All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.api.services.bigquery.model.RegressionMetrics Maven / Gradle / Ivy

There is a newer version: v2-rev20241027-2.0.0
Show newest version
/*
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */
/*
 * This code was generated by https://github.com/googleapis/google-api-java-client-services/
 * Modify at your own risk.
 */

package com.google.api.services.bigquery.model;

/**
 * Evaluation metrics for regression and explicit feedback type matrix factorization models.
 *
 * 

This is the Java data model class that specifies how to parse/serialize into the JSON that is * transmitted over HTTP when working with the BigQuery API. For a detailed explanation see: * https://developers.google.com/api-client-library/java/google-http-java-client/json *

* * @author Google, Inc. */ @SuppressWarnings("javadoc") public final class RegressionMetrics extends com.google.api.client.json.GenericJson { /** * Mean absolute error. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double meanAbsoluteError; /** * Mean squared error. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double meanSquaredError; /** * Mean squared log error. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double meanSquaredLogError; /** * Median absolute error. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double medianAbsoluteError; /** * R^2 score. This corresponds to r2_score in ML.EVALUATE. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double rSquared; /** * Mean absolute error. * @return value or {@code null} for none */ public java.lang.Double getMeanAbsoluteError() { return meanAbsoluteError; } /** * Mean absolute error. * @param meanAbsoluteError meanAbsoluteError or {@code null} for none */ public RegressionMetrics setMeanAbsoluteError(java.lang.Double meanAbsoluteError) { this.meanAbsoluteError = meanAbsoluteError; return this; } /** * Mean squared error. * @return value or {@code null} for none */ public java.lang.Double getMeanSquaredError() { return meanSquaredError; } /** * Mean squared error. * @param meanSquaredError meanSquaredError or {@code null} for none */ public RegressionMetrics setMeanSquaredError(java.lang.Double meanSquaredError) { this.meanSquaredError = meanSquaredError; return this; } /** * Mean squared log error. * @return value or {@code null} for none */ public java.lang.Double getMeanSquaredLogError() { return meanSquaredLogError; } /** * Mean squared log error. * @param meanSquaredLogError meanSquaredLogError or {@code null} for none */ public RegressionMetrics setMeanSquaredLogError(java.lang.Double meanSquaredLogError) { this.meanSquaredLogError = meanSquaredLogError; return this; } /** * Median absolute error. * @return value or {@code null} for none */ public java.lang.Double getMedianAbsoluteError() { return medianAbsoluteError; } /** * Median absolute error. * @param medianAbsoluteError medianAbsoluteError or {@code null} for none */ public RegressionMetrics setMedianAbsoluteError(java.lang.Double medianAbsoluteError) { this.medianAbsoluteError = medianAbsoluteError; return this; } /** * R^2 score. This corresponds to r2_score in ML.EVALUATE. * @return value or {@code null} for none */ public java.lang.Double getRSquared() { return rSquared; } /** * R^2 score. This corresponds to r2_score in ML.EVALUATE. * @param rSquared rSquared or {@code null} for none */ public RegressionMetrics setRSquared(java.lang.Double rSquared) { this.rSquared = rSquared; return this; } @Override public RegressionMetrics set(String fieldName, Object value) { return (RegressionMetrics) super.set(fieldName, value); } @Override public RegressionMetrics clone() { return (RegressionMetrics) super.clone(); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy