All Downloads are FREE. Search and download functionalities are using the official Maven repository.

target.apidocs.com.google.api.services.bigquery.model.BinaryConfusionMatrix.html Maven / Gradle / Ivy

There is a newer version: v2-rev20241222-2.0.0
Show newest version






BinaryConfusionMatrix (BigQuery API v2-rev20190616-1.29.2)












com.google.api.services.bigquery.model

Class BinaryConfusionMatrix

    • Constructor Detail

      • BinaryConfusionMatrix

        public BinaryConfusionMatrix()
    • Method Detail

      • getAccuracy

        public Double getAccuracy()
        The fraction of predictions given the correct label.
        Returns:
        value or null for none
      • setAccuracy

        public BinaryConfusionMatrix setAccuracy(Double accuracy)
        The fraction of predictions given the correct label.
        Parameters:
        accuracy - accuracy or null for none
      • getF1Score

        public Double getF1Score()
        The equally weighted average of recall and precision.
        Returns:
        value or null for none
      • setF1Score

        public BinaryConfusionMatrix setF1Score(Double f1Score)
        The equally weighted average of recall and precision.
        Parameters:
        f1Score - f1Score or null for none
      • getFalseNegatives

        public Long getFalseNegatives()
        Number of false samples predicted as false.
        Returns:
        value or null for none
      • setFalseNegatives

        public BinaryConfusionMatrix setFalseNegatives(Long falseNegatives)
        Number of false samples predicted as false.
        Parameters:
        falseNegatives - falseNegatives or null for none
      • getFalsePositives

        public Long getFalsePositives()
        Number of false samples predicted as true.
        Returns:
        value or null for none
      • setFalsePositives

        public BinaryConfusionMatrix setFalsePositives(Long falsePositives)
        Number of false samples predicted as true.
        Parameters:
        falsePositives - falsePositives or null for none
      • getPositiveClassThreshold

        public Double getPositiveClassThreshold()
        Threshold value used when computing each of the following metric.
        Returns:
        value or null for none
      • setPositiveClassThreshold

        public BinaryConfusionMatrix setPositiveClassThreshold(Double positiveClassThreshold)
        Threshold value used when computing each of the following metric.
        Parameters:
        positiveClassThreshold - positiveClassThreshold or null for none
      • getPrecision

        public Double getPrecision()
        The fraction of actual positive predictions that had positive actual labels.
        Returns:
        value or null for none
      • setPrecision

        public BinaryConfusionMatrix setPrecision(Double precision)
        The fraction of actual positive predictions that had positive actual labels.
        Parameters:
        precision - precision or null for none
      • getRecall

        public Double getRecall()
        The fraction of actual positive labels that were given a positive prediction.
        Returns:
        value or null for none
      • setRecall

        public BinaryConfusionMatrix setRecall(Double recall)
        The fraction of actual positive labels that were given a positive prediction.
        Parameters:
        recall - recall or null for none
      • getTrueNegatives

        public Long getTrueNegatives()
        Number of true samples predicted as false.
        Returns:
        value or null for none
      • setTrueNegatives

        public BinaryConfusionMatrix setTrueNegatives(Long trueNegatives)
        Number of true samples predicted as false.
        Parameters:
        trueNegatives - trueNegatives or null for none
      • getTruePositives

        public Long getTruePositives()
        Number of true samples predicted as true.
        Returns:
        value or null for none
      • setTruePositives

        public BinaryConfusionMatrix setTruePositives(Long truePositives)
        Number of true samples predicted as true.
        Parameters:
        truePositives - truePositives or null for none

Copyright © 2011–2019 Google. All rights reserved.





© 2015 - 2025 Weber Informatics LLC | Privacy Policy