All Downloads are FREE. Search and download functionalities are using the official Maven repository.

target.apidocs.com.google.api.services.bigquery.model.TrainingOptions.html Maven / Gradle / Ivy

There is a newer version: v2-rev20241222-2.0.0
Show newest version






TrainingOptions (BigQuery API v2-rev20190423-1.28.0)












com.google.api.services.bigquery.model

Class TrainingOptions

    • Constructor Detail

      • TrainingOptions

        public TrainingOptions()
    • Method Detail

      • getDataSplitColumn

        public String getDataSplitColumn()
        The column to split data with. This column won't be used as a feature. 1. When data_split_method is CUSTOM, the corresponding column should be boolean. The rows with true value tag are eval data, and the false are training data. 2. When data_split_method is SEQ, the first DATA_SPLIT_EVAL_FRACTION rows (from smallest to largest) in the corresponding column are used as training data, and the rest are eval data. It respects the order in Orderable data types: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data-type- properties
        Returns:
        value or null for none
      • setDataSplitColumn

        public TrainingOptions setDataSplitColumn(String dataSplitColumn)
        The column to split data with. This column won't be used as a feature. 1. When data_split_method is CUSTOM, the corresponding column should be boolean. The rows with true value tag are eval data, and the false are training data. 2. When data_split_method is SEQ, the first DATA_SPLIT_EVAL_FRACTION rows (from smallest to largest) in the corresponding column are used as training data, and the rest are eval data. It respects the order in Orderable data types: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data-type- properties
        Parameters:
        dataSplitColumn - dataSplitColumn or null for none
      • getDataSplitEvalFraction

        public Double getDataSplitEvalFraction()
        The fraction of evaluation data over the whole input data. The rest of data will be used as training data. The format should be double. Accurate to two decimal places. Default value is 0.2.
        Returns:
        value or null for none
      • setDataSplitEvalFraction

        public TrainingOptions setDataSplitEvalFraction(Double dataSplitEvalFraction)
        The fraction of evaluation data over the whole input data. The rest of data will be used as training data. The format should be double. Accurate to two decimal places. Default value is 0.2.
        Parameters:
        dataSplitEvalFraction - dataSplitEvalFraction or null for none
      • getDataSplitMethod

        public String getDataSplitMethod()
        The data split type for training and evaluation, e.g. RANDOM.
        Returns:
        value or null for none
      • setDataSplitMethod

        public TrainingOptions setDataSplitMethod(String dataSplitMethod)
        The data split type for training and evaluation, e.g. RANDOM.
        Parameters:
        dataSplitMethod - dataSplitMethod or null for none
      • getDistanceType

        public String getDistanceType()
        [Beta] Distance type for clustering models.
        Returns:
        value or null for none
      • setDistanceType

        public TrainingOptions setDistanceType(String distanceType)
        [Beta] Distance type for clustering models.
        Parameters:
        distanceType - distanceType or null for none
      • getEarlyStop

        public Boolean getEarlyStop()
        Whether to stop early when the loss doesn't improve significantly any more (compared to min_relative_progress).
        Returns:
        value or null for none
      • setEarlyStop

        public TrainingOptions setEarlyStop(Boolean earlyStop)
        Whether to stop early when the loss doesn't improve significantly any more (compared to min_relative_progress).
        Parameters:
        earlyStop - earlyStop or null for none
      • getInitialLearnRate

        public Double getInitialLearnRate()
        Specifies the initial learning rate for line search to start at.
        Returns:
        value or null for none
      • setInitialLearnRate

        public TrainingOptions setInitialLearnRate(Double initialLearnRate)
        Specifies the initial learning rate for line search to start at.
        Parameters:
        initialLearnRate - initialLearnRate or null for none
      • getInputLabelColumns

        public List<String> getInputLabelColumns()
        Name of input label columns in training data.
        Returns:
        value or null for none
      • setInputLabelColumns

        public TrainingOptions setInputLabelColumns(List<String> inputLabelColumns)
        Name of input label columns in training data.
        Parameters:
        inputLabelColumns - inputLabelColumns or null for none
      • getL1Regularization

        public Double getL1Regularization()
        L1 regularization coefficient.
        Returns:
        value or null for none
      • setL1Regularization

        public TrainingOptions setL1Regularization(Double l1Regularization)
        L1 regularization coefficient.
        Parameters:
        l1Regularization - l1Regularization or null for none
      • getL2Regularization

        public Double getL2Regularization()
        L2 regularization coefficient.
        Returns:
        value or null for none
      • setL2Regularization

        public TrainingOptions setL2Regularization(Double l2Regularization)
        L2 regularization coefficient.
        Parameters:
        l2Regularization - l2Regularization or null for none
      • getLabelClassWeights

        public Map<String,Double> getLabelClassWeights()
        Weights associated with each label class, for rebalancing the training data.
        Returns:
        value or null for none
      • setLabelClassWeights

        public TrainingOptions setLabelClassWeights(Map<String,Double> labelClassWeights)
        Weights associated with each label class, for rebalancing the training data.
        Parameters:
        labelClassWeights - labelClassWeights or null for none
      • getLearnRate

        public Double getLearnRate()
        Learning rate in training.
        Returns:
        value or null for none
      • setLearnRate

        public TrainingOptions setLearnRate(Double learnRate)
        Learning rate in training.
        Parameters:
        learnRate - learnRate or null for none
      • getLearnRateStrategy

        public String getLearnRateStrategy()
        The strategy to determine learning rate.
        Returns:
        value or null for none
      • setLearnRateStrategy

        public TrainingOptions setLearnRateStrategy(String learnRateStrategy)
        The strategy to determine learning rate.
        Parameters:
        learnRateStrategy - learnRateStrategy or null for none
      • getLossType

        public String getLossType()
        Type of loss function used during training run.
        Returns:
        value or null for none
      • setLossType

        public TrainingOptions setLossType(String lossType)
        Type of loss function used during training run.
        Parameters:
        lossType - lossType or null for none
      • getMaxIterations

        public Long getMaxIterations()
        The maximum number of iterations in training.
        Returns:
        value or null for none
      • setMaxIterations

        public TrainingOptions setMaxIterations(Long maxIterations)
        The maximum number of iterations in training.
        Parameters:
        maxIterations - maxIterations or null for none
      • getMinRelativeProgress

        public Double getMinRelativeProgress()
        When early_stop is true, stops training when accuracy improvement is less than 'min_relative_progress'.
        Returns:
        value or null for none
      • setMinRelativeProgress

        public TrainingOptions setMinRelativeProgress(Double minRelativeProgress)
        When early_stop is true, stops training when accuracy improvement is less than 'min_relative_progress'.
        Parameters:
        minRelativeProgress - minRelativeProgress or null for none
      • getNumClusters

        public Long getNumClusters()
        [Beta] Number of clusters for clustering models.
        Returns:
        value or null for none
      • setNumClusters

        public TrainingOptions setNumClusters(Long numClusters)
        [Beta] Number of clusters for clustering models.
        Parameters:
        numClusters - numClusters or null for none
      • getWarmStart

        public Boolean getWarmStart()
        Whether to train a model from the last checkpoint.
        Returns:
        value or null for none
      • setWarmStart

        public TrainingOptions setWarmStart(Boolean warmStart)
        Whether to train a model from the last checkpoint.
        Parameters:
        warmStart - warmStart or null for none
      • clone

        public TrainingOptions clone()
        Overrides:
        clone in class com.google.api.client.json.GenericJson

Copyright © 2011–2019 Google. All rights reserved.





© 2015 - 2025 Weber Informatics LLC | Privacy Policy