
com.google.cloud.visionai.v1.DedicatedResourcesOrBuilder Maven / Gradle / Ivy
/*
* Copyright 2024 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: google/cloud/visionai/v1/platform.proto
// Protobuf Java Version: 3.25.3
package com.google.cloud.visionai.v1;
public interface DedicatedResourcesOrBuilder
extends
// @@protoc_insertion_point(interface_extends:google.cloud.visionai.v1.DedicatedResources)
com.google.protobuf.MessageOrBuilder {
/**
*
*
*
* Required. Immutable. The specification of a single machine used by the
* prediction.
*
*
*
* .google.cloud.visionai.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE];
*
*
* @return Whether the machineSpec field is set.
*/
boolean hasMachineSpec();
/**
*
*
*
* Required. Immutable. The specification of a single machine used by the
* prediction.
*
*
*
* .google.cloud.visionai.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE];
*
*
* @return The machineSpec.
*/
com.google.cloud.visionai.v1.MachineSpec getMachineSpec();
/**
*
*
*
* Required. Immutable. The specification of a single machine used by the
* prediction.
*
*
*
* .google.cloud.visionai.v1.MachineSpec machine_spec = 1 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE];
*
*/
com.google.cloud.visionai.v1.MachineSpecOrBuilder getMachineSpecOrBuilder();
/**
*
*
*
* Required. Immutable. The minimum number of machine replicas this
* DeployedModel will be always deployed on. This value must be greater than
* or equal to 1.
*
* If traffic against the DeployedModel increases, it may dynamically be
* deployed onto more replicas, and as traffic decreases, some of these extra
* replicas may be freed.
*
*
*
* int32 min_replica_count = 2 [(.google.api.field_behavior) = REQUIRED, (.google.api.field_behavior) = IMMUTABLE];
*
*
* @return The minReplicaCount.
*/
int getMinReplicaCount();
/**
*
*
*
* Immutable. The maximum number of replicas this DeployedModel may be
* deployed on when the traffic against it increases. If the requested value
* is too large, the deployment will error, but if deployment succeeds then
* the ability to scale the model to that many replicas is guaranteed (barring
* service outages). If traffic against the DeployedModel increases beyond
* what its replicas at maximum may handle, a portion of the traffic will be
* dropped. If this value is not provided, will use
* [min_replica_count][google.cloud.visionai.v1.DedicatedResources.min_replica_count]
* as the default value.
*
* The value of this field impacts the charge against Vertex CPU and GPU
* quotas. Specifically, you will be charged for max_replica_count *
* number of cores in the selected machine type) and (max_replica_count *
* number of GPUs per replica in the selected machine type).
*
*
* int32 max_replica_count = 3 [(.google.api.field_behavior) = IMMUTABLE];
*
* @return The maxReplicaCount.
*/
int getMaxReplicaCount();
/**
*
*
*
* Immutable. The metric specifications that overrides a resource
* utilization metric (CPU utilization, accelerator's duty cycle, and so on)
* target value (default to 60 if not set). At most one entry is allowed per
* metric.
*
* If
* [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
* is above 0, the autoscaling will be based on both CPU utilization and
* accelerator's duty cycle metrics and scale up when either metrics exceeds
* its target value while scale down if both metrics are under their target
* value. The default target value is 60 for both metrics.
*
* If
* [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
* is 0, the autoscaling will be based on CPU utilization metric only with
* default target value 60 if not explicitly set.
*
* For example, in the case of Online Prediction, if you want to override
* target CPU utilization to 80, you should set
* [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
* to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
* [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
* to `80`.
*
*
*
* repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];
*
*/
java.util.List
getAutoscalingMetricSpecsList();
/**
*
*
*
* Immutable. The metric specifications that overrides a resource
* utilization metric (CPU utilization, accelerator's duty cycle, and so on)
* target value (default to 60 if not set). At most one entry is allowed per
* metric.
*
* If
* [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
* is above 0, the autoscaling will be based on both CPU utilization and
* accelerator's duty cycle metrics and scale up when either metrics exceeds
* its target value while scale down if both metrics are under their target
* value. The default target value is 60 for both metrics.
*
* If
* [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
* is 0, the autoscaling will be based on CPU utilization metric only with
* default target value 60 if not explicitly set.
*
* For example, in the case of Online Prediction, if you want to override
* target CPU utilization to 80, you should set
* [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
* to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
* [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
* to `80`.
*
*
*
* repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];
*
*/
com.google.cloud.visionai.v1.AutoscalingMetricSpec getAutoscalingMetricSpecs(int index);
/**
*
*
*
* Immutable. The metric specifications that overrides a resource
* utilization metric (CPU utilization, accelerator's duty cycle, and so on)
* target value (default to 60 if not set). At most one entry is allowed per
* metric.
*
* If
* [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
* is above 0, the autoscaling will be based on both CPU utilization and
* accelerator's duty cycle metrics and scale up when either metrics exceeds
* its target value while scale down if both metrics are under their target
* value. The default target value is 60 for both metrics.
*
* If
* [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
* is 0, the autoscaling will be based on CPU utilization metric only with
* default target value 60 if not explicitly set.
*
* For example, in the case of Online Prediction, if you want to override
* target CPU utilization to 80, you should set
* [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
* to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
* [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
* to `80`.
*
*
*
* repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];
*
*/
int getAutoscalingMetricSpecsCount();
/**
*
*
*
* Immutable. The metric specifications that overrides a resource
* utilization metric (CPU utilization, accelerator's duty cycle, and so on)
* target value (default to 60 if not set). At most one entry is allowed per
* metric.
*
* If
* [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
* is above 0, the autoscaling will be based on both CPU utilization and
* accelerator's duty cycle metrics and scale up when either metrics exceeds
* its target value while scale down if both metrics are under their target
* value. The default target value is 60 for both metrics.
*
* If
* [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
* is 0, the autoscaling will be based on CPU utilization metric only with
* default target value 60 if not explicitly set.
*
* For example, in the case of Online Prediction, if you want to override
* target CPU utilization to 80, you should set
* [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
* to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
* [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
* to `80`.
*
*
*
* repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];
*
*/
java.util.List extends com.google.cloud.visionai.v1.AutoscalingMetricSpecOrBuilder>
getAutoscalingMetricSpecsOrBuilderList();
/**
*
*
*
* Immutable. The metric specifications that overrides a resource
* utilization metric (CPU utilization, accelerator's duty cycle, and so on)
* target value (default to 60 if not set). At most one entry is allowed per
* metric.
*
* If
* [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
* is above 0, the autoscaling will be based on both CPU utilization and
* accelerator's duty cycle metrics and scale up when either metrics exceeds
* its target value while scale down if both metrics are under their target
* value. The default target value is 60 for both metrics.
*
* If
* [machine_spec.accelerator_count][google.cloud.visionai.v1.MachineSpec.accelerator_count]
* is 0, the autoscaling will be based on CPU utilization metric only with
* default target value 60 if not explicitly set.
*
* For example, in the case of Online Prediction, if you want to override
* target CPU utilization to 80, you should set
* [autoscaling_metric_specs.metric_name][google.cloud.visionai.v1.AutoscalingMetricSpec.metric_name]
* to `aiplatform.googleapis.com/prediction/online/cpu/utilization` and
* [autoscaling_metric_specs.target][google.cloud.visionai.v1.AutoscalingMetricSpec.target]
* to `80`.
*
*
*
* repeated .google.cloud.visionai.v1.AutoscalingMetricSpec autoscaling_metric_specs = 4 [(.google.api.field_behavior) = IMMUTABLE];
*
*/
com.google.cloud.visionai.v1.AutoscalingMetricSpecOrBuilder getAutoscalingMetricSpecsOrBuilder(
int index);
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy