapping = 2; */ @java.lang.Override public java.lang.String getCloudFunctionMappingOrThrow(java.lang.String key) { if (key == null) { throw new NullPointerException("map key"); } java.util.Map map = internalGetCloudFunctionMapping().getMap(); if (!map.containsKey(key)) { throw new java.lang.IllegalArgumentException(); } return map.get(key); } public Builder clearCloudFunctionMapping() { bitField0_ = (bitField0_ & ~0x00000002); internalGetMutableCloudFunctionMapping().getMutableMap().clear(); return this; } /** * * *
     * Data Schema
     * By default, Vision AI Application will try to write annotations to the
     * target BigQuery table using the following schema:
     *
     * ingestion_time: TIMESTAMP, the ingestion time of the original data.
     *
     * application: STRING, name of the application which produces the annotation.
     *
     * instance: STRING, Id of the instance which produces the annotation.
     *
     * node: STRING, name of the application graph node which produces the
     * annotation.
     *
     * annotation: STRING or JSON, the actual annotation protobuf will be
     * converted to json string with bytes field as 64 encoded string. It can be
     * written to both String or Json type column.
     *
     * To forward annotation data to an existing BigQuery table, customer needs to
     * make sure the compatibility of the schema.
     * The map maps application node name to its corresponding cloud function
     * endpoint to transform the annotations directly to the
     * google.cloud.bigquery.storage.v1.AppendRowsRequest (only avro_rows or
     * proto_rows should be set). If configured, annotations produced by
     * corresponding application node will sent to the Cloud Function at first
     * before be forwarded to BigQuery.
     *
     * If the default table schema doesn't fit, customer is able to transform the
     * annotation output from Vision AI Application to arbitrary BigQuery table
     * schema with CloudFunction.
     * * The cloud function will receive AppPlatformCloudFunctionRequest where
     * the annotations field will be the json format of Vision AI annotation.
     * * The cloud function should return AppPlatformCloudFunctionResponse with
     * AppendRowsRequest stored in the annotations field.
     * * To drop the annotation, simply clear the annotations field in the
     * returned AppPlatformCloudFunctionResponse.
     * 
* * map<string, string> cloud_function_mapping = 2; */ public Builder removeCloudFunctionMapping(java.lang.String key) { if (key == null) { throw new NullPointerException("map key"); } internalGetMutableCloudFunctionMapping().getMutableMap().remove(key); return this; } /** Use alternate mutation accessors instead. */ @java.lang.Deprecated public java.util.Map getMutableCloudFunctionMapping() { bitField0_ |= 0x00000002; return internalGetMutableCloudFunctionMapping().getMutableMap(); } /** * * *
     * Data Schema
     * By default, Vision AI Application will try to write annotations to the
     * target BigQuery table using the following schema:
     *
     * ingestion_time: TIMESTAMP, the ingestion time of the original data.
     *
     * application: STRING, name of the application which produces the annotation.
     *
     * instance: STRING, Id of the instance which produces the annotation.
     *
     * node: STRING, name of the application graph node which produces the
     * annotation.
     *
     * annotation: STRING or JSON, the actual annotation protobuf will be
     * converted to json string with bytes field as 64 encoded string. It can be
     * written to both String or Json type column.
     *
     * To forward annotation data to an existing BigQuery table, customer needs to
     * make sure the compatibility of the schema.
     * The map maps application node name to its corresponding cloud function
     * endpoint to transform the annotations directly to the
     * google.cloud.bigquery.storage.v1.AppendRowsRequest (only avro_rows or
     * proto_rows should be set). If configured, annotations produced by
     * corresponding application node will sent to the Cloud Function at first
     * before be forwarded to BigQuery.
     *
     * If the default table schema doesn't fit, customer is able to transform the
     * annotation output from Vision AI Application to arbitrary BigQuery table
     * schema with CloudFunction.
     * * The cloud function will receive AppPlatformCloudFunctionRequest where
     * the annotations field will be the json format of Vision AI annotation.
     * * The cloud function should return AppPlatformCloudFunctionResponse with
     * AppendRowsRequest stored in the annotations field.
     * * To drop the annotation, simply clear the annotations field in the
     * returned AppPlatformCloudFunctionResponse.
     * 
* * map<string, string> cloud_function_mapping = 2; */ public Builder putCloudFunctionMapping(java.lang.String key, java.lang.String value) { if (key == null) { throw new NullPointerException("map key"); } if (value == null) { throw new NullPointerException("map value"); } internalGetMutableCloudFunctionMapping().getMutableMap().put(key, value); bitField0_ |= 0x00000002; return this; } /** * * *
     * Data Schema
     * By default, Vision AI Application will try to write annotations to the
     * target BigQuery table using the following schema:
     *
     * ingestion_time: TIMESTAMP, the ingestion time of the original data.
     *
     * application: STRING, name of the application which produces the annotation.
     *
     * instance: STRING, Id of the instance which produces the annotation.
     *
     * node: STRING, name of the application graph node which produces the
     * annotation.
     *
     * annotation: STRING or JSON, the actual annotation protobuf will be
     * converted to json string with bytes field as 64 encoded string. It can be
     * written to both String or Json type column.
     *
     * To forward annotation data to an existing BigQuery table, customer needs to
     * make sure the compatibility of the schema.
     * The map maps application node name to its corresponding cloud function
     * endpoint to transform the annotations directly to the
     * google.cloud.bigquery.storage.v1.AppendRowsRequest (only avro_rows or
     * proto_rows should be set). If configured, annotations produced by
     * corresponding application node will sent to the Cloud Function at first
     * before be forwarded to BigQuery.
     *
     * If the default table schema doesn't fit, customer is able to transform the
     * annotation output from Vision AI Application to arbitrary BigQuery table
     * schema with CloudFunction.
     * * The cloud function will receive AppPlatformCloudFunctionRequest where
     * the annotations field will be the json format of Vision AI annotation.
     * * The cloud function should return AppPlatformCloudFunctionResponse with
     * AppendRowsRequest stored in the annotations field.
     * * To drop the annotation, simply clear the annotations field in the
     * returned AppPlatformCloudFunctionResponse.
     * 
* * map<string, string> cloud_function_mapping = 2; */ public Builder putAllCloudFunctionMapping( java.util.Map values) { internalGetMutableCloudFunctionMapping().getMutableMap().putAll(values); bitField0_ |= 0x00000002; return this; } private boolean createDefaultTableIfNotExists_; /** * * *
     * If true, App Platform will create the BigQuery DataSet and the
     * BigQuery Table with default schema if the specified table doesn't exist.
     * This doesn't work if any cloud function customized schema is specified
     * since the system doesn't know your desired schema.
     * JSON column will be used in the default table created by App Platform.
     * 
* * bool create_default_table_if_not_exists = 3; * * @return The createDefaultTableIfNotExists. */ @java.lang.Override public boolean getCreateDefaultTableIfNotExists() { return createDefaultTableIfNotExists_; } /** * * *
     * If true, App Platform will create the BigQuery DataSet and the
     * BigQuery Table with default schema if the specified table doesn't exist.
     * This doesn't work if any cloud function customized schema is specified
     * since the system doesn't know your desired schema.
     * JSON column will be used in the default table created by App Platform.
     * 
* * bool create_default_table_if_not_exists = 3; * * @param value The createDefaultTableIfNotExists to set. * @return This builder for chaining. */ public Builder setCreateDefaultTableIfNotExists(boolean value) { createDefaultTableIfNotExists_ = value; bitField0_ |= 0x00000004; onChanged(); return this; } /** * * *
     * If true, App Platform will create the BigQuery DataSet and the
     * BigQuery Table with default schema if the specified table doesn't exist.
     * This doesn't work if any cloud function customized schema is specified
     * since the system doesn't know your desired schema.
     * JSON column will be used in the default table created by App Platform.
     * 
* * bool create_default_table_if_not_exists = 3; * * @return This builder for chaining. */ public Builder clearCreateDefaultTableIfNotExists() { bitField0_ = (bitField0_ & ~0x00000004); createDefaultTableIfNotExists_ = false; onChanged(); return this; } @java.lang.Override public final Builder setUnknownFields(final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:google.cloud.visionai.v1.BigQueryConfig) } // @@protoc_insertion_point(class_scope:google.cloud.visionai.v1.BigQueryConfig) private static final com.google.cloud.visionai.v1.BigQueryConfig DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new com.google.cloud.visionai.v1.BigQueryConfig(); } public static com.google.cloud.visionai.v1.BigQueryConfig getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public BigQueryConfig parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public com.google.cloud.visionai.v1.BigQueryConfig getDefaultInstanceForType() { return DEFAULT_INSTANCE; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy