All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.api.services.bigquery.model.BinaryConfusionMatrix Maven / Gradle / Ivy

/*
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */
/*
 * This code was generated by https://github.com/googleapis/google-api-java-client-services/
 * Modify at your own risk.
 */

package com.google.api.services.bigquery.model;

/**
 * Confusion matrix for binary classification models.
 *
 * 

This is the Java data model class that specifies how to parse/serialize into the JSON that is * transmitted over HTTP when working with the BigQuery API. For a detailed explanation see: * https://developers.google.com/api-client-library/java/google-http-java-client/json *

* * @author Google, Inc. */ @SuppressWarnings("javadoc") public final class BinaryConfusionMatrix extends com.google.api.client.json.GenericJson { /** * Number of false samples predicted as false. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.lang.Long falseNegatives; /** * Number of false samples predicted as true. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.lang.Long falsePositives; /** * Threshold value used when computing each of the following metric. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double positiveClassThreshold; /** * Aggregate precision. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double precision; /** * Aggregate recall. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double recall; /** * Number of true samples predicted as false. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.lang.Long trueNegatives; /** * Number of true samples predicted as true. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.lang.Long truePositives; /** * Number of false samples predicted as false. * @return value or {@code null} for none */ public java.lang.Long getFalseNegatives() { return falseNegatives; } /** * Number of false samples predicted as false. * @param falseNegatives falseNegatives or {@code null} for none */ public BinaryConfusionMatrix setFalseNegatives(java.lang.Long falseNegatives) { this.falseNegatives = falseNegatives; return this; } /** * Number of false samples predicted as true. * @return value or {@code null} for none */ public java.lang.Long getFalsePositives() { return falsePositives; } /** * Number of false samples predicted as true. * @param falsePositives falsePositives or {@code null} for none */ public BinaryConfusionMatrix setFalsePositives(java.lang.Long falsePositives) { this.falsePositives = falsePositives; return this; } /** * Threshold value used when computing each of the following metric. * @return value or {@code null} for none */ public java.lang.Double getPositiveClassThreshold() { return positiveClassThreshold; } /** * Threshold value used when computing each of the following metric. * @param positiveClassThreshold positiveClassThreshold or {@code null} for none */ public BinaryConfusionMatrix setPositiveClassThreshold(java.lang.Double positiveClassThreshold) { this.positiveClassThreshold = positiveClassThreshold; return this; } /** * Aggregate precision. * @return value or {@code null} for none */ public java.lang.Double getPrecision() { return precision; } /** * Aggregate precision. * @param precision precision or {@code null} for none */ public BinaryConfusionMatrix setPrecision(java.lang.Double precision) { this.precision = precision; return this; } /** * Aggregate recall. * @return value or {@code null} for none */ public java.lang.Double getRecall() { return recall; } /** * Aggregate recall. * @param recall recall or {@code null} for none */ public BinaryConfusionMatrix setRecall(java.lang.Double recall) { this.recall = recall; return this; } /** * Number of true samples predicted as false. * @return value or {@code null} for none */ public java.lang.Long getTrueNegatives() { return trueNegatives; } /** * Number of true samples predicted as false. * @param trueNegatives trueNegatives or {@code null} for none */ public BinaryConfusionMatrix setTrueNegatives(java.lang.Long trueNegatives) { this.trueNegatives = trueNegatives; return this; } /** * Number of true samples predicted as true. * @return value or {@code null} for none */ public java.lang.Long getTruePositives() { return truePositives; } /** * Number of true samples predicted as true. * @param truePositives truePositives or {@code null} for none */ public BinaryConfusionMatrix setTruePositives(java.lang.Long truePositives) { this.truePositives = truePositives; return this; } @Override public BinaryConfusionMatrix set(String fieldName, Object value) { return (BinaryConfusionMatrix) super.set(fieldName, value); } @Override public BinaryConfusionMatrix clone() { return (BinaryConfusionMatrix) super.clone(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy