All Downloads are FREE. Search and download functionalities are using the official Maven repository.

target.apidocs.com.google.api.services.bigquery.model.RankingMetrics.html Maven / Gradle / Ivy

There is a newer version: v2-rev20241027-2.0.0
Show newest version






RankingMetrics (BigQuery API v2-rev20240905-2.0.0)












com.google.api.services.bigquery.model

Class RankingMetrics

    • Constructor Detail

      • RankingMetrics

        public RankingMetrics()
    • Method Detail

      • getAverageRank

        public Double getAverageRank()
        Determines the goodness of a ranking by computing the percentile rank from the predicted confidence and dividing it by the original rank.
        Returns:
        value or null for none
      • setAverageRank

        public RankingMetrics setAverageRank(Double averageRank)
        Determines the goodness of a ranking by computing the percentile rank from the predicted confidence and dividing it by the original rank.
        Parameters:
        averageRank - averageRank or null for none
      • getMeanAveragePrecision

        public Double getMeanAveragePrecision()
        Calculates a precision per user for all the items by ranking them and then averages all the precisions across all the users.
        Returns:
        value or null for none
      • setMeanAveragePrecision

        public RankingMetrics setMeanAveragePrecision(Double meanAveragePrecision)
        Calculates a precision per user for all the items by ranking them and then averages all the precisions across all the users.
        Parameters:
        meanAveragePrecision - meanAveragePrecision or null for none
      • getMeanSquaredError

        public Double getMeanSquaredError()
        Similar to the mean squared error computed in regression and explicit recommendation models except instead of computing the rating directly, the output from evaluate is computed against a preference which is 1 or 0 depending on if the rating exists or not.
        Returns:
        value or null for none
      • setMeanSquaredError

        public RankingMetrics setMeanSquaredError(Double meanSquaredError)
        Similar to the mean squared error computed in regression and explicit recommendation models except instead of computing the rating directly, the output from evaluate is computed against a preference which is 1 or 0 depending on if the rating exists or not.
        Parameters:
        meanSquaredError - meanSquaredError or null for none
      • getNormalizedDiscountedCumulativeGain

        public Double getNormalizedDiscountedCumulativeGain()
        A metric to determine the goodness of a ranking calculated from the predicted confidence by comparing it to an ideal rank measured by the original ratings.
        Returns:
        value or null for none
      • setNormalizedDiscountedCumulativeGain

        public RankingMetrics setNormalizedDiscountedCumulativeGain(Double normalizedDiscountedCumulativeGain)
        A metric to determine the goodness of a ranking calculated from the predicted confidence by comparing it to an ideal rank measured by the original ratings.
        Parameters:
        normalizedDiscountedCumulativeGain - normalizedDiscountedCumulativeGain or null for none
      • set

        public RankingMetrics set(String fieldName,
                                  Object value)
        Overrides:
        set in class com.google.api.client.json.GenericJson
      • clone

        public RankingMetrics clone()
        Overrides:
        clone in class com.google.api.client.json.GenericJson

Copyright © 2011–2024 Google. All rights reserved.





© 2015 - 2024 Weber Informatics LLC | Privacy Policy