All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.api.services.bigquery.model.TrainingOptions Maven / Gradle / Ivy

There is a newer version: v2-rev20241027-2.0.0
Show newest version
/*
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */
/*
 * This code was generated by https://github.com/googleapis/google-api-java-client-services/
 * Modify at your own risk.
 */

package com.google.api.services.bigquery.model;

/**
 * Options used in model training.
 *
 * 

This is the Java data model class that specifies how to parse/serialize into the JSON that is * transmitted over HTTP when working with the BigQuery API. For a detailed explanation see: * https://developers.google.com/api-client-library/java/google-http-java-client/json *

* * @author Google, Inc. */ @SuppressWarnings("javadoc") public final class TrainingOptions extends com.google.api.client.json.GenericJson { /** * Activation function of the neural nets. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String activationFn; /** * If true, detect step changes and make data adjustment in the input time series. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Boolean adjustStepChanges; /** * Whether to use approximate feature contribution method in XGBoost model explanation for global * explain. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Boolean approxGlobalFeatureContrib; /** * Whether to enable auto ARIMA or not. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Boolean autoArima; /** * The max value of the sum of non-seasonal p and q. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.lang.Long autoArimaMaxOrder; /** * The min value of the sum of non-seasonal p and q. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.lang.Long autoArimaMinOrder; /** * Whether to calculate class weights automatically based on the popularity of each label. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Boolean autoClassWeights; /** * Batch size for dnn models. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.lang.Long batchSize; /** * Booster type for boosted tree models. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String boosterType; /** * Budget in hours for AutoML training. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double budgetHours; /** * Whether or not p-value test should be computed for this model. Only available for linear and * logistic regression models. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Boolean calculatePValues; /** * Categorical feature encoding method. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String categoryEncodingMethod; /** * If true, clean spikes and dips in the input time series. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Boolean cleanSpikesAndDips; /** * Enums for color space, used for processing images in Object Table. See more details at * https://www.tensorflow.org/io/tutorials/colorspace. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String colorSpace; /** * Subsample ratio of columns for each level for boosted tree models. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double colsampleBylevel; /** * Subsample ratio of columns for each node(split) for boosted tree models. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double colsampleBynode; /** * Subsample ratio of columns when constructing each tree for boosted tree models. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double colsampleBytree; /** * Type of normalization algorithm for boosted tree models using dart booster. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String dartNormalizeType; /** * The data frequency of a time series. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String dataFrequency; /** * The column to split data with. This column won't be used as a feature. 1. When * data_split_method is CUSTOM, the corresponding column should be boolean. The rows with true * value tag are eval data, and the false are training data. 2. When data_split_method is SEQ, the * first DATA_SPLIT_EVAL_FRACTION rows (from smallest to largest) in the corresponding column are * used as training data, and the rest are eval data. It respects the order in Orderable data * types: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data-type- * properties * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String dataSplitColumn; /** * The fraction of evaluation data over the whole input data. The rest of data will be used as * training data. The format should be double. Accurate to two decimal places. Default value is * 0.2. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double dataSplitEvalFraction; /** * The data split type for training and evaluation, e.g. RANDOM. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String dataSplitMethod; /** * If true, perform decompose time series and save the results. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Boolean decomposeTimeSeries; /** * Distance type for clustering models. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String distanceType; /** * Dropout probability for dnn models. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double dropout; /** * Whether to stop early when the loss doesn't improve significantly any more (compared to * min_relative_progress). Used only for iterative training algorithms. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Boolean earlyStop; /** * If true, enable global explanation during training. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Boolean enableGlobalExplain; /** * Feedback type that specifies which algorithm to run for matrix factorization. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String feedbackType; /** * Whether the model should include intercept during model training. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Boolean fitIntercept; /** * Hidden units for dnn models. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.util.List hiddenUnits; /** * The geographical region based on which the holidays are considered in time series modeling. If * a valid value is specified, then holiday effects modeling is enabled. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String holidayRegion; /** * A list of geographical regions that are used for time series modeling. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.util.List holidayRegions; /** * The number of periods ahead that need to be forecasted. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.lang.Long horizon; /** * The target evaluation metrics to optimize the hyperparameters for. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.util.List hparamTuningObjectives; /** * Include drift when fitting an ARIMA model. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Boolean includeDrift; /** * Specifies the initial learning rate for the line search learn rate strategy. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double initialLearnRate; /** * Name of input label columns in training data. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.util.List inputLabelColumns; /** * Name of the instance weight column for training data. This column isn't be used as a feature. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String instanceWeightColumn; /** * Number of integral steps for the integrated gradients explain method. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.lang.Long integratedGradientsNumSteps; /** * Item column specified for matrix factorization models. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String itemColumn; /** * The column used to provide the initial centroids for kmeans algorithm when * kmeans_initialization_method is CUSTOM. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String kmeansInitializationColumn; /** * The method used to initialize the centroids for kmeans algorithm. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String kmeansInitializationMethod; /** * L1 regularization coefficient to activations. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double l1RegActivation; /** * L1 regularization coefficient. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double l1Regularization; /** * L2 regularization coefficient. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double l2Regularization; /** * Weights associated with each label class, for rebalancing the training data. Only applicable * for classification models. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.util.Map labelClassWeights; /** * Learning rate in training. Used only for iterative training algorithms. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double learnRate; /** * The strategy to determine learn rate for the current iteration. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String learnRateStrategy; /** * Type of loss function used during training run. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String lossType; /** * The maximum number of iterations in training. Used only for iterative training algorithms. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.lang.Long maxIterations; /** * Maximum number of trials to run in parallel. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.lang.Long maxParallelTrials; /** * The maximum number of time points in a time series that can be used in modeling the trend * component of the time series. Don't use this option with the `timeSeriesLengthFraction` or * `minTimeSeriesLength` options. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.lang.Long maxTimeSeriesLength; /** * Maximum depth of a tree for boosted tree models. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.lang.Long maxTreeDepth; /** * When early_stop is true, stops training when accuracy improvement is less than * 'min_relative_progress'. Used only for iterative training algorithms. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double minRelativeProgress; /** * Minimum split loss for boosted tree models. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double minSplitLoss; /** * The minimum number of time points in a time series that are used in modeling the trend * component of the time series. If you use this option you must also set the * `timeSeriesLengthFraction` option. This training option ensures that enough time points are * available when you use `timeSeriesLengthFraction` in trend modeling. This is particularly * important when forecasting multiple time series in a single query using `timeSeriesIdColumn`. * If the total number of time points is less than the `minTimeSeriesLength` value, then the query * uses all available time points. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.lang.Long minTimeSeriesLength; /** * Minimum sum of instance weight needed in a child for boosted tree models. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.lang.Long minTreeChildWeight; /** * The model registry. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String modelRegistry; /** * Google Cloud Storage URI from which the model was imported. Only applicable for imported * models. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String modelUri; /** * A specification of the non-seasonal part of the ARIMA model: the three components (p, d, q) are * the AR order, the degree of differencing, and the MA order. * The value may be {@code null}. */ @com.google.api.client.util.Key private ArimaOrder nonSeasonalOrder; /** * Number of clusters for clustering models. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.lang.Long numClusters; /** * Num factors specified for matrix factorization models. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.lang.Long numFactors; /** * Number of parallel trees constructed during each iteration for boosted tree models. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.lang.Long numParallelTree; /** * Number of principal components to keep in the PCA model. Must be <= the number of features. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.lang.Long numPrincipalComponents; /** * Number of trials to run this hyperparameter tuning job. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.lang.Long numTrials; /** * Optimization strategy for training linear regression models. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String optimizationStrategy; /** * Optimizer used for training the neural nets. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String optimizer; /** * The minimum ratio of cumulative explained variance that needs to be given by the PCA model. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double pcaExplainedVarianceRatio; /** * The solver for PCA. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String pcaSolver; /** * Number of paths for the sampled Shapley explain method. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.lang.Long sampledShapleyNumPaths; /** * If true, scale the feature values by dividing the feature standard deviation. Currently only * apply to PCA. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Boolean scaleFeatures; /** * Whether to standardize numerical features. Default to true. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Boolean standardizeFeatures; /** * Subsample fraction of the training data to grow tree to prevent overfitting for boosted tree * models. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double subsample; /** * Based on the selected TF version, the corresponding docker image is used to train external * models. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String tfVersion; /** * Column to be designated as time series data for ARIMA model. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String timeSeriesDataColumn; /** * The time series id column that was used during ARIMA model training. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String timeSeriesIdColumn; /** * The time series id columns that were used during ARIMA model training. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.util.List timeSeriesIdColumns; /** * The fraction of the interpolated length of the time series that's used to model the time series * trend component. All of the time points of the time series are used to model the non-trend * component. This training option accelerates modeling training without sacrificing much * forecasting accuracy. You can use this option with `minTimeSeriesLength` but not with * `maxTimeSeriesLength`. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double timeSeriesLengthFraction; /** * Column to be designated as time series timestamp for ARIMA model. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String timeSeriesTimestampColumn; /** * Tree construction algorithm for boosted tree models. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String treeMethod; /** * Smoothing window size for the trend component. When a positive value is specified, a center * moving average smoothing is applied on the history trend. When the smoothing window is out of * the boundary at the beginning or the end of the trend, the first element or the last element is * padded to fill the smoothing window before the average is applied. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.lang.Long trendSmoothingWindowSize; /** * User column specified for matrix factorization models. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String userColumn; /** * The version aliases to apply in Vertex AI model registry. Always overwrite if the version * aliases exists in a existing model. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.util.List vertexAiModelVersionAliases; /** * Hyperparameter for matrix factoration when implicit feedback type is specified. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double walsAlpha; /** * Whether to train a model from the last checkpoint. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Boolean warmStart; /** * User-selected XGBoost versions for training of XGBoost models. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String xgboostVersion; /** * Activation function of the neural nets. * @return value or {@code null} for none */ public java.lang.String getActivationFn() { return activationFn; } /** * Activation function of the neural nets. * @param activationFn activationFn or {@code null} for none */ public TrainingOptions setActivationFn(java.lang.String activationFn) { this.activationFn = activationFn; return this; } /** * If true, detect step changes and make data adjustment in the input time series. * @return value or {@code null} for none */ public java.lang.Boolean getAdjustStepChanges() { return adjustStepChanges; } /** * If true, detect step changes and make data adjustment in the input time series. * @param adjustStepChanges adjustStepChanges or {@code null} for none */ public TrainingOptions setAdjustStepChanges(java.lang.Boolean adjustStepChanges) { this.adjustStepChanges = adjustStepChanges; return this; } /** * Whether to use approximate feature contribution method in XGBoost model explanation for global * explain. * @return value or {@code null} for none */ public java.lang.Boolean getApproxGlobalFeatureContrib() { return approxGlobalFeatureContrib; } /** * Whether to use approximate feature contribution method in XGBoost model explanation for global * explain. * @param approxGlobalFeatureContrib approxGlobalFeatureContrib or {@code null} for none */ public TrainingOptions setApproxGlobalFeatureContrib(java.lang.Boolean approxGlobalFeatureContrib) { this.approxGlobalFeatureContrib = approxGlobalFeatureContrib; return this; } /** * Whether to enable auto ARIMA or not. * @return value or {@code null} for none */ public java.lang.Boolean getAutoArima() { return autoArima; } /** * Whether to enable auto ARIMA or not. * @param autoArima autoArima or {@code null} for none */ public TrainingOptions setAutoArima(java.lang.Boolean autoArima) { this.autoArima = autoArima; return this; } /** * The max value of the sum of non-seasonal p and q. * @return value or {@code null} for none */ public java.lang.Long getAutoArimaMaxOrder() { return autoArimaMaxOrder; } /** * The max value of the sum of non-seasonal p and q. * @param autoArimaMaxOrder autoArimaMaxOrder or {@code null} for none */ public TrainingOptions setAutoArimaMaxOrder(java.lang.Long autoArimaMaxOrder) { this.autoArimaMaxOrder = autoArimaMaxOrder; return this; } /** * The min value of the sum of non-seasonal p and q. * @return value or {@code null} for none */ public java.lang.Long getAutoArimaMinOrder() { return autoArimaMinOrder; } /** * The min value of the sum of non-seasonal p and q. * @param autoArimaMinOrder autoArimaMinOrder or {@code null} for none */ public TrainingOptions setAutoArimaMinOrder(java.lang.Long autoArimaMinOrder) { this.autoArimaMinOrder = autoArimaMinOrder; return this; } /** * Whether to calculate class weights automatically based on the popularity of each label. * @return value or {@code null} for none */ public java.lang.Boolean getAutoClassWeights() { return autoClassWeights; } /** * Whether to calculate class weights automatically based on the popularity of each label. * @param autoClassWeights autoClassWeights or {@code null} for none */ public TrainingOptions setAutoClassWeights(java.lang.Boolean autoClassWeights) { this.autoClassWeights = autoClassWeights; return this; } /** * Batch size for dnn models. * @return value or {@code null} for none */ public java.lang.Long getBatchSize() { return batchSize; } /** * Batch size for dnn models. * @param batchSize batchSize or {@code null} for none */ public TrainingOptions setBatchSize(java.lang.Long batchSize) { this.batchSize = batchSize; return this; } /** * Booster type for boosted tree models. * @return value or {@code null} for none */ public java.lang.String getBoosterType() { return boosterType; } /** * Booster type for boosted tree models. * @param boosterType boosterType or {@code null} for none */ public TrainingOptions setBoosterType(java.lang.String boosterType) { this.boosterType = boosterType; return this; } /** * Budget in hours for AutoML training. * @return value or {@code null} for none */ public java.lang.Double getBudgetHours() { return budgetHours; } /** * Budget in hours for AutoML training. * @param budgetHours budgetHours or {@code null} for none */ public TrainingOptions setBudgetHours(java.lang.Double budgetHours) { this.budgetHours = budgetHours; return this; } /** * Whether or not p-value test should be computed for this model. Only available for linear and * logistic regression models. * @return value or {@code null} for none */ public java.lang.Boolean getCalculatePValues() { return calculatePValues; } /** * Whether or not p-value test should be computed for this model. Only available for linear and * logistic regression models. * @param calculatePValues calculatePValues or {@code null} for none */ public TrainingOptions setCalculatePValues(java.lang.Boolean calculatePValues) { this.calculatePValues = calculatePValues; return this; } /** * Categorical feature encoding method. * @return value or {@code null} for none */ public java.lang.String getCategoryEncodingMethod() { return categoryEncodingMethod; } /** * Categorical feature encoding method. * @param categoryEncodingMethod categoryEncodingMethod or {@code null} for none */ public TrainingOptions setCategoryEncodingMethod(java.lang.String categoryEncodingMethod) { this.categoryEncodingMethod = categoryEncodingMethod; return this; } /** * If true, clean spikes and dips in the input time series. * @return value or {@code null} for none */ public java.lang.Boolean getCleanSpikesAndDips() { return cleanSpikesAndDips; } /** * If true, clean spikes and dips in the input time series. * @param cleanSpikesAndDips cleanSpikesAndDips or {@code null} for none */ public TrainingOptions setCleanSpikesAndDips(java.lang.Boolean cleanSpikesAndDips) { this.cleanSpikesAndDips = cleanSpikesAndDips; return this; } /** * Enums for color space, used for processing images in Object Table. See more details at * https://www.tensorflow.org/io/tutorials/colorspace. * @return value or {@code null} for none */ public java.lang.String getColorSpace() { return colorSpace; } /** * Enums for color space, used for processing images in Object Table. See more details at * https://www.tensorflow.org/io/tutorials/colorspace. * @param colorSpace colorSpace or {@code null} for none */ public TrainingOptions setColorSpace(java.lang.String colorSpace) { this.colorSpace = colorSpace; return this; } /** * Subsample ratio of columns for each level for boosted tree models. * @return value or {@code null} for none */ public java.lang.Double getColsampleBylevel() { return colsampleBylevel; } /** * Subsample ratio of columns for each level for boosted tree models. * @param colsampleBylevel colsampleBylevel or {@code null} for none */ public TrainingOptions setColsampleBylevel(java.lang.Double colsampleBylevel) { this.colsampleBylevel = colsampleBylevel; return this; } /** * Subsample ratio of columns for each node(split) for boosted tree models. * @return value or {@code null} for none */ public java.lang.Double getColsampleBynode() { return colsampleBynode; } /** * Subsample ratio of columns for each node(split) for boosted tree models. * @param colsampleBynode colsampleBynode or {@code null} for none */ public TrainingOptions setColsampleBynode(java.lang.Double colsampleBynode) { this.colsampleBynode = colsampleBynode; return this; } /** * Subsample ratio of columns when constructing each tree for boosted tree models. * @return value or {@code null} for none */ public java.lang.Double getColsampleBytree() { return colsampleBytree; } /** * Subsample ratio of columns when constructing each tree for boosted tree models. * @param colsampleBytree colsampleBytree or {@code null} for none */ public TrainingOptions setColsampleBytree(java.lang.Double colsampleBytree) { this.colsampleBytree = colsampleBytree; return this; } /** * Type of normalization algorithm for boosted tree models using dart booster. * @return value or {@code null} for none */ public java.lang.String getDartNormalizeType() { return dartNormalizeType; } /** * Type of normalization algorithm for boosted tree models using dart booster. * @param dartNormalizeType dartNormalizeType or {@code null} for none */ public TrainingOptions setDartNormalizeType(java.lang.String dartNormalizeType) { this.dartNormalizeType = dartNormalizeType; return this; } /** * The data frequency of a time series. * @return value or {@code null} for none */ public java.lang.String getDataFrequency() { return dataFrequency; } /** * The data frequency of a time series. * @param dataFrequency dataFrequency or {@code null} for none */ public TrainingOptions setDataFrequency(java.lang.String dataFrequency) { this.dataFrequency = dataFrequency; return this; } /** * The column to split data with. This column won't be used as a feature. 1. When * data_split_method is CUSTOM, the corresponding column should be boolean. The rows with true * value tag are eval data, and the false are training data. 2. When data_split_method is SEQ, the * first DATA_SPLIT_EVAL_FRACTION rows (from smallest to largest) in the corresponding column are * used as training data, and the rest are eval data. It respects the order in Orderable data * types: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data-type- * properties * @return value or {@code null} for none */ public java.lang.String getDataSplitColumn() { return dataSplitColumn; } /** * The column to split data with. This column won't be used as a feature. 1. When * data_split_method is CUSTOM, the corresponding column should be boolean. The rows with true * value tag are eval data, and the false are training data. 2. When data_split_method is SEQ, the * first DATA_SPLIT_EVAL_FRACTION rows (from smallest to largest) in the corresponding column are * used as training data, and the rest are eval data. It respects the order in Orderable data * types: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data-type- * properties * @param dataSplitColumn dataSplitColumn or {@code null} for none */ public TrainingOptions setDataSplitColumn(java.lang.String dataSplitColumn) { this.dataSplitColumn = dataSplitColumn; return this; } /** * The fraction of evaluation data over the whole input data. The rest of data will be used as * training data. The format should be double. Accurate to two decimal places. Default value is * 0.2. * @return value or {@code null} for none */ public java.lang.Double getDataSplitEvalFraction() { return dataSplitEvalFraction; } /** * The fraction of evaluation data over the whole input data. The rest of data will be used as * training data. The format should be double. Accurate to two decimal places. Default value is * 0.2. * @param dataSplitEvalFraction dataSplitEvalFraction or {@code null} for none */ public TrainingOptions setDataSplitEvalFraction(java.lang.Double dataSplitEvalFraction) { this.dataSplitEvalFraction = dataSplitEvalFraction; return this; } /** * The data split type for training and evaluation, e.g. RANDOM. * @return value or {@code null} for none */ public java.lang.String getDataSplitMethod() { return dataSplitMethod; } /** * The data split type for training and evaluation, e.g. RANDOM. * @param dataSplitMethod dataSplitMethod or {@code null} for none */ public TrainingOptions setDataSplitMethod(java.lang.String dataSplitMethod) { this.dataSplitMethod = dataSplitMethod; return this; } /** * If true, perform decompose time series and save the results. * @return value or {@code null} for none */ public java.lang.Boolean getDecomposeTimeSeries() { return decomposeTimeSeries; } /** * If true, perform decompose time series and save the results. * @param decomposeTimeSeries decomposeTimeSeries or {@code null} for none */ public TrainingOptions setDecomposeTimeSeries(java.lang.Boolean decomposeTimeSeries) { this.decomposeTimeSeries = decomposeTimeSeries; return this; } /** * Distance type for clustering models. * @return value or {@code null} for none */ public java.lang.String getDistanceType() { return distanceType; } /** * Distance type for clustering models. * @param distanceType distanceType or {@code null} for none */ public TrainingOptions setDistanceType(java.lang.String distanceType) { this.distanceType = distanceType; return this; } /** * Dropout probability for dnn models. * @return value or {@code null} for none */ public java.lang.Double getDropout() { return dropout; } /** * Dropout probability for dnn models. * @param dropout dropout or {@code null} for none */ public TrainingOptions setDropout(java.lang.Double dropout) { this.dropout = dropout; return this; } /** * Whether to stop early when the loss doesn't improve significantly any more (compared to * min_relative_progress). Used only for iterative training algorithms. * @return value or {@code null} for none */ public java.lang.Boolean getEarlyStop() { return earlyStop; } /** * Whether to stop early when the loss doesn't improve significantly any more (compared to * min_relative_progress). Used only for iterative training algorithms. * @param earlyStop earlyStop or {@code null} for none */ public TrainingOptions setEarlyStop(java.lang.Boolean earlyStop) { this.earlyStop = earlyStop; return this; } /** * If true, enable global explanation during training. * @return value or {@code null} for none */ public java.lang.Boolean getEnableGlobalExplain() { return enableGlobalExplain; } /** * If true, enable global explanation during training. * @param enableGlobalExplain enableGlobalExplain or {@code null} for none */ public TrainingOptions setEnableGlobalExplain(java.lang.Boolean enableGlobalExplain) { this.enableGlobalExplain = enableGlobalExplain; return this; } /** * Feedback type that specifies which algorithm to run for matrix factorization. * @return value or {@code null} for none */ public java.lang.String getFeedbackType() { return feedbackType; } /** * Feedback type that specifies which algorithm to run for matrix factorization. * @param feedbackType feedbackType or {@code null} for none */ public TrainingOptions setFeedbackType(java.lang.String feedbackType) { this.feedbackType = feedbackType; return this; } /** * Whether the model should include intercept during model training. * @return value or {@code null} for none */ public java.lang.Boolean getFitIntercept() { return fitIntercept; } /** * Whether the model should include intercept during model training. * @param fitIntercept fitIntercept or {@code null} for none */ public TrainingOptions setFitIntercept(java.lang.Boolean fitIntercept) { this.fitIntercept = fitIntercept; return this; } /** * Hidden units for dnn models. * @return value or {@code null} for none */ public java.util.List getHiddenUnits() { return hiddenUnits; } /** * Hidden units for dnn models. * @param hiddenUnits hiddenUnits or {@code null} for none */ public TrainingOptions setHiddenUnits(java.util.List hiddenUnits) { this.hiddenUnits = hiddenUnits; return this; } /** * The geographical region based on which the holidays are considered in time series modeling. If * a valid value is specified, then holiday effects modeling is enabled. * @return value or {@code null} for none */ public java.lang.String getHolidayRegion() { return holidayRegion; } /** * The geographical region based on which the holidays are considered in time series modeling. If * a valid value is specified, then holiday effects modeling is enabled. * @param holidayRegion holidayRegion or {@code null} for none */ public TrainingOptions setHolidayRegion(java.lang.String holidayRegion) { this.holidayRegion = holidayRegion; return this; } /** * A list of geographical regions that are used for time series modeling. * @return value or {@code null} for none */ public java.util.List getHolidayRegions() { return holidayRegions; } /** * A list of geographical regions that are used for time series modeling. * @param holidayRegions holidayRegions or {@code null} for none */ public TrainingOptions setHolidayRegions(java.util.List holidayRegions) { this.holidayRegions = holidayRegions; return this; } /** * The number of periods ahead that need to be forecasted. * @return value or {@code null} for none */ public java.lang.Long getHorizon() { return horizon; } /** * The number of periods ahead that need to be forecasted. * @param horizon horizon or {@code null} for none */ public TrainingOptions setHorizon(java.lang.Long horizon) { this.horizon = horizon; return this; } /** * The target evaluation metrics to optimize the hyperparameters for. * @return value or {@code null} for none */ public java.util.List getHparamTuningObjectives() { return hparamTuningObjectives; } /** * The target evaluation metrics to optimize the hyperparameters for. * @param hparamTuningObjectives hparamTuningObjectives or {@code null} for none */ public TrainingOptions setHparamTuningObjectives(java.util.List hparamTuningObjectives) { this.hparamTuningObjectives = hparamTuningObjectives; return this; } /** * Include drift when fitting an ARIMA model. * @return value or {@code null} for none */ public java.lang.Boolean getIncludeDrift() { return includeDrift; } /** * Include drift when fitting an ARIMA model. * @param includeDrift includeDrift or {@code null} for none */ public TrainingOptions setIncludeDrift(java.lang.Boolean includeDrift) { this.includeDrift = includeDrift; return this; } /** * Specifies the initial learning rate for the line search learn rate strategy. * @return value or {@code null} for none */ public java.lang.Double getInitialLearnRate() { return initialLearnRate; } /** * Specifies the initial learning rate for the line search learn rate strategy. * @param initialLearnRate initialLearnRate or {@code null} for none */ public TrainingOptions setInitialLearnRate(java.lang.Double initialLearnRate) { this.initialLearnRate = initialLearnRate; return this; } /** * Name of input label columns in training data. * @return value or {@code null} for none */ public java.util.List getInputLabelColumns() { return inputLabelColumns; } /** * Name of input label columns in training data. * @param inputLabelColumns inputLabelColumns or {@code null} for none */ public TrainingOptions setInputLabelColumns(java.util.List inputLabelColumns) { this.inputLabelColumns = inputLabelColumns; return this; } /** * Name of the instance weight column for training data. This column isn't be used as a feature. * @return value or {@code null} for none */ public java.lang.String getInstanceWeightColumn() { return instanceWeightColumn; } /** * Name of the instance weight column for training data. This column isn't be used as a feature. * @param instanceWeightColumn instanceWeightColumn or {@code null} for none */ public TrainingOptions setInstanceWeightColumn(java.lang.String instanceWeightColumn) { this.instanceWeightColumn = instanceWeightColumn; return this; } /** * Number of integral steps for the integrated gradients explain method. * @return value or {@code null} for none */ public java.lang.Long getIntegratedGradientsNumSteps() { return integratedGradientsNumSteps; } /** * Number of integral steps for the integrated gradients explain method. * @param integratedGradientsNumSteps integratedGradientsNumSteps or {@code null} for none */ public TrainingOptions setIntegratedGradientsNumSteps(java.lang.Long integratedGradientsNumSteps) { this.integratedGradientsNumSteps = integratedGradientsNumSteps; return this; } /** * Item column specified for matrix factorization models. * @return value or {@code null} for none */ public java.lang.String getItemColumn() { return itemColumn; } /** * Item column specified for matrix factorization models. * @param itemColumn itemColumn or {@code null} for none */ public TrainingOptions setItemColumn(java.lang.String itemColumn) { this.itemColumn = itemColumn; return this; } /** * The column used to provide the initial centroids for kmeans algorithm when * kmeans_initialization_method is CUSTOM. * @return value or {@code null} for none */ public java.lang.String getKmeansInitializationColumn() { return kmeansInitializationColumn; } /** * The column used to provide the initial centroids for kmeans algorithm when * kmeans_initialization_method is CUSTOM. * @param kmeansInitializationColumn kmeansInitializationColumn or {@code null} for none */ public TrainingOptions setKmeansInitializationColumn(java.lang.String kmeansInitializationColumn) { this.kmeansInitializationColumn = kmeansInitializationColumn; return this; } /** * The method used to initialize the centroids for kmeans algorithm. * @return value or {@code null} for none */ public java.lang.String getKmeansInitializationMethod() { return kmeansInitializationMethod; } /** * The method used to initialize the centroids for kmeans algorithm. * @param kmeansInitializationMethod kmeansInitializationMethod or {@code null} for none */ public TrainingOptions setKmeansInitializationMethod(java.lang.String kmeansInitializationMethod) { this.kmeansInitializationMethod = kmeansInitializationMethod; return this; } /** * L1 regularization coefficient to activations. * @return value or {@code null} for none */ public java.lang.Double getL1RegActivation() { return l1RegActivation; } /** * L1 regularization coefficient to activations. * @param l1RegActivation l1RegActivation or {@code null} for none */ public TrainingOptions setL1RegActivation(java.lang.Double l1RegActivation) { this.l1RegActivation = l1RegActivation; return this; } /** * L1 regularization coefficient. * @return value or {@code null} for none */ public java.lang.Double getL1Regularization() { return l1Regularization; } /** * L1 regularization coefficient. * @param l1Regularization l1Regularization or {@code null} for none */ public TrainingOptions setL1Regularization(java.lang.Double l1Regularization) { this.l1Regularization = l1Regularization; return this; } /** * L2 regularization coefficient. * @return value or {@code null} for none */ public java.lang.Double getL2Regularization() { return l2Regularization; } /** * L2 regularization coefficient. * @param l2Regularization l2Regularization or {@code null} for none */ public TrainingOptions setL2Regularization(java.lang.Double l2Regularization) { this.l2Regularization = l2Regularization; return this; } /** * Weights associated with each label class, for rebalancing the training data. Only applicable * for classification models. * @return value or {@code null} for none */ public java.util.Map getLabelClassWeights() { return labelClassWeights; } /** * Weights associated with each label class, for rebalancing the training data. Only applicable * for classification models. * @param labelClassWeights labelClassWeights or {@code null} for none */ public TrainingOptions setLabelClassWeights(java.util.Map labelClassWeights) { this.labelClassWeights = labelClassWeights; return this; } /** * Learning rate in training. Used only for iterative training algorithms. * @return value or {@code null} for none */ public java.lang.Double getLearnRate() { return learnRate; } /** * Learning rate in training. Used only for iterative training algorithms. * @param learnRate learnRate or {@code null} for none */ public TrainingOptions setLearnRate(java.lang.Double learnRate) { this.learnRate = learnRate; return this; } /** * The strategy to determine learn rate for the current iteration. * @return value or {@code null} for none */ public java.lang.String getLearnRateStrategy() { return learnRateStrategy; } /** * The strategy to determine learn rate for the current iteration. * @param learnRateStrategy learnRateStrategy or {@code null} for none */ public TrainingOptions setLearnRateStrategy(java.lang.String learnRateStrategy) { this.learnRateStrategy = learnRateStrategy; return this; } /** * Type of loss function used during training run. * @return value or {@code null} for none */ public java.lang.String getLossType() { return lossType; } /** * Type of loss function used during training run. * @param lossType lossType or {@code null} for none */ public TrainingOptions setLossType(java.lang.String lossType) { this.lossType = lossType; return this; } /** * The maximum number of iterations in training. Used only for iterative training algorithms. * @return value or {@code null} for none */ public java.lang.Long getMaxIterations() { return maxIterations; } /** * The maximum number of iterations in training. Used only for iterative training algorithms. * @param maxIterations maxIterations or {@code null} for none */ public TrainingOptions setMaxIterations(java.lang.Long maxIterations) { this.maxIterations = maxIterations; return this; } /** * Maximum number of trials to run in parallel. * @return value or {@code null} for none */ public java.lang.Long getMaxParallelTrials() { return maxParallelTrials; } /** * Maximum number of trials to run in parallel. * @param maxParallelTrials maxParallelTrials or {@code null} for none */ public TrainingOptions setMaxParallelTrials(java.lang.Long maxParallelTrials) { this.maxParallelTrials = maxParallelTrials; return this; } /** * The maximum number of time points in a time series that can be used in modeling the trend * component of the time series. Don't use this option with the `timeSeriesLengthFraction` or * `minTimeSeriesLength` options. * @return value or {@code null} for none */ public java.lang.Long getMaxTimeSeriesLength() { return maxTimeSeriesLength; } /** * The maximum number of time points in a time series that can be used in modeling the trend * component of the time series. Don't use this option with the `timeSeriesLengthFraction` or * `minTimeSeriesLength` options. * @param maxTimeSeriesLength maxTimeSeriesLength or {@code null} for none */ public TrainingOptions setMaxTimeSeriesLength(java.lang.Long maxTimeSeriesLength) { this.maxTimeSeriesLength = maxTimeSeriesLength; return this; } /** * Maximum depth of a tree for boosted tree models. * @return value or {@code null} for none */ public java.lang.Long getMaxTreeDepth() { return maxTreeDepth; } /** * Maximum depth of a tree for boosted tree models. * @param maxTreeDepth maxTreeDepth or {@code null} for none */ public TrainingOptions setMaxTreeDepth(java.lang.Long maxTreeDepth) { this.maxTreeDepth = maxTreeDepth; return this; } /** * When early_stop is true, stops training when accuracy improvement is less than * 'min_relative_progress'. Used only for iterative training algorithms. * @return value or {@code null} for none */ public java.lang.Double getMinRelativeProgress() { return minRelativeProgress; } /** * When early_stop is true, stops training when accuracy improvement is less than * 'min_relative_progress'. Used only for iterative training algorithms. * @param minRelativeProgress minRelativeProgress or {@code null} for none */ public TrainingOptions setMinRelativeProgress(java.lang.Double minRelativeProgress) { this.minRelativeProgress = minRelativeProgress; return this; } /** * Minimum split loss for boosted tree models. * @return value or {@code null} for none */ public java.lang.Double getMinSplitLoss() { return minSplitLoss; } /** * Minimum split loss for boosted tree models. * @param minSplitLoss minSplitLoss or {@code null} for none */ public TrainingOptions setMinSplitLoss(java.lang.Double minSplitLoss) { this.minSplitLoss = minSplitLoss; return this; } /** * The minimum number of time points in a time series that are used in modeling the trend * component of the time series. If you use this option you must also set the * `timeSeriesLengthFraction` option. This training option ensures that enough time points are * available when you use `timeSeriesLengthFraction` in trend modeling. This is particularly * important when forecasting multiple time series in a single query using `timeSeriesIdColumn`. * If the total number of time points is less than the `minTimeSeriesLength` value, then the query * uses all available time points. * @return value or {@code null} for none */ public java.lang.Long getMinTimeSeriesLength() { return minTimeSeriesLength; } /** * The minimum number of time points in a time series that are used in modeling the trend * component of the time series. If you use this option you must also set the * `timeSeriesLengthFraction` option. This training option ensures that enough time points are * available when you use `timeSeriesLengthFraction` in trend modeling. This is particularly * important when forecasting multiple time series in a single query using `timeSeriesIdColumn`. * If the total number of time points is less than the `minTimeSeriesLength` value, then the query * uses all available time points. * @param minTimeSeriesLength minTimeSeriesLength or {@code null} for none */ public TrainingOptions setMinTimeSeriesLength(java.lang.Long minTimeSeriesLength) { this.minTimeSeriesLength = minTimeSeriesLength; return this; } /** * Minimum sum of instance weight needed in a child for boosted tree models. * @return value or {@code null} for none */ public java.lang.Long getMinTreeChildWeight() { return minTreeChildWeight; } /** * Minimum sum of instance weight needed in a child for boosted tree models. * @param minTreeChildWeight minTreeChildWeight or {@code null} for none */ public TrainingOptions setMinTreeChildWeight(java.lang.Long minTreeChildWeight) { this.minTreeChildWeight = minTreeChildWeight; return this; } /** * The model registry. * @return value or {@code null} for none */ public java.lang.String getModelRegistry() { return modelRegistry; } /** * The model registry. * @param modelRegistry modelRegistry or {@code null} for none */ public TrainingOptions setModelRegistry(java.lang.String modelRegistry) { this.modelRegistry = modelRegistry; return this; } /** * Google Cloud Storage URI from which the model was imported. Only applicable for imported * models. * @return value or {@code null} for none */ public java.lang.String getModelUri() { return modelUri; } /** * Google Cloud Storage URI from which the model was imported. Only applicable for imported * models. * @param modelUri modelUri or {@code null} for none */ public TrainingOptions setModelUri(java.lang.String modelUri) { this.modelUri = modelUri; return this; } /** * A specification of the non-seasonal part of the ARIMA model: the three components (p, d, q) are * the AR order, the degree of differencing, and the MA order. * @return value or {@code null} for none */ public ArimaOrder getNonSeasonalOrder() { return nonSeasonalOrder; } /** * A specification of the non-seasonal part of the ARIMA model: the three components (p, d, q) are * the AR order, the degree of differencing, and the MA order. * @param nonSeasonalOrder nonSeasonalOrder or {@code null} for none */ public TrainingOptions setNonSeasonalOrder(ArimaOrder nonSeasonalOrder) { this.nonSeasonalOrder = nonSeasonalOrder; return this; } /** * Number of clusters for clustering models. * @return value or {@code null} for none */ public java.lang.Long getNumClusters() { return numClusters; } /** * Number of clusters for clustering models. * @param numClusters numClusters or {@code null} for none */ public TrainingOptions setNumClusters(java.lang.Long numClusters) { this.numClusters = numClusters; return this; } /** * Num factors specified for matrix factorization models. * @return value or {@code null} for none */ public java.lang.Long getNumFactors() { return numFactors; } /** * Num factors specified for matrix factorization models. * @param numFactors numFactors or {@code null} for none */ public TrainingOptions setNumFactors(java.lang.Long numFactors) { this.numFactors = numFactors; return this; } /** * Number of parallel trees constructed during each iteration for boosted tree models. * @return value or {@code null} for none */ public java.lang.Long getNumParallelTree() { return numParallelTree; } /** * Number of parallel trees constructed during each iteration for boosted tree models. * @param numParallelTree numParallelTree or {@code null} for none */ public TrainingOptions setNumParallelTree(java.lang.Long numParallelTree) { this.numParallelTree = numParallelTree; return this; } /** * Number of principal components to keep in the PCA model. Must be <= the number of features. * @return value or {@code null} for none */ public java.lang.Long getNumPrincipalComponents() { return numPrincipalComponents; } /** * Number of principal components to keep in the PCA model. Must be <= the number of features. * @param numPrincipalComponents numPrincipalComponents or {@code null} for none */ public TrainingOptions setNumPrincipalComponents(java.lang.Long numPrincipalComponents) { this.numPrincipalComponents = numPrincipalComponents; return this; } /** * Number of trials to run this hyperparameter tuning job. * @return value or {@code null} for none */ public java.lang.Long getNumTrials() { return numTrials; } /** * Number of trials to run this hyperparameter tuning job. * @param numTrials numTrials or {@code null} for none */ public TrainingOptions setNumTrials(java.lang.Long numTrials) { this.numTrials = numTrials; return this; } /** * Optimization strategy for training linear regression models. * @return value or {@code null} for none */ public java.lang.String getOptimizationStrategy() { return optimizationStrategy; } /** * Optimization strategy for training linear regression models. * @param optimizationStrategy optimizationStrategy or {@code null} for none */ public TrainingOptions setOptimizationStrategy(java.lang.String optimizationStrategy) { this.optimizationStrategy = optimizationStrategy; return this; } /** * Optimizer used for training the neural nets. * @return value or {@code null} for none */ public java.lang.String getOptimizer() { return optimizer; } /** * Optimizer used for training the neural nets. * @param optimizer optimizer or {@code null} for none */ public TrainingOptions setOptimizer(java.lang.String optimizer) { this.optimizer = optimizer; return this; } /** * The minimum ratio of cumulative explained variance that needs to be given by the PCA model. * @return value or {@code null} for none */ public java.lang.Double getPcaExplainedVarianceRatio() { return pcaExplainedVarianceRatio; } /** * The minimum ratio of cumulative explained variance that needs to be given by the PCA model. * @param pcaExplainedVarianceRatio pcaExplainedVarianceRatio or {@code null} for none */ public TrainingOptions setPcaExplainedVarianceRatio(java.lang.Double pcaExplainedVarianceRatio) { this.pcaExplainedVarianceRatio = pcaExplainedVarianceRatio; return this; } /** * The solver for PCA. * @return value or {@code null} for none */ public java.lang.String getPcaSolver() { return pcaSolver; } /** * The solver for PCA. * @param pcaSolver pcaSolver or {@code null} for none */ public TrainingOptions setPcaSolver(java.lang.String pcaSolver) { this.pcaSolver = pcaSolver; return this; } /** * Number of paths for the sampled Shapley explain method. * @return value or {@code null} for none */ public java.lang.Long getSampledShapleyNumPaths() { return sampledShapleyNumPaths; } /** * Number of paths for the sampled Shapley explain method. * @param sampledShapleyNumPaths sampledShapleyNumPaths or {@code null} for none */ public TrainingOptions setSampledShapleyNumPaths(java.lang.Long sampledShapleyNumPaths) { this.sampledShapleyNumPaths = sampledShapleyNumPaths; return this; } /** * If true, scale the feature values by dividing the feature standard deviation. Currently only * apply to PCA. * @return value or {@code null} for none */ public java.lang.Boolean getScaleFeatures() { return scaleFeatures; } /** * If true, scale the feature values by dividing the feature standard deviation. Currently only * apply to PCA. * @param scaleFeatures scaleFeatures or {@code null} for none */ public TrainingOptions setScaleFeatures(java.lang.Boolean scaleFeatures) { this.scaleFeatures = scaleFeatures; return this; } /** * Whether to standardize numerical features. Default to true. * @return value or {@code null} for none */ public java.lang.Boolean getStandardizeFeatures() { return standardizeFeatures; } /** * Whether to standardize numerical features. Default to true. * @param standardizeFeatures standardizeFeatures or {@code null} for none */ public TrainingOptions setStandardizeFeatures(java.lang.Boolean standardizeFeatures) { this.standardizeFeatures = standardizeFeatures; return this; } /** * Subsample fraction of the training data to grow tree to prevent overfitting for boosted tree * models. * @return value or {@code null} for none */ public java.lang.Double getSubsample() { return subsample; } /** * Subsample fraction of the training data to grow tree to prevent overfitting for boosted tree * models. * @param subsample subsample or {@code null} for none */ public TrainingOptions setSubsample(java.lang.Double subsample) { this.subsample = subsample; return this; } /** * Based on the selected TF version, the corresponding docker image is used to train external * models. * @return value or {@code null} for none */ public java.lang.String getTfVersion() { return tfVersion; } /** * Based on the selected TF version, the corresponding docker image is used to train external * models. * @param tfVersion tfVersion or {@code null} for none */ public TrainingOptions setTfVersion(java.lang.String tfVersion) { this.tfVersion = tfVersion; return this; } /** * Column to be designated as time series data for ARIMA model. * @return value or {@code null} for none */ public java.lang.String getTimeSeriesDataColumn() { return timeSeriesDataColumn; } /** * Column to be designated as time series data for ARIMA model. * @param timeSeriesDataColumn timeSeriesDataColumn or {@code null} for none */ public TrainingOptions setTimeSeriesDataColumn(java.lang.String timeSeriesDataColumn) { this.timeSeriesDataColumn = timeSeriesDataColumn; return this; } /** * The time series id column that was used during ARIMA model training. * @return value or {@code null} for none */ public java.lang.String getTimeSeriesIdColumn() { return timeSeriesIdColumn; } /** * The time series id column that was used during ARIMA model training. * @param timeSeriesIdColumn timeSeriesIdColumn or {@code null} for none */ public TrainingOptions setTimeSeriesIdColumn(java.lang.String timeSeriesIdColumn) { this.timeSeriesIdColumn = timeSeriesIdColumn; return this; } /** * The time series id columns that were used during ARIMA model training. * @return value or {@code null} for none */ public java.util.List getTimeSeriesIdColumns() { return timeSeriesIdColumns; } /** * The time series id columns that were used during ARIMA model training. * @param timeSeriesIdColumns timeSeriesIdColumns or {@code null} for none */ public TrainingOptions setTimeSeriesIdColumns(java.util.List timeSeriesIdColumns) { this.timeSeriesIdColumns = timeSeriesIdColumns; return this; } /** * The fraction of the interpolated length of the time series that's used to model the time series * trend component. All of the time points of the time series are used to model the non-trend * component. This training option accelerates modeling training without sacrificing much * forecasting accuracy. You can use this option with `minTimeSeriesLength` but not with * `maxTimeSeriesLength`. * @return value or {@code null} for none */ public java.lang.Double getTimeSeriesLengthFraction() { return timeSeriesLengthFraction; } /** * The fraction of the interpolated length of the time series that's used to model the time series * trend component. All of the time points of the time series are used to model the non-trend * component. This training option accelerates modeling training without sacrificing much * forecasting accuracy. You can use this option with `minTimeSeriesLength` but not with * `maxTimeSeriesLength`. * @param timeSeriesLengthFraction timeSeriesLengthFraction or {@code null} for none */ public TrainingOptions setTimeSeriesLengthFraction(java.lang.Double timeSeriesLengthFraction) { this.timeSeriesLengthFraction = timeSeriesLengthFraction; return this; } /** * Column to be designated as time series timestamp for ARIMA model. * @return value or {@code null} for none */ public java.lang.String getTimeSeriesTimestampColumn() { return timeSeriesTimestampColumn; } /** * Column to be designated as time series timestamp for ARIMA model. * @param timeSeriesTimestampColumn timeSeriesTimestampColumn or {@code null} for none */ public TrainingOptions setTimeSeriesTimestampColumn(java.lang.String timeSeriesTimestampColumn) { this.timeSeriesTimestampColumn = timeSeriesTimestampColumn; return this; } /** * Tree construction algorithm for boosted tree models. * @return value or {@code null} for none */ public java.lang.String getTreeMethod() { return treeMethod; } /** * Tree construction algorithm for boosted tree models. * @param treeMethod treeMethod or {@code null} for none */ public TrainingOptions setTreeMethod(java.lang.String treeMethod) { this.treeMethod = treeMethod; return this; } /** * Smoothing window size for the trend component. When a positive value is specified, a center * moving average smoothing is applied on the history trend. When the smoothing window is out of * the boundary at the beginning or the end of the trend, the first element or the last element is * padded to fill the smoothing window before the average is applied. * @return value or {@code null} for none */ public java.lang.Long getTrendSmoothingWindowSize() { return trendSmoothingWindowSize; } /** * Smoothing window size for the trend component. When a positive value is specified, a center * moving average smoothing is applied on the history trend. When the smoothing window is out of * the boundary at the beginning or the end of the trend, the first element or the last element is * padded to fill the smoothing window before the average is applied. * @param trendSmoothingWindowSize trendSmoothingWindowSize or {@code null} for none */ public TrainingOptions setTrendSmoothingWindowSize(java.lang.Long trendSmoothingWindowSize) { this.trendSmoothingWindowSize = trendSmoothingWindowSize; return this; } /** * User column specified for matrix factorization models. * @return value or {@code null} for none */ public java.lang.String getUserColumn() { return userColumn; } /** * User column specified for matrix factorization models. * @param userColumn userColumn or {@code null} for none */ public TrainingOptions setUserColumn(java.lang.String userColumn) { this.userColumn = userColumn; return this; } /** * The version aliases to apply in Vertex AI model registry. Always overwrite if the version * aliases exists in a existing model. * @return value or {@code null} for none */ public java.util.List getVertexAiModelVersionAliases() { return vertexAiModelVersionAliases; } /** * The version aliases to apply in Vertex AI model registry. Always overwrite if the version * aliases exists in a existing model. * @param vertexAiModelVersionAliases vertexAiModelVersionAliases or {@code null} for none */ public TrainingOptions setVertexAiModelVersionAliases(java.util.List vertexAiModelVersionAliases) { this.vertexAiModelVersionAliases = vertexAiModelVersionAliases; return this; } /** * Hyperparameter for matrix factoration when implicit feedback type is specified. * @return value or {@code null} for none */ public java.lang.Double getWalsAlpha() { return walsAlpha; } /** * Hyperparameter for matrix factoration when implicit feedback type is specified. * @param walsAlpha walsAlpha or {@code null} for none */ public TrainingOptions setWalsAlpha(java.lang.Double walsAlpha) { this.walsAlpha = walsAlpha; return this; } /** * Whether to train a model from the last checkpoint. * @return value or {@code null} for none */ public java.lang.Boolean getWarmStart() { return warmStart; } /** * Whether to train a model from the last checkpoint. * @param warmStart warmStart or {@code null} for none */ public TrainingOptions setWarmStart(java.lang.Boolean warmStart) { this.warmStart = warmStart; return this; } /** * User-selected XGBoost versions for training of XGBoost models. * @return value or {@code null} for none */ public java.lang.String getXgboostVersion() { return xgboostVersion; } /** * User-selected XGBoost versions for training of XGBoost models. * @param xgboostVersion xgboostVersion or {@code null} for none */ public TrainingOptions setXgboostVersion(java.lang.String xgboostVersion) { this.xgboostVersion = xgboostVersion; return this; } @Override public TrainingOptions set(String fieldName, Object value) { return (TrainingOptions) super.set(fieldName, value); } @Override public TrainingOptions clone() { return (TrainingOptions) super.clone(); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy