All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.api.services.bigquery.model.ArimaSingleModelForecastingMetrics Maven / Gradle / Ivy

There is a newer version: v2-rev20241027-2.0.0
Show newest version
/*
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */
/*
 * This code was generated by https://github.com/googleapis/google-api-java-client-services/
 * Modify at your own risk.
 */

package com.google.api.services.bigquery.model;

/**
 * Model evaluation metrics for a single ARIMA forecasting model.
 *
 * 

This is the Java data model class that specifies how to parse/serialize into the JSON that is * transmitted over HTTP when working with the BigQuery API. For a detailed explanation see: * https://developers.google.com/api-client-library/java/google-http-java-client/json *

* * @author Google, Inc. */ @SuppressWarnings("javadoc") public final class ArimaSingleModelForecastingMetrics extends com.google.api.client.json.GenericJson { /** * Arima fitting metrics. * The value may be {@code null}. */ @com.google.api.client.util.Key private ArimaFittingMetrics arimaFittingMetrics; /** * Is arima model fitted with drift or not. It is always false when d is not 1. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Boolean hasDrift; /** * If true, holiday_effect is a part of time series decomposition result. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Boolean hasHolidayEffect; /** * If true, spikes_and_dips is a part of time series decomposition result. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Boolean hasSpikesAndDips; /** * If true, step_changes is a part of time series decomposition result. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Boolean hasStepChanges; /** * Non-seasonal order. * The value may be {@code null}. */ @com.google.api.client.util.Key private ArimaOrder nonSeasonalOrder; /** * Seasonal periods. Repeated because multiple periods are supported for one time series. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.util.List seasonalPeriods; /** * The time_series_id value for this time series. It will be one of the unique values from the * time_series_id_column specified during ARIMA model training. Only present when * time_series_id_column training option was used. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String timeSeriesId; /** * The tuple of time_series_ids identifying this time series. It will be one of the unique tuples * of values present in the time_series_id_columns specified during ARIMA model training. Only * present when time_series_id_columns training option was used and the order of values here are * same as the order of time_series_id_columns. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.util.List timeSeriesIds; /** * Arima fitting metrics. * @return value or {@code null} for none */ public ArimaFittingMetrics getArimaFittingMetrics() { return arimaFittingMetrics; } /** * Arima fitting metrics. * @param arimaFittingMetrics arimaFittingMetrics or {@code null} for none */ public ArimaSingleModelForecastingMetrics setArimaFittingMetrics(ArimaFittingMetrics arimaFittingMetrics) { this.arimaFittingMetrics = arimaFittingMetrics; return this; } /** * Is arima model fitted with drift or not. It is always false when d is not 1. * @return value or {@code null} for none */ public java.lang.Boolean getHasDrift() { return hasDrift; } /** * Is arima model fitted with drift or not. It is always false when d is not 1. * @param hasDrift hasDrift or {@code null} for none */ public ArimaSingleModelForecastingMetrics setHasDrift(java.lang.Boolean hasDrift) { this.hasDrift = hasDrift; return this; } /** * If true, holiday_effect is a part of time series decomposition result. * @return value or {@code null} for none */ public java.lang.Boolean getHasHolidayEffect() { return hasHolidayEffect; } /** * If true, holiday_effect is a part of time series decomposition result. * @param hasHolidayEffect hasHolidayEffect or {@code null} for none */ public ArimaSingleModelForecastingMetrics setHasHolidayEffect(java.lang.Boolean hasHolidayEffect) { this.hasHolidayEffect = hasHolidayEffect; return this; } /** * If true, spikes_and_dips is a part of time series decomposition result. * @return value or {@code null} for none */ public java.lang.Boolean getHasSpikesAndDips() { return hasSpikesAndDips; } /** * If true, spikes_and_dips is a part of time series decomposition result. * @param hasSpikesAndDips hasSpikesAndDips or {@code null} for none */ public ArimaSingleModelForecastingMetrics setHasSpikesAndDips(java.lang.Boolean hasSpikesAndDips) { this.hasSpikesAndDips = hasSpikesAndDips; return this; } /** * If true, step_changes is a part of time series decomposition result. * @return value or {@code null} for none */ public java.lang.Boolean getHasStepChanges() { return hasStepChanges; } /** * If true, step_changes is a part of time series decomposition result. * @param hasStepChanges hasStepChanges or {@code null} for none */ public ArimaSingleModelForecastingMetrics setHasStepChanges(java.lang.Boolean hasStepChanges) { this.hasStepChanges = hasStepChanges; return this; } /** * Non-seasonal order. * @return value or {@code null} for none */ public ArimaOrder getNonSeasonalOrder() { return nonSeasonalOrder; } /** * Non-seasonal order. * @param nonSeasonalOrder nonSeasonalOrder or {@code null} for none */ public ArimaSingleModelForecastingMetrics setNonSeasonalOrder(ArimaOrder nonSeasonalOrder) { this.nonSeasonalOrder = nonSeasonalOrder; return this; } /** * Seasonal periods. Repeated because multiple periods are supported for one time series. * @return value or {@code null} for none */ public java.util.List getSeasonalPeriods() { return seasonalPeriods; } /** * Seasonal periods. Repeated because multiple periods are supported for one time series. * @param seasonalPeriods seasonalPeriods or {@code null} for none */ public ArimaSingleModelForecastingMetrics setSeasonalPeriods(java.util.List seasonalPeriods) { this.seasonalPeriods = seasonalPeriods; return this; } /** * The time_series_id value for this time series. It will be one of the unique values from the * time_series_id_column specified during ARIMA model training. Only present when * time_series_id_column training option was used. * @return value or {@code null} for none */ public java.lang.String getTimeSeriesId() { return timeSeriesId; } /** * The time_series_id value for this time series. It will be one of the unique values from the * time_series_id_column specified during ARIMA model training. Only present when * time_series_id_column training option was used. * @param timeSeriesId timeSeriesId or {@code null} for none */ public ArimaSingleModelForecastingMetrics setTimeSeriesId(java.lang.String timeSeriesId) { this.timeSeriesId = timeSeriesId; return this; } /** * The tuple of time_series_ids identifying this time series. It will be one of the unique tuples * of values present in the time_series_id_columns specified during ARIMA model training. Only * present when time_series_id_columns training option was used and the order of values here are * same as the order of time_series_id_columns. * @return value or {@code null} for none */ public java.util.List getTimeSeriesIds() { return timeSeriesIds; } /** * The tuple of time_series_ids identifying this time series. It will be one of the unique tuples * of values present in the time_series_id_columns specified during ARIMA model training. Only * present when time_series_id_columns training option was used and the order of values here are * same as the order of time_series_id_columns. * @param timeSeriesIds timeSeriesIds or {@code null} for none */ public ArimaSingleModelForecastingMetrics setTimeSeriesIds(java.util.List timeSeriesIds) { this.timeSeriesIds = timeSeriesIds; return this; } @Override public ArimaSingleModelForecastingMetrics set(String fieldName, Object value) { return (ArimaSingleModelForecastingMetrics) super.set(fieldName, value); } @Override public ArimaSingleModelForecastingMetrics clone() { return (ArimaSingleModelForecastingMetrics) super.clone(); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy