
com.google.cloud.visionai.v1.VertexCustomConfigOrBuilder Maven / Gradle / Ivy
/*
* Copyright 2024 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// Generated by the protocol buffer compiler. DO NOT EDIT!
// source: google/cloud/visionai/v1/platform.proto
// Protobuf Java Version: 3.25.3
package com.google.cloud.visionai.v1;
public interface VertexCustomConfigOrBuilder
extends
// @@protoc_insertion_point(interface_extends:google.cloud.visionai.v1.VertexCustomConfig)
com.google.protobuf.MessageOrBuilder {
/**
*
*
*
* The max prediction frame per second. This attribute sets how fast the
* operator sends prediction requests to Vertex AI endpoint. Default value is
* 0, which means there is no max prediction fps limit. The operator sends
* prediction requests at input fps.
*
*
* int32 max_prediction_fps = 1;
*
* @return The maxPredictionFps.
*/
int getMaxPredictionFps();
/**
*
*
*
* A description of resources that are dedicated to the DeployedModel, and
* that need a higher degree of manual configuration.
*
*
* .google.cloud.visionai.v1.DedicatedResources dedicated_resources = 2;
*
* @return Whether the dedicatedResources field is set.
*/
boolean hasDedicatedResources();
/**
*
*
*
* A description of resources that are dedicated to the DeployedModel, and
* that need a higher degree of manual configuration.
*
*
* .google.cloud.visionai.v1.DedicatedResources dedicated_resources = 2;
*
* @return The dedicatedResources.
*/
com.google.cloud.visionai.v1.DedicatedResources getDedicatedResources();
/**
*
*
*
* A description of resources that are dedicated to the DeployedModel, and
* that need a higher degree of manual configuration.
*
*
* .google.cloud.visionai.v1.DedicatedResources dedicated_resources = 2;
*/
com.google.cloud.visionai.v1.DedicatedResourcesOrBuilder getDedicatedResourcesOrBuilder();
/**
*
*
*
* If not empty, the prediction result will be sent to the specified cloud
* function for post processing.
* * The cloud function will receive AppPlatformCloudFunctionRequest where
* the annotations field will be the json format of proto PredictResponse.
* * The cloud function should return AppPlatformCloudFunctionResponse with
* PredictResponse stored in the annotations field.
* * To drop the prediction output, simply clear the payload field in the
* returned AppPlatformCloudFunctionResponse.
*
*
* string post_processing_cloud_function = 3;
*
* @return The postProcessingCloudFunction.
*/
java.lang.String getPostProcessingCloudFunction();
/**
*
*
*
* If not empty, the prediction result will be sent to the specified cloud
* function for post processing.
* * The cloud function will receive AppPlatformCloudFunctionRequest where
* the annotations field will be the json format of proto PredictResponse.
* * The cloud function should return AppPlatformCloudFunctionResponse with
* PredictResponse stored in the annotations field.
* * To drop the prediction output, simply clear the payload field in the
* returned AppPlatformCloudFunctionResponse.
*
*
* string post_processing_cloud_function = 3;
*
* @return The bytes for postProcessingCloudFunction.
*/
com.google.protobuf.ByteString getPostProcessingCloudFunctionBytes();
/**
*
*
*
* If true, the prediction request received by custom model will also contain
* metadata with the following schema:
* 'appPlatformMetadata': {
* 'ingestionTime': DOUBLE; (UNIX timestamp)
* 'application': STRING;
* 'instanceId': STRING;
* 'node': STRING;
* 'processor': STRING;
* }
*
*
* bool attach_application_metadata = 4;
*
* @return The attachApplicationMetadata.
*/
boolean getAttachApplicationMetadata();
/**
*
*
*
* Optional. By setting the configuration_input_topic, processor will
* subscribe to given topic, only pub/sub topic is supported now. Example
* channel:
* //pubsub.googleapis.com/projects/visionai-testing-stable/topics/test-topic
* message schema should be:
* message Message {
* // The ID of the stream that associates with the application instance.
* string stream_id = 1;
* // The target fps. By default, the custom processor will *not* send any
* data to the Vertex Prediction container. Note that once the
* dynamic_config_input_topic is set, max_prediction_fps will not work and be
* preceded by the fps set inside the topic.
* int32 fps = 2;
* }
*
*
* optional string dynamic_config_input_topic = 6 [(.google.api.field_behavior) = OPTIONAL];
*
*
* @return Whether the dynamicConfigInputTopic field is set.
*/
boolean hasDynamicConfigInputTopic();
/**
*
*
*
* Optional. By setting the configuration_input_topic, processor will
* subscribe to given topic, only pub/sub topic is supported now. Example
* channel:
* //pubsub.googleapis.com/projects/visionai-testing-stable/topics/test-topic
* message schema should be:
* message Message {
* // The ID of the stream that associates with the application instance.
* string stream_id = 1;
* // The target fps. By default, the custom processor will *not* send any
* data to the Vertex Prediction container. Note that once the
* dynamic_config_input_topic is set, max_prediction_fps will not work and be
* preceded by the fps set inside the topic.
* int32 fps = 2;
* }
*
*
* optional string dynamic_config_input_topic = 6 [(.google.api.field_behavior) = OPTIONAL];
*
*
* @return The dynamicConfigInputTopic.
*/
java.lang.String getDynamicConfigInputTopic();
/**
*
*
*
* Optional. By setting the configuration_input_topic, processor will
* subscribe to given topic, only pub/sub topic is supported now. Example
* channel:
* //pubsub.googleapis.com/projects/visionai-testing-stable/topics/test-topic
* message schema should be:
* message Message {
* // The ID of the stream that associates with the application instance.
* string stream_id = 1;
* // The target fps. By default, the custom processor will *not* send any
* data to the Vertex Prediction container. Note that once the
* dynamic_config_input_topic is set, max_prediction_fps will not work and be
* preceded by the fps set inside the topic.
* int32 fps = 2;
* }
*
*
* optional string dynamic_config_input_topic = 6 [(.google.api.field_behavior) = OPTIONAL];
*
*
* @return The bytes for dynamicConfigInputTopic.
*/
com.google.protobuf.ByteString getDynamicConfigInputTopicBytes();
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy