All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.cloud.visionai.v1.DedicatedResources Maven / Gradle / Ivy

/*
 * Copyright 2024 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
// Generated by the protocol buffer compiler.  DO NOT EDIT!
// source: google/cloud/visionai/v1/platform.proto

// Protobuf Java Version: 3.25.3
package com.google.cloud.visionai.v1;

/**
 *
 *
 * 
 * A description of resources that are dedicated to a DeployedModel, and
 * that need a higher degree of manual configuration.
 * 
* * Protobuf type {@code google.cloud.visionai.v1.DedicatedResources} */ public final class DedicatedResources extends com.google.protobuf.GeneratedMessageV3 implements // @@protoc_insertion_point(message_implements:google.cloud.visionai.v1.DedicatedResources) DedicatedResourcesOrBuilder { private static final long serialVersionUID = 0L; // Use DedicatedResources.newBuilder() to construct. private DedicatedResources(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } private DedicatedResources() { autoscalingMetricSpecs_ = java.util.Collections.emptyList(); } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance(UnusedPrivateParameter unused) { return new DedicatedResources(); } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.visionai.v1.PlatformProto .internal_static_google_cloud_visionai_v1_DedicatedResources_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.visionai.v1.PlatformProto .internal_static_google_cloud_visionai_v1_DedicatedResources_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.visionai.v1.DedicatedResources.class, com.google.cloud.visionai.v1.DedicatedResources.Builder.class); } private int bitField0_; public static final int MACHINE_SPEC_FIELD_NUMBER = 1; private com.google.cloud.visionai.v1.MachineSpec machineSpec_; /** * * *
   * Required. Immutable. The specification of a single machine used by the
   * prediction.
   * 
* * * .google.cloud.visionai.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE]; * * * @return Whether the machineSpec field is set. */ @java.lang.Override public boolean hasMachineSpec() { return ((bitField0_ & 0x00000001) != 0); } /** * * *
   * Required. Immutable. The specification of a single machine used by the
   * prediction.
   * 
* * * .google.cloud.visionai.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE]; * * * @return The machineSpec. */ @java.lang.Override public com.google.cloud.visionai.v1.MachineSpec getMachineSpec() { return machineSpec_ == null ? com.google.cloud.visionai.v1.MachineSpec.getDefaultInstance() : machineSpec_; } /** * * *
   * Required. Immutable. The specification of a single machine used by the
   * prediction.
   * 
* * * .google.cloud.visionai.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE]; * */ @java.lang.Override public com.google.cloud.visionai.v1.MachineSpecOrBuilder getMachineSpecOrBuilder() { return machineSpec_ == null ? com.google.cloud.visionai.v1.MachineSpec.getDefaultInstance() : machineSpec_; } public static final int MIN_REPLICA_COUNT_FIELD_NUMBER = 2; private int minReplicaCount_ = 0; /** * * *
   * Required. Immutable. The minimum number of machine replicas this
   * DeployedModel will be always deployed on. This value must be greater than
   * or equal to 1.
   *
   * If traffic against the DeployedModel increases, it may dynamically be
   * deployed onto more replicas, and as traffic decreases, some of these extra
   * replicas may be freed.
   * 
* * * int32 min_replica_count = 2 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE]; * * * @return The minReplicaCount. */ @java.lang.Override public int getMinReplicaCount() { return minReplicaCount_; } public static final int MAX_REPLICA_COUNT_FIELD_NUMBER = 3; private int maxReplicaCount_ = 0; /** * * *
   * Immutable. The maximum number of replicas this DeployedModel may be
   * deployed on when the traffic against it increases. If the requested value
   * is too large, the deployment will error, but if deployment succeeds then
   * the ability to scale the model to that many replicas is guaranteed (barring
   * service outages). If traffic against the DeployedModel increases beyond
   * what its replicas at maximum may handle, a portion of the traffic will be
   * dropped. If this value is not provided, will use
   * [min_replica_count][google.cloud.visionai.v1.DedicatedResources.min_replica_count]
   * as the default value.
   *
   * The value of this field impacts the charge against Vertex CPU and GPU
   * quotas. Specifically, you will be charged for max_replica_count *
   * number of cores in the selected machine type) and (max_replica_count *
   * number of GPUs per replica in the selected machine type).
   * 
* * int32 max_replica_count = 3 [(.google.api.field_behavior) = IMMUTABLE]; * * @return The maxReplicaCount. */ @java.lang.Override public int getMaxReplicaCount() { return maxReplicaCount_; } public static final int AUTOSCALING_METRIC_SPECS_FIELD_NUMBER = 4; @SuppressWarnings("serial") private java.util.List autoscalingMetricSpecs_; /** * * *
   * Immutable. The metric specifications that overrides a resource
   * utilization metric (CPU utilization, accelerator's duty cycle, and so on)
   * target value (default to 60 if not set). At most one entry is allowed per
   * metric.
   *
   * If
   * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
   * is above 0, the autoscaling will be based on both CPU utilization and
   * accelerator's duty cycle metrics and scale up when either metrics exceeds
   * its target value while scale down if both metrics are under their target
   * value. The default target value is 60 for both metrics.
   *
   * If
   * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
   * is 0, the autoscaling will be based on CPU utilization metric only with
   * default target value 60 if not explicitly set.
   *
   * For example, in the case of Online Prediction, if you want to override
   * target CPU utilization to 80, you should set
   * [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
   * to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
   * [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
   * to `80`.
   * 
* * * repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE]; * */ @java.lang.Override public java.util.List getAutoscalingMetricSpecsList() { return autoscalingMetricSpecs_; } /** * * *
   * Immutable. The metric specifications that overrides a resource
   * utilization metric (CPU utilization, accelerator's duty cycle, and so on)
   * target value (default to 60 if not set). At most one entry is allowed per
   * metric.
   *
   * If
   * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
   * is above 0, the autoscaling will be based on both CPU utilization and
   * accelerator's duty cycle metrics and scale up when either metrics exceeds
   * its target value while scale down if both metrics are under their target
   * value. The default target value is 60 for both metrics.
   *
   * If
   * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
   * is 0, the autoscaling will be based on CPU utilization metric only with
   * default target value 60 if not explicitly set.
   *
   * For example, in the case of Online Prediction, if you want to override
   * target CPU utilization to 80, you should set
   * [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
   * to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
   * [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
   * to `80`.
   * 
* * * repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE]; * */ @java.lang.Override public java.util.List getAutoscalingMetricSpecsOrBuilderList() { return autoscalingMetricSpecs_; } /** * * *
   * Immutable. The metric specifications that overrides a resource
   * utilization metric (CPU utilization, accelerator's duty cycle, and so on)
   * target value (default to 60 if not set). At most one entry is allowed per
   * metric.
   *
   * If
   * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
   * is above 0, the autoscaling will be based on both CPU utilization and
   * accelerator's duty cycle metrics and scale up when either metrics exceeds
   * its target value while scale down if both metrics are under their target
   * value. The default target value is 60 for both metrics.
   *
   * If
   * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
   * is 0, the autoscaling will be based on CPU utilization metric only with
   * default target value 60 if not explicitly set.
   *
   * For example, in the case of Online Prediction, if you want to override
   * target CPU utilization to 80, you should set
   * [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
   * to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
   * [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
   * to `80`.
   * 
* * * repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE]; * */ @java.lang.Override public int getAutoscalingMetricSpecsCount() { return autoscalingMetricSpecs_.size(); } /** * * *
   * Immutable. The metric specifications that overrides a resource
   * utilization metric (CPU utilization, accelerator's duty cycle, and so on)
   * target value (default to 60 if not set). At most one entry is allowed per
   * metric.
   *
   * If
   * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
   * is above 0, the autoscaling will be based on both CPU utilization and
   * accelerator's duty cycle metrics and scale up when either metrics exceeds
   * its target value while scale down if both metrics are under their target
   * value. The default target value is 60 for both metrics.
   *
   * If
   * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
   * is 0, the autoscaling will be based on CPU utilization metric only with
   * default target value 60 if not explicitly set.
   *
   * For example, in the case of Online Prediction, if you want to override
   * target CPU utilization to 80, you should set
   * [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
   * to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
   * [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
   * to `80`.
   * 
* * * repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE]; * */ @java.lang.Override public com.google.cloud.visionai.v1.AutoscalingMetricSpec getAutoscalingMetricSpecs(int index) { return autoscalingMetricSpecs_.get(index); } /** * * *
   * Immutable. The metric specifications that overrides a resource
   * utilization metric (CPU utilization, accelerator's duty cycle, and so on)
   * target value (default to 60 if not set). At most one entry is allowed per
   * metric.
   *
   * If
   * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
   * is above 0, the autoscaling will be based on both CPU utilization and
   * accelerator's duty cycle metrics and scale up when either metrics exceeds
   * its target value while scale down if both metrics are under their target
   * value. The default target value is 60 for both metrics.
   *
   * If
   * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
   * is 0, the autoscaling will be based on CPU utilization metric only with
   * default target value 60 if not explicitly set.
   *
   * For example, in the case of Online Prediction, if you want to override
   * target CPU utilization to 80, you should set
   * [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
   * to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
   * [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
   * to `80`.
   * 
* * * repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE]; * */ @java.lang.Override public com.google.cloud.visionai.v1.AutoscalingMetricSpecOrBuilder getAutoscalingMetricSpecsOrBuilder(int index) { return autoscalingMetricSpecs_.get(index); } private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { byte isInitialized = memoizedIsInitialized; if (isInitialized == 1) return true; if (isInitialized == 0) return false; memoizedIsInitialized = 1; return true; } @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { if (((bitField0_ & 0x00000001) != 0)) { output.writeMessage(1, getMachineSpec()); } if (minReplicaCount_ != 0) { output.writeInt32(2, minReplicaCount_); } if (maxReplicaCount_ != 0) { output.writeInt32(3, maxReplicaCount_); } for (int i = 0; i < autoscalingMetricSpecs_.size(); i++) { output.writeMessage(4, autoscalingMetricSpecs_.get(i)); } getUnknownFields().writeTo(output); } @java.lang.Override public int getSerializedSize() { int size = memoizedSize; if (size != -1) return size; size = 0; if (((bitField0_ & 0x00000001) != 0)) { size += com.google.protobuf.CodedOutputStream.computeMessageSize(1, getMachineSpec()); } if (minReplicaCount_ != 0) { size += com.google.protobuf.CodedOutputStream.computeInt32Size(2, minReplicaCount_); } if (maxReplicaCount_ != 0) { size += com.google.protobuf.CodedOutputStream.computeInt32Size(3, maxReplicaCount_); } for (int i = 0; i < autoscalingMetricSpecs_.size(); i++) { size += com.google.protobuf.CodedOutputStream.computeMessageSize( 4, autoscalingMetricSpecs_.get(i)); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; } @java.lang.Override public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } if (!(obj instanceof com.google.cloud.visionai.v1.DedicatedResources)) { return super.equals(obj); } com.google.cloud.visionai.v1.DedicatedResources other = (com.google.cloud.visionai.v1.DedicatedResources) obj; if (hasMachineSpec() != other.hasMachineSpec()) return false; if (hasMachineSpec()) { if (!getMachineSpec().equals(other.getMachineSpec())) return false; } if (getMinReplicaCount() != other.getMinReplicaCount()) return false; if (getMaxReplicaCount() != other.getMaxReplicaCount()) return false; if (!getAutoscalingMetricSpecsList().equals(other.getAutoscalingMetricSpecsList())) return false; if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @java.lang.Override public int hashCode() { if (memoizedHashCode != 0) { return memoizedHashCode; } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); if (hasMachineSpec()) { hash = (37 * hash) + MACHINE_SPEC_FIELD_NUMBER; hash = (53 * hash) + getMachineSpec().hashCode(); } hash = (37 * hash) + MIN_REPLICA_COUNT_FIELD_NUMBER; hash = (53 * hash) + getMinReplicaCount(); hash = (37 * hash) + MAX_REPLICA_COUNT_FIELD_NUMBER; hash = (53 * hash) + getMaxReplicaCount(); if (getAutoscalingMetricSpecsCount() > 0) { hash = (37 * hash) + AUTOSCALING_METRIC_SPECS_FIELD_NUMBER; hash = (53 * hash) + getAutoscalingMetricSpecsList().hashCode(); } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; } public static com.google.cloud.visionai.v1.DedicatedResources parseFrom(java.nio.ByteBuffer data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.visionai.v1.DedicatedResources parseFrom( java.nio.ByteBuffer data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.visionai.v1.DedicatedResources parseFrom( com.google.protobuf.ByteString data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.visionai.v1.DedicatedResources parseFrom( com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.visionai.v1.DedicatedResources parseFrom(byte[] data) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data); } public static com.google.cloud.visionai.v1.DedicatedResources parseFrom( byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { return PARSER.parseFrom(data, extensionRegistry); } public static com.google.cloud.visionai.v1.DedicatedResources parseFrom(java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.visionai.v1.DedicatedResources parseFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.visionai.v1.DedicatedResources parseDelimitedFrom( java.io.InputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException(PARSER, input); } public static com.google.cloud.visionai.v1.DedicatedResources parseDelimitedFrom( java.io.InputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseDelimitedWithIOException( PARSER, input, extensionRegistry); } public static com.google.cloud.visionai.v1.DedicatedResources parseFrom( com.google.protobuf.CodedInputStream input) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException(PARSER, input); } public static com.google.cloud.visionai.v1.DedicatedResources parseFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { return com.google.protobuf.GeneratedMessageV3.parseWithIOException( PARSER, input, extensionRegistry); } @java.lang.Override public Builder newBuilderForType() { return newBuilder(); } public static Builder newBuilder() { return DEFAULT_INSTANCE.toBuilder(); } public static Builder newBuilder(com.google.cloud.visionai.v1.DedicatedResources prototype) { return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); } @java.lang.Override public Builder toBuilder() { return this == DEFAULT_INSTANCE ? new Builder() : new Builder().mergeFrom(this); } @java.lang.Override protected Builder newBuilderForType(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { Builder builder = new Builder(parent); return builder; } /** * * *
   * A description of resources that are dedicated to a DeployedModel, and
   * that need a higher degree of manual configuration.
   * 
* * Protobuf type {@code google.cloud.visionai.v1.DedicatedResources} */ public static final class Builder extends com.google.protobuf.GeneratedMessageV3.Builder implements // @@protoc_insertion_point(builder_implements:google.cloud.visionai.v1.DedicatedResources) com.google.cloud.visionai.v1.DedicatedResourcesOrBuilder { public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { return com.google.cloud.visionai.v1.PlatformProto .internal_static_google_cloud_visionai_v1_DedicatedResources_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { return com.google.cloud.visionai.v1.PlatformProto .internal_static_google_cloud_visionai_v1_DedicatedResources_fieldAccessorTable .ensureFieldAccessorsInitialized( com.google.cloud.visionai.v1.DedicatedResources.class, com.google.cloud.visionai.v1.DedicatedResources.Builder.class); } // Construct using com.google.cloud.visionai.v1.DedicatedResources.newBuilder() private Builder() { maybeForceBuilderInitialization(); } private Builder(com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { super(parent); maybeForceBuilderInitialization(); } private void maybeForceBuilderInitialization() { if (com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders) { getMachineSpecFieldBuilder(); getAutoscalingMetricSpecsFieldBuilder(); } } @java.lang.Override public Builder clear() { super.clear(); bitField0_ = 0; machineSpec_ = null; if (machineSpecBuilder_ != null) { machineSpecBuilder_.dispose(); machineSpecBuilder_ = null; } minReplicaCount_ = 0; maxReplicaCount_ = 0; if (autoscalingMetricSpecsBuilder_ == null) { autoscalingMetricSpecs_ = java.util.Collections.emptyList(); } else { autoscalingMetricSpecs_ = null; autoscalingMetricSpecsBuilder_.clear(); } bitField0_ = (bitField0_ & ~0x00000008); return this; } @java.lang.Override public com.google.protobuf.Descriptors.Descriptor getDescriptorForType() { return com.google.cloud.visionai.v1.PlatformProto .internal_static_google_cloud_visionai_v1_DedicatedResources_descriptor; } @java.lang.Override public com.google.cloud.visionai.v1.DedicatedResources getDefaultInstanceForType() { return com.google.cloud.visionai.v1.DedicatedResources.getDefaultInstance(); } @java.lang.Override public com.google.cloud.visionai.v1.DedicatedResources build() { com.google.cloud.visionai.v1.DedicatedResources result = buildPartial(); if (!result.isInitialized()) { throw newUninitializedMessageException(result); } return result; } @java.lang.Override public com.google.cloud.visionai.v1.DedicatedResources buildPartial() { com.google.cloud.visionai.v1.DedicatedResources result = new com.google.cloud.visionai.v1.DedicatedResources(this); buildPartialRepeatedFields(result); if (bitField0_ != 0) { buildPartial0(result); } onBuilt(); return result; } private void buildPartialRepeatedFields( com.google.cloud.visionai.v1.DedicatedResources result) { if (autoscalingMetricSpecsBuilder_ == null) { if (((bitField0_ & 0x00000008) != 0)) { autoscalingMetricSpecs_ = java.util.Collections.unmodifiableList(autoscalingMetricSpecs_); bitField0_ = (bitField0_ & ~0x00000008); } result.autoscalingMetricSpecs_ = autoscalingMetricSpecs_; } else { result.autoscalingMetricSpecs_ = autoscalingMetricSpecsBuilder_.build(); } } private void buildPartial0(com.google.cloud.visionai.v1.DedicatedResources result) { int from_bitField0_ = bitField0_; int to_bitField0_ = 0; if (((from_bitField0_ & 0x00000001) != 0)) { result.machineSpec_ = machineSpecBuilder_ == null ? machineSpec_ : machineSpecBuilder_.build(); to_bitField0_ |= 0x00000001; } if (((from_bitField0_ & 0x00000002) != 0)) { result.minReplicaCount_ = minReplicaCount_; } if (((from_bitField0_ & 0x00000004) != 0)) { result.maxReplicaCount_ = maxReplicaCount_; } result.bitField0_ |= to_bitField0_; } @java.lang.Override public Builder clone() { return super.clone(); } @java.lang.Override public Builder setField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.setField(field, value); } @java.lang.Override public Builder clearField(com.google.protobuf.Descriptors.FieldDescriptor field) { return super.clearField(field); } @java.lang.Override public Builder clearOneof(com.google.protobuf.Descriptors.OneofDescriptor oneof) { return super.clearOneof(oneof); } @java.lang.Override public Builder setRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, int index, java.lang.Object value) { return super.setRepeatedField(field, index, value); } @java.lang.Override public Builder addRepeatedField( com.google.protobuf.Descriptors.FieldDescriptor field, java.lang.Object value) { return super.addRepeatedField(field, value); } @java.lang.Override public Builder mergeFrom(com.google.protobuf.Message other) { if (other instanceof com.google.cloud.visionai.v1.DedicatedResources) { return mergeFrom((com.google.cloud.visionai.v1.DedicatedResources) other); } else { super.mergeFrom(other); return this; } } public Builder mergeFrom(com.google.cloud.visionai.v1.DedicatedResources other) { if (other == com.google.cloud.visionai.v1.DedicatedResources.getDefaultInstance()) return this; if (other.hasMachineSpec()) { mergeMachineSpec(other.getMachineSpec()); } if (other.getMinReplicaCount() != 0) { setMinReplicaCount(other.getMinReplicaCount()); } if (other.getMaxReplicaCount() != 0) { setMaxReplicaCount(other.getMaxReplicaCount()); } if (autoscalingMetricSpecsBuilder_ == null) { if (!other.autoscalingMetricSpecs_.isEmpty()) { if (autoscalingMetricSpecs_.isEmpty()) { autoscalingMetricSpecs_ = other.autoscalingMetricSpecs_; bitField0_ = (bitField0_ & ~0x00000008); } else { ensureAutoscalingMetricSpecsIsMutable(); autoscalingMetricSpecs_.addAll(other.autoscalingMetricSpecs_); } onChanged(); } } else { if (!other.autoscalingMetricSpecs_.isEmpty()) { if (autoscalingMetricSpecsBuilder_.isEmpty()) { autoscalingMetricSpecsBuilder_.dispose(); autoscalingMetricSpecsBuilder_ = null; autoscalingMetricSpecs_ = other.autoscalingMetricSpecs_; bitField0_ = (bitField0_ & ~0x00000008); autoscalingMetricSpecsBuilder_ = com.google.protobuf.GeneratedMessageV3.alwaysUseFieldBuilders ? getAutoscalingMetricSpecsFieldBuilder() : null; } else { autoscalingMetricSpecsBuilder_.addAllMessages(other.autoscalingMetricSpecs_); } } } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; } @java.lang.Override public final boolean isInitialized() { return true; } @java.lang.Override public Builder mergeFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws java.io.IOException { if (extensionRegistry == null) { throw new java.lang.NullPointerException(); } try { boolean done = false; while (!done) { int tag = input.readTag(); switch (tag) { case 0: done = true; break; case 10: { input.readMessage(getMachineSpecFieldBuilder().getBuilder(), extensionRegistry); bitField0_ |= 0x00000001; break; } // case 10 case 16: { minReplicaCount_ = input.readInt32(); bitField0_ |= 0x00000002; break; } // case 16 case 24: { maxReplicaCount_ = input.readInt32(); bitField0_ |= 0x00000004; break; } // case 24 case 34: { com.google.cloud.visionai.v1.AutoscalingMetricSpec m = input.readMessage( com.google.cloud.visionai.v1.AutoscalingMetricSpec.parser(), extensionRegistry); if (autoscalingMetricSpecsBuilder_ == null) { ensureAutoscalingMetricSpecsIsMutable(); autoscalingMetricSpecs_.add(m); } else { autoscalingMetricSpecsBuilder_.addMessage(m); } break; } // case 34 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag } break; } // default: } // switch (tag) } // while (!done) } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.unwrapIOException(); } finally { onChanged(); } // finally return this; } private int bitField0_; private com.google.cloud.visionai.v1.MachineSpec machineSpec_; private com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.visionai.v1.MachineSpec, com.google.cloud.visionai.v1.MachineSpec.Builder, com.google.cloud.visionai.v1.MachineSpecOrBuilder> machineSpecBuilder_; /** * * *
     * Required. Immutable. The specification of a single machine used by the
     * prediction.
     * 
* * * .google.cloud.visionai.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE]; * * * @return Whether the machineSpec field is set. */ public boolean hasMachineSpec() { return ((bitField0_ & 0x00000001) != 0); } /** * * *
     * Required. Immutable. The specification of a single machine used by the
     * prediction.
     * 
* * * .google.cloud.visionai.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE]; * * * @return The machineSpec. */ public com.google.cloud.visionai.v1.MachineSpec getMachineSpec() { if (machineSpecBuilder_ == null) { return machineSpec_ == null ? com.google.cloud.visionai.v1.MachineSpec.getDefaultInstance() : machineSpec_; } else { return machineSpecBuilder_.getMessage(); } } /** * * *
     * Required. Immutable. The specification of a single machine used by the
     * prediction.
     * 
* * * .google.cloud.visionai.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE]; * */ public Builder setMachineSpec(com.google.cloud.visionai.v1.MachineSpec value) { if (machineSpecBuilder_ == null) { if (value == null) { throw new NullPointerException(); } machineSpec_ = value; } else { machineSpecBuilder_.setMessage(value); } bitField0_ |= 0x00000001; onChanged(); return this; } /** * * *
     * Required. Immutable. The specification of a single machine used by the
     * prediction.
     * 
* * * .google.cloud.visionai.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE]; * */ public Builder setMachineSpec( com.google.cloud.visionai.v1.MachineSpec.Builder builderForValue) { if (machineSpecBuilder_ == null) { machineSpec_ = builderForValue.build(); } else { machineSpecBuilder_.setMessage(builderForValue.build()); } bitField0_ |= 0x00000001; onChanged(); return this; } /** * * *
     * Required. Immutable. The specification of a single machine used by the
     * prediction.
     * 
* * * .google.cloud.visionai.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE]; * */ public Builder mergeMachineSpec(com.google.cloud.visionai.v1.MachineSpec value) { if (machineSpecBuilder_ == null) { if (((bitField0_ & 0x00000001) != 0) && machineSpec_ != null && machineSpec_ != com.google.cloud.visionai.v1.MachineSpec.getDefaultInstance()) { getMachineSpecBuilder().mergeFrom(value); } else { machineSpec_ = value; } } else { machineSpecBuilder_.mergeFrom(value); } if (machineSpec_ != null) { bitField0_ |= 0x00000001; onChanged(); } return this; } /** * * *
     * Required. Immutable. The specification of a single machine used by the
     * prediction.
     * 
* * * .google.cloud.visionai.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE]; * */ public Builder clearMachineSpec() { bitField0_ = (bitField0_ & ~0x00000001); machineSpec_ = null; if (machineSpecBuilder_ != null) { machineSpecBuilder_.dispose(); machineSpecBuilder_ = null; } onChanged(); return this; } /** * * *
     * Required. Immutable. The specification of a single machine used by the
     * prediction.
     * 
* * * .google.cloud.visionai.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE]; * */ public com.google.cloud.visionai.v1.MachineSpec.Builder getMachineSpecBuilder() { bitField0_ |= 0x00000001; onChanged(); return getMachineSpecFieldBuilder().getBuilder(); } /** * * *
     * Required. Immutable. The specification of a single machine used by the
     * prediction.
     * 
* * * .google.cloud.visionai.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE]; * */ public com.google.cloud.visionai.v1.MachineSpecOrBuilder getMachineSpecOrBuilder() { if (machineSpecBuilder_ != null) { return machineSpecBuilder_.getMessageOrBuilder(); } else { return machineSpec_ == null ? com.google.cloud.visionai.v1.MachineSpec.getDefaultInstance() : machineSpec_; } } /** * * *
     * Required. Immutable. The specification of a single machine used by the
     * prediction.
     * 
* * * .google.cloud.visionai.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE]; * */ private com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.visionai.v1.MachineSpec, com.google.cloud.visionai.v1.MachineSpec.Builder, com.google.cloud.visionai.v1.MachineSpecOrBuilder> getMachineSpecFieldBuilder() { if (machineSpecBuilder_ == null) { machineSpecBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< com.google.cloud.visionai.v1.MachineSpec, com.google.cloud.visionai.v1.MachineSpec.Builder, com.google.cloud.visionai.v1.MachineSpecOrBuilder>( getMachineSpec(), getParentForChildren(), isClean()); machineSpec_ = null; } return machineSpecBuilder_; } private int minReplicaCount_; /** * * *
     * Required. Immutable. The minimum number of machine replicas this
     * DeployedModel will be always deployed on. This value must be greater than
     * or equal to 1.
     *
     * If traffic against the DeployedModel increases, it may dynamically be
     * deployed onto more replicas, and as traffic decreases, some of these extra
     * replicas may be freed.
     * 
* * * int32 min_replica_count = 2 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE]; * * * @return The minReplicaCount. */ @java.lang.Override public int getMinReplicaCount() { return minReplicaCount_; } /** * * *
     * Required. Immutable. The minimum number of machine replicas this
     * DeployedModel will be always deployed on. This value must be greater than
     * or equal to 1.
     *
     * If traffic against the DeployedModel increases, it may dynamically be
     * deployed onto more replicas, and as traffic decreases, some of these extra
     * replicas may be freed.
     * 
* * * int32 min_replica_count = 2 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE]; * * * @param value The minReplicaCount to set. * @return This builder for chaining. */ public Builder setMinReplicaCount(int value) { minReplicaCount_ = value; bitField0_ |= 0x00000002; onChanged(); return this; } /** * * *
     * Required. Immutable. The minimum number of machine replicas this
     * DeployedModel will be always deployed on. This value must be greater than
     * or equal to 1.
     *
     * If traffic against the DeployedModel increases, it may dynamically be
     * deployed onto more replicas, and as traffic decreases, some of these extra
     * replicas may be freed.
     * 
* * * int32 min_replica_count = 2 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE]; * * * @return This builder for chaining. */ public Builder clearMinReplicaCount() { bitField0_ = (bitField0_ & ~0x00000002); minReplicaCount_ = 0; onChanged(); return this; } private int maxReplicaCount_; /** * * *
     * Immutable. The maximum number of replicas this DeployedModel may be
     * deployed on when the traffic against it increases. If the requested value
     * is too large, the deployment will error, but if deployment succeeds then
     * the ability to scale the model to that many replicas is guaranteed (barring
     * service outages). If traffic against the DeployedModel increases beyond
     * what its replicas at maximum may handle, a portion of the traffic will be
     * dropped. If this value is not provided, will use
     * [min_replica_count][google.cloud.visionai.v1.DedicatedResources.min_replica_count]
     * as the default value.
     *
     * The value of this field impacts the charge against Vertex CPU and GPU
     * quotas. Specifically, you will be charged for max_replica_count *
     * number of cores in the selected machine type) and (max_replica_count *
     * number of GPUs per replica in the selected machine type).
     * 
* * int32 max_replica_count = 3 [(.google.api.field_behavior) = IMMUTABLE]; * * @return The maxReplicaCount. */ @java.lang.Override public int getMaxReplicaCount() { return maxReplicaCount_; } /** * * *
     * Immutable. The maximum number of replicas this DeployedModel may be
     * deployed on when the traffic against it increases. If the requested value
     * is too large, the deployment will error, but if deployment succeeds then
     * the ability to scale the model to that many replicas is guaranteed (barring
     * service outages). If traffic against the DeployedModel increases beyond
     * what its replicas at maximum may handle, a portion of the traffic will be
     * dropped. If this value is not provided, will use
     * [min_replica_count][google.cloud.visionai.v1.DedicatedResources.min_replica_count]
     * as the default value.
     *
     * The value of this field impacts the charge against Vertex CPU and GPU
     * quotas. Specifically, you will be charged for max_replica_count *
     * number of cores in the selected machine type) and (max_replica_count *
     * number of GPUs per replica in the selected machine type).
     * 
* * int32 max_replica_count = 3 [(.google.api.field_behavior) = IMMUTABLE]; * * @param value The maxReplicaCount to set. * @return This builder for chaining. */ public Builder setMaxReplicaCount(int value) { maxReplicaCount_ = value; bitField0_ |= 0x00000004; onChanged(); return this; } /** * * *
     * Immutable. The maximum number of replicas this DeployedModel may be
     * deployed on when the traffic against it increases. If the requested value
     * is too large, the deployment will error, but if deployment succeeds then
     * the ability to scale the model to that many replicas is guaranteed (barring
     * service outages). If traffic against the DeployedModel increases beyond
     * what its replicas at maximum may handle, a portion of the traffic will be
     * dropped. If this value is not provided, will use
     * [min_replica_count][google.cloud.visionai.v1.DedicatedResources.min_replica_count]
     * as the default value.
     *
     * The value of this field impacts the charge against Vertex CPU and GPU
     * quotas. Specifically, you will be charged for max_replica_count *
     * number of cores in the selected machine type) and (max_replica_count *
     * number of GPUs per replica in the selected machine type).
     * 
* * int32 max_replica_count = 3 [(.google.api.field_behavior) = IMMUTABLE]; * * @return This builder for chaining. */ public Builder clearMaxReplicaCount() { bitField0_ = (bitField0_ & ~0x00000004); maxReplicaCount_ = 0; onChanged(); return this; } private java.util.List autoscalingMetricSpecs_ = java.util.Collections.emptyList(); private void ensureAutoscalingMetricSpecsIsMutable() { if (!((bitField0_ & 0x00000008) != 0)) { autoscalingMetricSpecs_ = new java.util.ArrayList( autoscalingMetricSpecs_); bitField0_ |= 0x00000008; } } private com.google.protobuf.RepeatedFieldBuilderV3< com.google.cloud.visionai.v1.AutoscalingMetricSpec, com.google.cloud.visionai.v1.AutoscalingMetricSpec.Builder, com.google.cloud.visionai.v1.AutoscalingMetricSpecOrBuilder> autoscalingMetricSpecsBuilder_; /** * * *
     * Immutable. The metric specifications that overrides a resource
     * utilization metric (CPU utilization, accelerator's duty cycle, and so on)
     * target value (default to 60 if not set). At most one entry is allowed per
     * metric.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is above 0, the autoscaling will be based on both CPU utilization and
     * accelerator's duty cycle metrics and scale up when either metrics exceeds
     * its target value while scale down if both metrics are under their target
     * value. The default target value is 60 for both metrics.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is 0, the autoscaling will be based on CPU utilization metric only with
     * default target value 60 if not explicitly set.
     *
     * For example, in the case of Online Prediction, if you want to override
     * target CPU utilization to 80, you should set
     * [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
     * to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
     * [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
     * to `80`.
     * 
* * * repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE]; * */ public java.util.List getAutoscalingMetricSpecsList() { if (autoscalingMetricSpecsBuilder_ == null) { return java.util.Collections.unmodifiableList(autoscalingMetricSpecs_); } else { return autoscalingMetricSpecsBuilder_.getMessageList(); } } /** * * *
     * Immutable. The metric specifications that overrides a resource
     * utilization metric (CPU utilization, accelerator's duty cycle, and so on)
     * target value (default to 60 if not set). At most one entry is allowed per
     * metric.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is above 0, the autoscaling will be based on both CPU utilization and
     * accelerator's duty cycle metrics and scale up when either metrics exceeds
     * its target value while scale down if both metrics are under their target
     * value. The default target value is 60 for both metrics.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is 0, the autoscaling will be based on CPU utilization metric only with
     * default target value 60 if not explicitly set.
     *
     * For example, in the case of Online Prediction, if you want to override
     * target CPU utilization to 80, you should set
     * [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
     * to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
     * [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
     * to `80`.
     * 
* * * repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE]; * */ public int getAutoscalingMetricSpecsCount() { if (autoscalingMetricSpecsBuilder_ == null) { return autoscalingMetricSpecs_.size(); } else { return autoscalingMetricSpecsBuilder_.getCount(); } } /** * * *
     * Immutable. The metric specifications that overrides a resource
     * utilization metric (CPU utilization, accelerator's duty cycle, and so on)
     * target value (default to 60 if not set). At most one entry is allowed per
     * metric.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is above 0, the autoscaling will be based on both CPU utilization and
     * accelerator's duty cycle metrics and scale up when either metrics exceeds
     * its target value while scale down if both metrics are under their target
     * value. The default target value is 60 for both metrics.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is 0, the autoscaling will be based on CPU utilization metric only with
     * default target value 60 if not explicitly set.
     *
     * For example, in the case of Online Prediction, if you want to override
     * target CPU utilization to 80, you should set
     * [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
     * to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
     * [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
     * to `80`.
     * 
* * * repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE]; * */ public com.google.cloud.visionai.v1.AutoscalingMetricSpec getAutoscalingMetricSpecs(int index) { if (autoscalingMetricSpecsBuilder_ == null) { return autoscalingMetricSpecs_.get(index); } else { return autoscalingMetricSpecsBuilder_.getMessage(index); } } /** * * *
     * Immutable. The metric specifications that overrides a resource
     * utilization metric (CPU utilization, accelerator's duty cycle, and so on)
     * target value (default to 60 if not set). At most one entry is allowed per
     * metric.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is above 0, the autoscaling will be based on both CPU utilization and
     * accelerator's duty cycle metrics and scale up when either metrics exceeds
     * its target value while scale down if both metrics are under their target
     * value. The default target value is 60 for both metrics.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is 0, the autoscaling will be based on CPU utilization metric only with
     * default target value 60 if not explicitly set.
     *
     * For example, in the case of Online Prediction, if you want to override
     * target CPU utilization to 80, you should set
     * [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
     * to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
     * [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
     * to `80`.
     * 
* * * repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE]; * */ public Builder setAutoscalingMetricSpecs( int index, com.google.cloud.visionai.v1.AutoscalingMetricSpec value) { if (autoscalingMetricSpecsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureAutoscalingMetricSpecsIsMutable(); autoscalingMetricSpecs_.set(index, value); onChanged(); } else { autoscalingMetricSpecsBuilder_.setMessage(index, value); } return this; } /** * * *
     * Immutable. The metric specifications that overrides a resource
     * utilization metric (CPU utilization, accelerator's duty cycle, and so on)
     * target value (default to 60 if not set). At most one entry is allowed per
     * metric.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is above 0, the autoscaling will be based on both CPU utilization and
     * accelerator's duty cycle metrics and scale up when either metrics exceeds
     * its target value while scale down if both metrics are under their target
     * value. The default target value is 60 for both metrics.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is 0, the autoscaling will be based on CPU utilization metric only with
     * default target value 60 if not explicitly set.
     *
     * For example, in the case of Online Prediction, if you want to override
     * target CPU utilization to 80, you should set
     * [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
     * to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
     * [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
     * to `80`.
     * 
* * * repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE]; * */ public Builder setAutoscalingMetricSpecs( int index, com.google.cloud.visionai.v1.AutoscalingMetricSpec.Builder builderForValue) { if (autoscalingMetricSpecsBuilder_ == null) { ensureAutoscalingMetricSpecsIsMutable(); autoscalingMetricSpecs_.set(index, builderForValue.build()); onChanged(); } else { autoscalingMetricSpecsBuilder_.setMessage(index, builderForValue.build()); } return this; } /** * * *
     * Immutable. The metric specifications that overrides a resource
     * utilization metric (CPU utilization, accelerator's duty cycle, and so on)
     * target value (default to 60 if not set). At most one entry is allowed per
     * metric.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is above 0, the autoscaling will be based on both CPU utilization and
     * accelerator's duty cycle metrics and scale up when either metrics exceeds
     * its target value while scale down if both metrics are under their target
     * value. The default target value is 60 for both metrics.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is 0, the autoscaling will be based on CPU utilization metric only with
     * default target value 60 if not explicitly set.
     *
     * For example, in the case of Online Prediction, if you want to override
     * target CPU utilization to 80, you should set
     * [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
     * to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
     * [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
     * to `80`.
     * 
* * * repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE]; * */ public Builder addAutoscalingMetricSpecs( com.google.cloud.visionai.v1.AutoscalingMetricSpec value) { if (autoscalingMetricSpecsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureAutoscalingMetricSpecsIsMutable(); autoscalingMetricSpecs_.add(value); onChanged(); } else { autoscalingMetricSpecsBuilder_.addMessage(value); } return this; } /** * * *
     * Immutable. The metric specifications that overrides a resource
     * utilization metric (CPU utilization, accelerator's duty cycle, and so on)
     * target value (default to 60 if not set). At most one entry is allowed per
     * metric.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is above 0, the autoscaling will be based on both CPU utilization and
     * accelerator's duty cycle metrics and scale up when either metrics exceeds
     * its target value while scale down if both metrics are under their target
     * value. The default target value is 60 for both metrics.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is 0, the autoscaling will be based on CPU utilization metric only with
     * default target value 60 if not explicitly set.
     *
     * For example, in the case of Online Prediction, if you want to override
     * target CPU utilization to 80, you should set
     * [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
     * to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
     * [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
     * to `80`.
     * 
* * * repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE]; * */ public Builder addAutoscalingMetricSpecs( int index, com.google.cloud.visionai.v1.AutoscalingMetricSpec value) { if (autoscalingMetricSpecsBuilder_ == null) { if (value == null) { throw new NullPointerException(); } ensureAutoscalingMetricSpecsIsMutable(); autoscalingMetricSpecs_.add(index, value); onChanged(); } else { autoscalingMetricSpecsBuilder_.addMessage(index, value); } return this; } /** * * *
     * Immutable. The metric specifications that overrides a resource
     * utilization metric (CPU utilization, accelerator's duty cycle, and so on)
     * target value (default to 60 if not set). At most one entry is allowed per
     * metric.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is above 0, the autoscaling will be based on both CPU utilization and
     * accelerator's duty cycle metrics and scale up when either metrics exceeds
     * its target value while scale down if both metrics are under their target
     * value. The default target value is 60 for both metrics.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is 0, the autoscaling will be based on CPU utilization metric only with
     * default target value 60 if not explicitly set.
     *
     * For example, in the case of Online Prediction, if you want to override
     * target CPU utilization to 80, you should set
     * [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
     * to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
     * [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
     * to `80`.
     * 
* * * repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE]; * */ public Builder addAutoscalingMetricSpecs( com.google.cloud.visionai.v1.AutoscalingMetricSpec.Builder builderForValue) { if (autoscalingMetricSpecsBuilder_ == null) { ensureAutoscalingMetricSpecsIsMutable(); autoscalingMetricSpecs_.add(builderForValue.build()); onChanged(); } else { autoscalingMetricSpecsBuilder_.addMessage(builderForValue.build()); } return this; } /** * * *
     * Immutable. The metric specifications that overrides a resource
     * utilization metric (CPU utilization, accelerator's duty cycle, and so on)
     * target value (default to 60 if not set). At most one entry is allowed per
     * metric.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is above 0, the autoscaling will be based on both CPU utilization and
     * accelerator's duty cycle metrics and scale up when either metrics exceeds
     * its target value while scale down if both metrics are under their target
     * value. The default target value is 60 for both metrics.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is 0, the autoscaling will be based on CPU utilization metric only with
     * default target value 60 if not explicitly set.
     *
     * For example, in the case of Online Prediction, if you want to override
     * target CPU utilization to 80, you should set
     * [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
     * to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
     * [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
     * to `80`.
     * 
* * * repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE]; * */ public Builder addAutoscalingMetricSpecs( int index, com.google.cloud.visionai.v1.AutoscalingMetricSpec.Builder builderForValue) { if (autoscalingMetricSpecsBuilder_ == null) { ensureAutoscalingMetricSpecsIsMutable(); autoscalingMetricSpecs_.add(index, builderForValue.build()); onChanged(); } else { autoscalingMetricSpecsBuilder_.addMessage(index, builderForValue.build()); } return this; } /** * * *
     * Immutable. The metric specifications that overrides a resource
     * utilization metric (CPU utilization, accelerator's duty cycle, and so on)
     * target value (default to 60 if not set). At most one entry is allowed per
     * metric.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is above 0, the autoscaling will be based on both CPU utilization and
     * accelerator's duty cycle metrics and scale up when either metrics exceeds
     * its target value while scale down if both metrics are under their target
     * value. The default target value is 60 for both metrics.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is 0, the autoscaling will be based on CPU utilization metric only with
     * default target value 60 if not explicitly set.
     *
     * For example, in the case of Online Prediction, if you want to override
     * target CPU utilization to 80, you should set
     * [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
     * to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
     * [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
     * to `80`.
     * 
* * * repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE]; * */ public Builder addAllAutoscalingMetricSpecs( java.lang.Iterable values) { if (autoscalingMetricSpecsBuilder_ == null) { ensureAutoscalingMetricSpecsIsMutable(); com.google.protobuf.AbstractMessageLite.Builder.addAll(values, autoscalingMetricSpecs_); onChanged(); } else { autoscalingMetricSpecsBuilder_.addAllMessages(values); } return this; } /** * * *
     * Immutable. The metric specifications that overrides a resource
     * utilization metric (CPU utilization, accelerator's duty cycle, and so on)
     * target value (default to 60 if not set). At most one entry is allowed per
     * metric.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is above 0, the autoscaling will be based on both CPU utilization and
     * accelerator's duty cycle metrics and scale up when either metrics exceeds
     * its target value while scale down if both metrics are under their target
     * value. The default target value is 60 for both metrics.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is 0, the autoscaling will be based on CPU utilization metric only with
     * default target value 60 if not explicitly set.
     *
     * For example, in the case of Online Prediction, if you want to override
     * target CPU utilization to 80, you should set
     * [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
     * to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
     * [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
     * to `80`.
     * 
* * * repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE]; * */ public Builder clearAutoscalingMetricSpecs() { if (autoscalingMetricSpecsBuilder_ == null) { autoscalingMetricSpecs_ = java.util.Collections.emptyList(); bitField0_ = (bitField0_ & ~0x00000008); onChanged(); } else { autoscalingMetricSpecsBuilder_.clear(); } return this; } /** * * *
     * Immutable. The metric specifications that overrides a resource
     * utilization metric (CPU utilization, accelerator's duty cycle, and so on)
     * target value (default to 60 if not set). At most one entry is allowed per
     * metric.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is above 0, the autoscaling will be based on both CPU utilization and
     * accelerator's duty cycle metrics and scale up when either metrics exceeds
     * its target value while scale down if both metrics are under their target
     * value. The default target value is 60 for both metrics.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is 0, the autoscaling will be based on CPU utilization metric only with
     * default target value 60 if not explicitly set.
     *
     * For example, in the case of Online Prediction, if you want to override
     * target CPU utilization to 80, you should set
     * [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
     * to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
     * [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
     * to `80`.
     * 
* * * repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE]; * */ public Builder removeAutoscalingMetricSpecs(int index) { if (autoscalingMetricSpecsBuilder_ == null) { ensureAutoscalingMetricSpecsIsMutable(); autoscalingMetricSpecs_.remove(index); onChanged(); } else { autoscalingMetricSpecsBuilder_.remove(index); } return this; } /** * * *
     * Immutable. The metric specifications that overrides a resource
     * utilization metric (CPU utilization, accelerator's duty cycle, and so on)
     * target value (default to 60 if not set). At most one entry is allowed per
     * metric.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is above 0, the autoscaling will be based on both CPU utilization and
     * accelerator's duty cycle metrics and scale up when either metrics exceeds
     * its target value while scale down if both metrics are under their target
     * value. The default target value is 60 for both metrics.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is 0, the autoscaling will be based on CPU utilization metric only with
     * default target value 60 if not explicitly set.
     *
     * For example, in the case of Online Prediction, if you want to override
     * target CPU utilization to 80, you should set
     * [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
     * to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
     * [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
     * to `80`.
     * 
* * * repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE]; * */ public com.google.cloud.visionai.v1.AutoscalingMetricSpec.Builder getAutoscalingMetricSpecsBuilder(int index) { return getAutoscalingMetricSpecsFieldBuilder().getBuilder(index); } /** * * *
     * Immutable. The metric specifications that overrides a resource
     * utilization metric (CPU utilization, accelerator's duty cycle, and so on)
     * target value (default to 60 if not set). At most one entry is allowed per
     * metric.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is above 0, the autoscaling will be based on both CPU utilization and
     * accelerator's duty cycle metrics and scale up when either metrics exceeds
     * its target value while scale down if both metrics are under their target
     * value. The default target value is 60 for both metrics.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is 0, the autoscaling will be based on CPU utilization metric only with
     * default target value 60 if not explicitly set.
     *
     * For example, in the case of Online Prediction, if you want to override
     * target CPU utilization to 80, you should set
     * [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
     * to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
     * [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
     * to `80`.
     * 
* * * repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE]; * */ public com.google.cloud.visionai.v1.AutoscalingMetricSpecOrBuilder getAutoscalingMetricSpecsOrBuilder(int index) { if (autoscalingMetricSpecsBuilder_ == null) { return autoscalingMetricSpecs_.get(index); } else { return autoscalingMetricSpecsBuilder_.getMessageOrBuilder(index); } } /** * * *
     * Immutable. The metric specifications that overrides a resource
     * utilization metric (CPU utilization, accelerator's duty cycle, and so on)
     * target value (default to 60 if not set). At most one entry is allowed per
     * metric.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is above 0, the autoscaling will be based on both CPU utilization and
     * accelerator's duty cycle metrics and scale up when either metrics exceeds
     * its target value while scale down if both metrics are under their target
     * value. The default target value is 60 for both metrics.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is 0, the autoscaling will be based on CPU utilization metric only with
     * default target value 60 if not explicitly set.
     *
     * For example, in the case of Online Prediction, if you want to override
     * target CPU utilization to 80, you should set
     * [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
     * to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
     * [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
     * to `80`.
     * 
* * * repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE]; * */ public java.util.List getAutoscalingMetricSpecsOrBuilderList() { if (autoscalingMetricSpecsBuilder_ != null) { return autoscalingMetricSpecsBuilder_.getMessageOrBuilderList(); } else { return java.util.Collections.unmodifiableList(autoscalingMetricSpecs_); } } /** * * *
     * Immutable. The metric specifications that overrides a resource
     * utilization metric (CPU utilization, accelerator's duty cycle, and so on)
     * target value (default to 60 if not set). At most one entry is allowed per
     * metric.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is above 0, the autoscaling will be based on both CPU utilization and
     * accelerator's duty cycle metrics and scale up when either metrics exceeds
     * its target value while scale down if both metrics are under their target
     * value. The default target value is 60 for both metrics.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is 0, the autoscaling will be based on CPU utilization metric only with
     * default target value 60 if not explicitly set.
     *
     * For example, in the case of Online Prediction, if you want to override
     * target CPU utilization to 80, you should set
     * [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
     * to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
     * [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
     * to `80`.
     * 
* * * repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE]; * */ public com.google.cloud.visionai.v1.AutoscalingMetricSpec.Builder addAutoscalingMetricSpecsBuilder() { return getAutoscalingMetricSpecsFieldBuilder() .addBuilder(com.google.cloud.visionai.v1.AutoscalingMetricSpec.getDefaultInstance()); } /** * * *
     * Immutable. The metric specifications that overrides a resource
     * utilization metric (CPU utilization, accelerator's duty cycle, and so on)
     * target value (default to 60 if not set). At most one entry is allowed per
     * metric.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is above 0, the autoscaling will be based on both CPU utilization and
     * accelerator's duty cycle metrics and scale up when either metrics exceeds
     * its target value while scale down if both metrics are under their target
     * value. The default target value is 60 for both metrics.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is 0, the autoscaling will be based on CPU utilization metric only with
     * default target value 60 if not explicitly set.
     *
     * For example, in the case of Online Prediction, if you want to override
     * target CPU utilization to 80, you should set
     * [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
     * to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
     * [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
     * to `80`.
     * 
* * * repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE]; * */ public com.google.cloud.visionai.v1.AutoscalingMetricSpec.Builder addAutoscalingMetricSpecsBuilder(int index) { return getAutoscalingMetricSpecsFieldBuilder() .addBuilder( index, com.google.cloud.visionai.v1.AutoscalingMetricSpec.getDefaultInstance()); } /** * * *
     * Immutable. The metric specifications that overrides a resource
     * utilization metric (CPU utilization, accelerator's duty cycle, and so on)
     * target value (default to 60 if not set). At most one entry is allowed per
     * metric.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is above 0, the autoscaling will be based on both CPU utilization and
     * accelerator's duty cycle metrics and scale up when either metrics exceeds
     * its target value while scale down if both metrics are under their target
     * value. The default target value is 60 for both metrics.
     *
     * If
     * [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
     * is 0, the autoscaling will be based on CPU utilization metric only with
     * default target value 60 if not explicitly set.
     *
     * For example, in the case of Online Prediction, if you want to override
     * target CPU utilization to 80, you should set
     * [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
     * to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
     * [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
     * to `80`.
     * 
* * * repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE]; * */ public java.util.List getAutoscalingMetricSpecsBuilderList() { return getAutoscalingMetricSpecsFieldBuilder().getBuilderList(); } private com.google.protobuf.RepeatedFieldBuilderV3< com.google.cloud.visionai.v1.AutoscalingMetricSpec, com.google.cloud.visionai.v1.AutoscalingMetricSpec.Builder, com.google.cloud.visionai.v1.AutoscalingMetricSpecOrBuilder> getAutoscalingMetricSpecsFieldBuilder() { if (autoscalingMetricSpecsBuilder_ == null) { autoscalingMetricSpecsBuilder_ = new com.google.protobuf.RepeatedFieldBuilderV3< com.google.cloud.visionai.v1.AutoscalingMetricSpec, com.google.cloud.visionai.v1.AutoscalingMetricSpec.Builder, com.google.cloud.visionai.v1.AutoscalingMetricSpecOrBuilder>( autoscalingMetricSpecs_, ((bitField0_ & 0x00000008) != 0), getParentForChildren(), isClean()); autoscalingMetricSpecs_ = null; } return autoscalingMetricSpecsBuilder_; } @java.lang.Override public final Builder setUnknownFields(final com.google.protobuf.UnknownFieldSet unknownFields) { return super.setUnknownFields(unknownFields); } @java.lang.Override public final Builder mergeUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { return super.mergeUnknownFields(unknownFields); } // @@protoc_insertion_point(builder_scope:google.cloud.visionai.v1.DedicatedResources) } // @@protoc_insertion_point(class_scope:google.cloud.visionai.v1.DedicatedResources) private static final com.google.cloud.visionai.v1.DedicatedResources DEFAULT_INSTANCE; static { DEFAULT_INSTANCE = new com.google.cloud.visionai.v1.DedicatedResources(); } public static com.google.cloud.visionai.v1.DedicatedResources getDefaultInstance() { return DEFAULT_INSTANCE; } private static final com.google.protobuf.Parser PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override public DedicatedResources parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { Builder builder = newBuilder(); try { builder.mergeFrom(input, extensionRegistry); } catch (com.google.protobuf.InvalidProtocolBufferException e) { throw e.setUnfinishedMessage(builder.buildPartial()); } catch (com.google.protobuf.UninitializedMessageException e) { throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); } catch (java.io.IOException e) { throw new com.google.protobuf.InvalidProtocolBufferException(e) .setUnfinishedMessage(builder.buildPartial()); } return builder.buildPartial(); } }; public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override public com.google.cloud.visionai.v1.DedicatedResources getDefaultInstanceForType() { return DEFAULT_INSTANCE; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy