target.apidocs.com.google.api.services.bigquery.model.RegressionMetrics.html Maven / Gradle / Ivy
RegressionMetrics (BigQuery API v2-rev20240727-2.0.0)
com.google.api.services.bigquery.model
Class RegressionMetrics
- java.lang.Object
-
- java.util.AbstractMap<String,Object>
-
- com.google.api.client.util.GenericData
-
- com.google.api.client.json.GenericJson
-
- com.google.api.services.bigquery.model.RegressionMetrics
-
public final class RegressionMetrics
extends com.google.api.client.json.GenericJson
Evaluation metrics for regression and explicit feedback type matrix factorization models.
This is the Java data model class that specifies how to parse/serialize into the JSON that is
transmitted over HTTP when working with the BigQuery API. For a detailed explanation see:
https://developers.google.com/api-client-library/java/google-http-java-client/json
- Author:
- Google, Inc.
-
-
Nested Class Summary
-
Nested classes/interfaces inherited from class com.google.api.client.util.GenericData
com.google.api.client.util.GenericData.Flags
-
Nested classes/interfaces inherited from class java.util.AbstractMap
AbstractMap.SimpleEntry<K,V>, AbstractMap.SimpleImmutableEntry<K,V>
-
Constructor Summary
Constructors
Constructor and Description
RegressionMetrics()
-
Method Summary
All Methods Instance Methods Concrete Methods
Modifier and Type
Method and Description
RegressionMetrics
clone()
Double
getMeanAbsoluteError()
Mean absolute error.
Double
getMeanSquaredError()
Mean squared error.
Double
getMeanSquaredLogError()
Mean squared log error.
Double
getMedianAbsoluteError()
Median absolute error.
Double
getRSquared()
R^2 score.
RegressionMetrics
set(String fieldName,
Object value)
RegressionMetrics
setMeanAbsoluteError(Double meanAbsoluteError)
Mean absolute error.
RegressionMetrics
setMeanSquaredError(Double meanSquaredError)
Mean squared error.
RegressionMetrics
setMeanSquaredLogError(Double meanSquaredLogError)
Mean squared log error.
RegressionMetrics
setMedianAbsoluteError(Double medianAbsoluteError)
Median absolute error.
RegressionMetrics
setRSquared(Double rSquared)
R^2 score.
-
Methods inherited from class com.google.api.client.json.GenericJson
getFactory, setFactory, toPrettyString, toString
-
Methods inherited from class com.google.api.client.util.GenericData
entrySet, equals, get, getClassInfo, getUnknownKeys, hashCode, put, putAll, remove, setUnknownKeys
-
Methods inherited from class java.util.AbstractMap
clear, containsKey, containsValue, isEmpty, keySet, size, values
-
Methods inherited from class java.lang.Object
finalize, getClass, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface java.util.Map
compute, computeIfAbsent, computeIfPresent, forEach, getOrDefault, merge, putIfAbsent, remove, replace, replace, replaceAll
-
-
Method Detail
-
getMeanAbsoluteError
public Double getMeanAbsoluteError()
Mean absolute error.
- Returns:
- value or
null
for none
-
setMeanAbsoluteError
public RegressionMetrics setMeanAbsoluteError(Double meanAbsoluteError)
Mean absolute error.
- Parameters:
meanAbsoluteError
- meanAbsoluteError or null
for none
-
getMeanSquaredError
public Double getMeanSquaredError()
Mean squared error.
- Returns:
- value or
null
for none
-
setMeanSquaredError
public RegressionMetrics setMeanSquaredError(Double meanSquaredError)
Mean squared error.
- Parameters:
meanSquaredError
- meanSquaredError or null
for none
-
getMeanSquaredLogError
public Double getMeanSquaredLogError()
Mean squared log error.
- Returns:
- value or
null
for none
-
setMeanSquaredLogError
public RegressionMetrics setMeanSquaredLogError(Double meanSquaredLogError)
Mean squared log error.
- Parameters:
meanSquaredLogError
- meanSquaredLogError or null
for none
-
getMedianAbsoluteError
public Double getMedianAbsoluteError()
Median absolute error.
- Returns:
- value or
null
for none
-
setMedianAbsoluteError
public RegressionMetrics setMedianAbsoluteError(Double medianAbsoluteError)
Median absolute error.
- Parameters:
medianAbsoluteError
- medianAbsoluteError or null
for none
-
getRSquared
public Double getRSquared()
R^2 score. This corresponds to r2_score in ML.EVALUATE.
- Returns:
- value or
null
for none
-
setRSquared
public RegressionMetrics setRSquared(Double rSquared)
R^2 score. This corresponds to r2_score in ML.EVALUATE.
- Parameters:
rSquared
- rSquared or null
for none
-
set
public RegressionMetrics set(String fieldName,
Object value)
- Overrides:
set
in class com.google.api.client.json.GenericJson
-
clone
public RegressionMetrics clone()
- Overrides:
clone
in class com.google.api.client.json.GenericJson
Copyright © 2011–2024 Google. All rights reserved.