All Downloads are FREE. Search and download functionalities are using the official Maven repository.

target.apidocs.com.google.api.services.bigquery.model.TrainingOptions.html Maven / Gradle / Ivy

There is a newer version: v2-rev20241027-2.0.0
Show newest version






TrainingOptions (BigQuery API v2-rev20240905-2.0.0)












com.google.api.services.bigquery.model

Class TrainingOptions

    • Constructor Detail

      • TrainingOptions

        public TrainingOptions()
    • Method Detail

      • getActivationFn

        public String getActivationFn()
        Activation function of the neural nets.
        Returns:
        value or null for none
      • setActivationFn

        public TrainingOptions setActivationFn(String activationFn)
        Activation function of the neural nets.
        Parameters:
        activationFn - activationFn or null for none
      • getAdjustStepChanges

        public Boolean getAdjustStepChanges()
        If true, detect step changes and make data adjustment in the input time series.
        Returns:
        value or null for none
      • setAdjustStepChanges

        public TrainingOptions setAdjustStepChanges(Boolean adjustStepChanges)
        If true, detect step changes and make data adjustment in the input time series.
        Parameters:
        adjustStepChanges - adjustStepChanges or null for none
      • getApproxGlobalFeatureContrib

        public Boolean getApproxGlobalFeatureContrib()
        Whether to use approximate feature contribution method in XGBoost model explanation for global explain.
        Returns:
        value or null for none
      • setApproxGlobalFeatureContrib

        public TrainingOptions setApproxGlobalFeatureContrib(Boolean approxGlobalFeatureContrib)
        Whether to use approximate feature contribution method in XGBoost model explanation for global explain.
        Parameters:
        approxGlobalFeatureContrib - approxGlobalFeatureContrib or null for none
      • getAutoArima

        public Boolean getAutoArima()
        Whether to enable auto ARIMA or not.
        Returns:
        value or null for none
      • setAutoArima

        public TrainingOptions setAutoArima(Boolean autoArima)
        Whether to enable auto ARIMA or not.
        Parameters:
        autoArima - autoArima or null for none
      • getAutoArimaMaxOrder

        public Long getAutoArimaMaxOrder()
        The max value of the sum of non-seasonal p and q.
        Returns:
        value or null for none
      • setAutoArimaMaxOrder

        public TrainingOptions setAutoArimaMaxOrder(Long autoArimaMaxOrder)
        The max value of the sum of non-seasonal p and q.
        Parameters:
        autoArimaMaxOrder - autoArimaMaxOrder or null for none
      • getAutoArimaMinOrder

        public Long getAutoArimaMinOrder()
        The min value of the sum of non-seasonal p and q.
        Returns:
        value or null for none
      • setAutoArimaMinOrder

        public TrainingOptions setAutoArimaMinOrder(Long autoArimaMinOrder)
        The min value of the sum of non-seasonal p and q.
        Parameters:
        autoArimaMinOrder - autoArimaMinOrder or null for none
      • getAutoClassWeights

        public Boolean getAutoClassWeights()
        Whether to calculate class weights automatically based on the popularity of each label.
        Returns:
        value or null for none
      • setAutoClassWeights

        public TrainingOptions setAutoClassWeights(Boolean autoClassWeights)
        Whether to calculate class weights automatically based on the popularity of each label.
        Parameters:
        autoClassWeights - autoClassWeights or null for none
      • getBatchSize

        public Long getBatchSize()
        Batch size for dnn models.
        Returns:
        value or null for none
      • setBatchSize

        public TrainingOptions setBatchSize(Long batchSize)
        Batch size for dnn models.
        Parameters:
        batchSize - batchSize or null for none
      • getBoosterType

        public String getBoosterType()
        Booster type for boosted tree models.
        Returns:
        value or null for none
      • setBoosterType

        public TrainingOptions setBoosterType(String boosterType)
        Booster type for boosted tree models.
        Parameters:
        boosterType - boosterType or null for none
      • getBudgetHours

        public Double getBudgetHours()
        Budget in hours for AutoML training.
        Returns:
        value or null for none
      • setBudgetHours

        public TrainingOptions setBudgetHours(Double budgetHours)
        Budget in hours for AutoML training.
        Parameters:
        budgetHours - budgetHours or null for none
      • getCalculatePValues

        public Boolean getCalculatePValues()
        Whether or not p-value test should be computed for this model. Only available for linear and logistic regression models.
        Returns:
        value or null for none
      • setCalculatePValues

        public TrainingOptions setCalculatePValues(Boolean calculatePValues)
        Whether or not p-value test should be computed for this model. Only available for linear and logistic regression models.
        Parameters:
        calculatePValues - calculatePValues or null for none
      • getCategoryEncodingMethod

        public String getCategoryEncodingMethod()
        Categorical feature encoding method.
        Returns:
        value or null for none
      • setCategoryEncodingMethod

        public TrainingOptions setCategoryEncodingMethod(String categoryEncodingMethod)
        Categorical feature encoding method.
        Parameters:
        categoryEncodingMethod - categoryEncodingMethod or null for none
      • getCleanSpikesAndDips

        public Boolean getCleanSpikesAndDips()
        If true, clean spikes and dips in the input time series.
        Returns:
        value or null for none
      • setCleanSpikesAndDips

        public TrainingOptions setCleanSpikesAndDips(Boolean cleanSpikesAndDips)
        If true, clean spikes and dips in the input time series.
        Parameters:
        cleanSpikesAndDips - cleanSpikesAndDips or null for none
      • getColorSpace

        public String getColorSpace()
        Enums for color space, used for processing images in Object Table. See more details at https://www.tensorflow.org/io/tutorials/colorspace.
        Returns:
        value or null for none
      • setColorSpace

        public TrainingOptions setColorSpace(String colorSpace)
        Enums for color space, used for processing images in Object Table. See more details at https://www.tensorflow.org/io/tutorials/colorspace.
        Parameters:
        colorSpace - colorSpace or null for none
      • getColsampleBylevel

        public Double getColsampleBylevel()
        Subsample ratio of columns for each level for boosted tree models.
        Returns:
        value or null for none
      • setColsampleBylevel

        public TrainingOptions setColsampleBylevel(Double colsampleBylevel)
        Subsample ratio of columns for each level for boosted tree models.
        Parameters:
        colsampleBylevel - colsampleBylevel or null for none
      • getColsampleBynode

        public Double getColsampleBynode()
        Subsample ratio of columns for each node(split) for boosted tree models.
        Returns:
        value or null for none
      • setColsampleBynode

        public TrainingOptions setColsampleBynode(Double colsampleBynode)
        Subsample ratio of columns for each node(split) for boosted tree models.
        Parameters:
        colsampleBynode - colsampleBynode or null for none
      • getColsampleBytree

        public Double getColsampleBytree()
        Subsample ratio of columns when constructing each tree for boosted tree models.
        Returns:
        value or null for none
      • setColsampleBytree

        public TrainingOptions setColsampleBytree(Double colsampleBytree)
        Subsample ratio of columns when constructing each tree for boosted tree models.
        Parameters:
        colsampleBytree - colsampleBytree or null for none
      • getDartNormalizeType

        public String getDartNormalizeType()
        Type of normalization algorithm for boosted tree models using dart booster.
        Returns:
        value or null for none
      • setDartNormalizeType

        public TrainingOptions setDartNormalizeType(String dartNormalizeType)
        Type of normalization algorithm for boosted tree models using dart booster.
        Parameters:
        dartNormalizeType - dartNormalizeType or null for none
      • getDataFrequency

        public String getDataFrequency()
        The data frequency of a time series.
        Returns:
        value or null for none
      • setDataFrequency

        public TrainingOptions setDataFrequency(String dataFrequency)
        The data frequency of a time series.
        Parameters:
        dataFrequency - dataFrequency or null for none
      • getDataSplitColumn

        public String getDataSplitColumn()
        The column to split data with. This column won't be used as a feature. 1. When data_split_method is CUSTOM, the corresponding column should be boolean. The rows with true value tag are eval data, and the false are training data. 2. When data_split_method is SEQ, the first DATA_SPLIT_EVAL_FRACTION rows (from smallest to largest) in the corresponding column are used as training data, and the rest are eval data. It respects the order in Orderable data types: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data-type- properties
        Returns:
        value or null for none
      • setDataSplitColumn

        public TrainingOptions setDataSplitColumn(String dataSplitColumn)
        The column to split data with. This column won't be used as a feature. 1. When data_split_method is CUSTOM, the corresponding column should be boolean. The rows with true value tag are eval data, and the false are training data. 2. When data_split_method is SEQ, the first DATA_SPLIT_EVAL_FRACTION rows (from smallest to largest) in the corresponding column are used as training data, and the rest are eval data. It respects the order in Orderable data types: https://cloud.google.com/bigquery/docs/reference/standard-sql/data-types#data-type- properties
        Parameters:
        dataSplitColumn - dataSplitColumn or null for none
      • getDataSplitEvalFraction

        public Double getDataSplitEvalFraction()
        The fraction of evaluation data over the whole input data. The rest of data will be used as training data. The format should be double. Accurate to two decimal places. Default value is 0.2.
        Returns:
        value or null for none
      • setDataSplitEvalFraction

        public TrainingOptions setDataSplitEvalFraction(Double dataSplitEvalFraction)
        The fraction of evaluation data over the whole input data. The rest of data will be used as training data. The format should be double. Accurate to two decimal places. Default value is 0.2.
        Parameters:
        dataSplitEvalFraction - dataSplitEvalFraction or null for none
      • getDataSplitMethod

        public String getDataSplitMethod()
        The data split type for training and evaluation, e.g. RANDOM.
        Returns:
        value or null for none
      • setDataSplitMethod

        public TrainingOptions setDataSplitMethod(String dataSplitMethod)
        The data split type for training and evaluation, e.g. RANDOM.
        Parameters:
        dataSplitMethod - dataSplitMethod or null for none
      • getDecomposeTimeSeries

        public Boolean getDecomposeTimeSeries()
        If true, perform decompose time series and save the results.
        Returns:
        value or null for none
      • setDecomposeTimeSeries

        public TrainingOptions setDecomposeTimeSeries(Boolean decomposeTimeSeries)
        If true, perform decompose time series and save the results.
        Parameters:
        decomposeTimeSeries - decomposeTimeSeries or null for none
      • getDistanceType

        public String getDistanceType()
        Distance type for clustering models.
        Returns:
        value or null for none
      • setDistanceType

        public TrainingOptions setDistanceType(String distanceType)
        Distance type for clustering models.
        Parameters:
        distanceType - distanceType or null for none
      • getDropout

        public Double getDropout()
        Dropout probability for dnn models.
        Returns:
        value or null for none
      • setDropout

        public TrainingOptions setDropout(Double dropout)
        Dropout probability for dnn models.
        Parameters:
        dropout - dropout or null for none
      • getEarlyStop

        public Boolean getEarlyStop()
        Whether to stop early when the loss doesn't improve significantly any more (compared to min_relative_progress). Used only for iterative training algorithms.
        Returns:
        value or null for none
      • setEarlyStop

        public TrainingOptions setEarlyStop(Boolean earlyStop)
        Whether to stop early when the loss doesn't improve significantly any more (compared to min_relative_progress). Used only for iterative training algorithms.
        Parameters:
        earlyStop - earlyStop or null for none
      • getEnableGlobalExplain

        public Boolean getEnableGlobalExplain()
        If true, enable global explanation during training.
        Returns:
        value or null for none
      • setEnableGlobalExplain

        public TrainingOptions setEnableGlobalExplain(Boolean enableGlobalExplain)
        If true, enable global explanation during training.
        Parameters:
        enableGlobalExplain - enableGlobalExplain or null for none
      • getFeedbackType

        public String getFeedbackType()
        Feedback type that specifies which algorithm to run for matrix factorization.
        Returns:
        value or null for none
      • setFeedbackType

        public TrainingOptions setFeedbackType(String feedbackType)
        Feedback type that specifies which algorithm to run for matrix factorization.
        Parameters:
        feedbackType - feedbackType or null for none
      • getFitIntercept

        public Boolean getFitIntercept()
        Whether the model should include intercept during model training.
        Returns:
        value or null for none
      • setFitIntercept

        public TrainingOptions setFitIntercept(Boolean fitIntercept)
        Whether the model should include intercept during model training.
        Parameters:
        fitIntercept - fitIntercept or null for none
      • getHiddenUnits

        public List<Long> getHiddenUnits()
        Hidden units for dnn models.
        Returns:
        value or null for none
      • setHiddenUnits

        public TrainingOptions setHiddenUnits(List<Long> hiddenUnits)
        Hidden units for dnn models.
        Parameters:
        hiddenUnits - hiddenUnits or null for none
      • getHolidayRegion

        public String getHolidayRegion()
        The geographical region based on which the holidays are considered in time series modeling. If a valid value is specified, then holiday effects modeling is enabled.
        Returns:
        value or null for none
      • setHolidayRegion

        public TrainingOptions setHolidayRegion(String holidayRegion)
        The geographical region based on which the holidays are considered in time series modeling. If a valid value is specified, then holiday effects modeling is enabled.
        Parameters:
        holidayRegion - holidayRegion or null for none
      • getHolidayRegions

        public List<String> getHolidayRegions()
        A list of geographical regions that are used for time series modeling.
        Returns:
        value or null for none
      • setHolidayRegions

        public TrainingOptions setHolidayRegions(List<String> holidayRegions)
        A list of geographical regions that are used for time series modeling.
        Parameters:
        holidayRegions - holidayRegions or null for none
      • getHorizon

        public Long getHorizon()
        The number of periods ahead that need to be forecasted.
        Returns:
        value or null for none
      • setHorizon

        public TrainingOptions setHorizon(Long horizon)
        The number of periods ahead that need to be forecasted.
        Parameters:
        horizon - horizon or null for none
      • getHparamTuningObjectives

        public List<String> getHparamTuningObjectives()
        The target evaluation metrics to optimize the hyperparameters for.
        Returns:
        value or null for none
      • setHparamTuningObjectives

        public TrainingOptions setHparamTuningObjectives(List<String> hparamTuningObjectives)
        The target evaluation metrics to optimize the hyperparameters for.
        Parameters:
        hparamTuningObjectives - hparamTuningObjectives or null for none
      • getIncludeDrift

        public Boolean getIncludeDrift()
        Include drift when fitting an ARIMA model.
        Returns:
        value or null for none
      • setIncludeDrift

        public TrainingOptions setIncludeDrift(Boolean includeDrift)
        Include drift when fitting an ARIMA model.
        Parameters:
        includeDrift - includeDrift or null for none
      • getInitialLearnRate

        public Double getInitialLearnRate()
        Specifies the initial learning rate for the line search learn rate strategy.
        Returns:
        value or null for none
      • setInitialLearnRate

        public TrainingOptions setInitialLearnRate(Double initialLearnRate)
        Specifies the initial learning rate for the line search learn rate strategy.
        Parameters:
        initialLearnRate - initialLearnRate or null for none
      • getInputLabelColumns

        public List<String> getInputLabelColumns()
        Name of input label columns in training data.
        Returns:
        value or null for none
      • setInputLabelColumns

        public TrainingOptions setInputLabelColumns(List<String> inputLabelColumns)
        Name of input label columns in training data.
        Parameters:
        inputLabelColumns - inputLabelColumns or null for none
      • getInstanceWeightColumn

        public String getInstanceWeightColumn()
        Name of the instance weight column for training data. This column isn't be used as a feature.
        Returns:
        value or null for none
      • setInstanceWeightColumn

        public TrainingOptions setInstanceWeightColumn(String instanceWeightColumn)
        Name of the instance weight column for training data. This column isn't be used as a feature.
        Parameters:
        instanceWeightColumn - instanceWeightColumn or null for none
      • getIntegratedGradientsNumSteps

        public Long getIntegratedGradientsNumSteps()
        Number of integral steps for the integrated gradients explain method.
        Returns:
        value or null for none
      • setIntegratedGradientsNumSteps

        public TrainingOptions setIntegratedGradientsNumSteps(Long integratedGradientsNumSteps)
        Number of integral steps for the integrated gradients explain method.
        Parameters:
        integratedGradientsNumSteps - integratedGradientsNumSteps or null for none
      • getItemColumn

        public String getItemColumn()
        Item column specified for matrix factorization models.
        Returns:
        value or null for none
      • setItemColumn

        public TrainingOptions setItemColumn(String itemColumn)
        Item column specified for matrix factorization models.
        Parameters:
        itemColumn - itemColumn or null for none
      • getKmeansInitializationColumn

        public String getKmeansInitializationColumn()
        The column used to provide the initial centroids for kmeans algorithm when kmeans_initialization_method is CUSTOM.
        Returns:
        value or null for none
      • setKmeansInitializationColumn

        public TrainingOptions setKmeansInitializationColumn(String kmeansInitializationColumn)
        The column used to provide the initial centroids for kmeans algorithm when kmeans_initialization_method is CUSTOM.
        Parameters:
        kmeansInitializationColumn - kmeansInitializationColumn or null for none
      • getKmeansInitializationMethod

        public String getKmeansInitializationMethod()
        The method used to initialize the centroids for kmeans algorithm.
        Returns:
        value or null for none
      • setKmeansInitializationMethod

        public TrainingOptions setKmeansInitializationMethod(String kmeansInitializationMethod)
        The method used to initialize the centroids for kmeans algorithm.
        Parameters:
        kmeansInitializationMethod - kmeansInitializationMethod or null for none
      • getL1RegActivation

        public Double getL1RegActivation()
        L1 regularization coefficient to activations.
        Returns:
        value or null for none
      • setL1RegActivation

        public TrainingOptions setL1RegActivation(Double l1RegActivation)
        L1 regularization coefficient to activations.
        Parameters:
        l1RegActivation - l1RegActivation or null for none
      • getL1Regularization

        public Double getL1Regularization()
        L1 regularization coefficient.
        Returns:
        value or null for none
      • setL1Regularization

        public TrainingOptions setL1Regularization(Double l1Regularization)
        L1 regularization coefficient.
        Parameters:
        l1Regularization - l1Regularization or null for none
      • getL2Regularization

        public Double getL2Regularization()
        L2 regularization coefficient.
        Returns:
        value or null for none
      • setL2Regularization

        public TrainingOptions setL2Regularization(Double l2Regularization)
        L2 regularization coefficient.
        Parameters:
        l2Regularization - l2Regularization or null for none
      • getLabelClassWeights

        public Map<String,Double> getLabelClassWeights()
        Weights associated with each label class, for rebalancing the training data. Only applicable for classification models.
        Returns:
        value or null for none
      • setLabelClassWeights

        public TrainingOptions setLabelClassWeights(Map<String,Double> labelClassWeights)
        Weights associated with each label class, for rebalancing the training data. Only applicable for classification models.
        Parameters:
        labelClassWeights - labelClassWeights or null for none
      • getLearnRate

        public Double getLearnRate()
        Learning rate in training. Used only for iterative training algorithms.
        Returns:
        value or null for none
      • setLearnRate

        public TrainingOptions setLearnRate(Double learnRate)
        Learning rate in training. Used only for iterative training algorithms.
        Parameters:
        learnRate - learnRate or null for none
      • getLearnRateStrategy

        public String getLearnRateStrategy()
        The strategy to determine learn rate for the current iteration.
        Returns:
        value or null for none
      • setLearnRateStrategy

        public TrainingOptions setLearnRateStrategy(String learnRateStrategy)
        The strategy to determine learn rate for the current iteration.
        Parameters:
        learnRateStrategy - learnRateStrategy or null for none
      • getLossType

        public String getLossType()
        Type of loss function used during training run.
        Returns:
        value or null for none
      • setLossType

        public TrainingOptions setLossType(String lossType)
        Type of loss function used during training run.
        Parameters:
        lossType - lossType or null for none
      • getMaxIterations

        public Long getMaxIterations()
        The maximum number of iterations in training. Used only for iterative training algorithms.
        Returns:
        value or null for none
      • setMaxIterations

        public TrainingOptions setMaxIterations(Long maxIterations)
        The maximum number of iterations in training. Used only for iterative training algorithms.
        Parameters:
        maxIterations - maxIterations or null for none
      • getMaxParallelTrials

        public Long getMaxParallelTrials()
        Maximum number of trials to run in parallel.
        Returns:
        value or null for none
      • setMaxParallelTrials

        public TrainingOptions setMaxParallelTrials(Long maxParallelTrials)
        Maximum number of trials to run in parallel.
        Parameters:
        maxParallelTrials - maxParallelTrials or null for none
      • getMaxTimeSeriesLength

        public Long getMaxTimeSeriesLength()
        The maximum number of time points in a time series that can be used in modeling the trend component of the time series. Don't use this option with the `timeSeriesLengthFraction` or `minTimeSeriesLength` options.
        Returns:
        value or null for none
      • setMaxTimeSeriesLength

        public TrainingOptions setMaxTimeSeriesLength(Long maxTimeSeriesLength)
        The maximum number of time points in a time series that can be used in modeling the trend component of the time series. Don't use this option with the `timeSeriesLengthFraction` or `minTimeSeriesLength` options.
        Parameters:
        maxTimeSeriesLength - maxTimeSeriesLength or null for none
      • getMaxTreeDepth

        public Long getMaxTreeDepth()
        Maximum depth of a tree for boosted tree models.
        Returns:
        value or null for none
      • setMaxTreeDepth

        public TrainingOptions setMaxTreeDepth(Long maxTreeDepth)
        Maximum depth of a tree for boosted tree models.
        Parameters:
        maxTreeDepth - maxTreeDepth or null for none
      • getMinRelativeProgress

        public Double getMinRelativeProgress()
        When early_stop is true, stops training when accuracy improvement is less than 'min_relative_progress'. Used only for iterative training algorithms.
        Returns:
        value or null for none
      • setMinRelativeProgress

        public TrainingOptions setMinRelativeProgress(Double minRelativeProgress)
        When early_stop is true, stops training when accuracy improvement is less than 'min_relative_progress'. Used only for iterative training algorithms.
        Parameters:
        minRelativeProgress - minRelativeProgress or null for none
      • getMinSplitLoss

        public Double getMinSplitLoss()
        Minimum split loss for boosted tree models.
        Returns:
        value or null for none
      • setMinSplitLoss

        public TrainingOptions setMinSplitLoss(Double minSplitLoss)
        Minimum split loss for boosted tree models.
        Parameters:
        minSplitLoss - minSplitLoss or null for none
      • getMinTimeSeriesLength

        public Long getMinTimeSeriesLength()
        The minimum number of time points in a time series that are used in modeling the trend component of the time series. If you use this option you must also set the `timeSeriesLengthFraction` option. This training option ensures that enough time points are available when you use `timeSeriesLengthFraction` in trend modeling. This is particularly important when forecasting multiple time series in a single query using `timeSeriesIdColumn`. If the total number of time points is less than the `minTimeSeriesLength` value, then the query uses all available time points.
        Returns:
        value or null for none
      • setMinTimeSeriesLength

        public TrainingOptions setMinTimeSeriesLength(Long minTimeSeriesLength)
        The minimum number of time points in a time series that are used in modeling the trend component of the time series. If you use this option you must also set the `timeSeriesLengthFraction` option. This training option ensures that enough time points are available when you use `timeSeriesLengthFraction` in trend modeling. This is particularly important when forecasting multiple time series in a single query using `timeSeriesIdColumn`. If the total number of time points is less than the `minTimeSeriesLength` value, then the query uses all available time points.
        Parameters:
        minTimeSeriesLength - minTimeSeriesLength or null for none
      • getMinTreeChildWeight

        public Long getMinTreeChildWeight()
        Minimum sum of instance weight needed in a child for boosted tree models.
        Returns:
        value or null for none
      • setMinTreeChildWeight

        public TrainingOptions setMinTreeChildWeight(Long minTreeChildWeight)
        Minimum sum of instance weight needed in a child for boosted tree models.
        Parameters:
        minTreeChildWeight - minTreeChildWeight or null for none
      • getModelRegistry

        public String getModelRegistry()
        The model registry.
        Returns:
        value or null for none
      • setModelRegistry

        public TrainingOptions setModelRegistry(String modelRegistry)
        The model registry.
        Parameters:
        modelRegistry - modelRegistry or null for none
      • getModelUri

        public String getModelUri()
        Google Cloud Storage URI from which the model was imported. Only applicable for imported models.
        Returns:
        value or null for none
      • setModelUri

        public TrainingOptions setModelUri(String modelUri)
        Google Cloud Storage URI from which the model was imported. Only applicable for imported models.
        Parameters:
        modelUri - modelUri or null for none
      • getNonSeasonalOrder

        public ArimaOrder getNonSeasonalOrder()
        A specification of the non-seasonal part of the ARIMA model: the three components (p, d, q) are the AR order, the degree of differencing, and the MA order.
        Returns:
        value or null for none
      • setNonSeasonalOrder

        public TrainingOptions setNonSeasonalOrder(ArimaOrder nonSeasonalOrder)
        A specification of the non-seasonal part of the ARIMA model: the three components (p, d, q) are the AR order, the degree of differencing, and the MA order.
        Parameters:
        nonSeasonalOrder - nonSeasonalOrder or null for none
      • getNumClusters

        public Long getNumClusters()
        Number of clusters for clustering models.
        Returns:
        value or null for none
      • setNumClusters

        public TrainingOptions setNumClusters(Long numClusters)
        Number of clusters for clustering models.
        Parameters:
        numClusters - numClusters or null for none
      • getNumFactors

        public Long getNumFactors()
        Num factors specified for matrix factorization models.
        Returns:
        value or null for none
      • setNumFactors

        public TrainingOptions setNumFactors(Long numFactors)
        Num factors specified for matrix factorization models.
        Parameters:
        numFactors - numFactors or null for none
      • getNumParallelTree

        public Long getNumParallelTree()
        Number of parallel trees constructed during each iteration for boosted tree models.
        Returns:
        value or null for none
      • setNumParallelTree

        public TrainingOptions setNumParallelTree(Long numParallelTree)
        Number of parallel trees constructed during each iteration for boosted tree models.
        Parameters:
        numParallelTree - numParallelTree or null for none
      • getNumPrincipalComponents

        public Long getNumPrincipalComponents()
        Number of principal components to keep in the PCA model. Must be <= the number of features.
        Returns:
        value or null for none
      • setNumPrincipalComponents

        public TrainingOptions setNumPrincipalComponents(Long numPrincipalComponents)
        Number of principal components to keep in the PCA model. Must be <= the number of features.
        Parameters:
        numPrincipalComponents - numPrincipalComponents or null for none
      • getNumTrials

        public Long getNumTrials()
        Number of trials to run this hyperparameter tuning job.
        Returns:
        value or null for none
      • setNumTrials

        public TrainingOptions setNumTrials(Long numTrials)
        Number of trials to run this hyperparameter tuning job.
        Parameters:
        numTrials - numTrials or null for none
      • getOptimizationStrategy

        public String getOptimizationStrategy()
        Optimization strategy for training linear regression models.
        Returns:
        value or null for none
      • setOptimizationStrategy

        public TrainingOptions setOptimizationStrategy(String optimizationStrategy)
        Optimization strategy for training linear regression models.
        Parameters:
        optimizationStrategy - optimizationStrategy or null for none
      • getOptimizer

        public String getOptimizer()
        Optimizer used for training the neural nets.
        Returns:
        value or null for none
      • setOptimizer

        public TrainingOptions setOptimizer(String optimizer)
        Optimizer used for training the neural nets.
        Parameters:
        optimizer - optimizer or null for none
      • getPcaExplainedVarianceRatio

        public Double getPcaExplainedVarianceRatio()
        The minimum ratio of cumulative explained variance that needs to be given by the PCA model.
        Returns:
        value or null for none
      • setPcaExplainedVarianceRatio

        public TrainingOptions setPcaExplainedVarianceRatio(Double pcaExplainedVarianceRatio)
        The minimum ratio of cumulative explained variance that needs to be given by the PCA model.
        Parameters:
        pcaExplainedVarianceRatio - pcaExplainedVarianceRatio or null for none
      • getPcaSolver

        public String getPcaSolver()
        The solver for PCA.
        Returns:
        value or null for none
      • setPcaSolver

        public TrainingOptions setPcaSolver(String pcaSolver)
        The solver for PCA.
        Parameters:
        pcaSolver - pcaSolver or null for none
      • getSampledShapleyNumPaths

        public Long getSampledShapleyNumPaths()
        Number of paths for the sampled Shapley explain method.
        Returns:
        value or null for none
      • setSampledShapleyNumPaths

        public TrainingOptions setSampledShapleyNumPaths(Long sampledShapleyNumPaths)
        Number of paths for the sampled Shapley explain method.
        Parameters:
        sampledShapleyNumPaths - sampledShapleyNumPaths or null for none
      • getScaleFeatures

        public Boolean getScaleFeatures()
        If true, scale the feature values by dividing the feature standard deviation. Currently only apply to PCA.
        Returns:
        value or null for none
      • setScaleFeatures

        public TrainingOptions setScaleFeatures(Boolean scaleFeatures)
        If true, scale the feature values by dividing the feature standard deviation. Currently only apply to PCA.
        Parameters:
        scaleFeatures - scaleFeatures or null for none
      • getStandardizeFeatures

        public Boolean getStandardizeFeatures()
        Whether to standardize numerical features. Default to true.
        Returns:
        value or null for none
      • setStandardizeFeatures

        public TrainingOptions setStandardizeFeatures(Boolean standardizeFeatures)
        Whether to standardize numerical features. Default to true.
        Parameters:
        standardizeFeatures - standardizeFeatures or null for none
      • getSubsample

        public Double getSubsample()
        Subsample fraction of the training data to grow tree to prevent overfitting for boosted tree models.
        Returns:
        value or null for none
      • setSubsample

        public TrainingOptions setSubsample(Double subsample)
        Subsample fraction of the training data to grow tree to prevent overfitting for boosted tree models.
        Parameters:
        subsample - subsample or null for none
      • getTfVersion

        public String getTfVersion()
        Based on the selected TF version, the corresponding docker image is used to train external models.
        Returns:
        value or null for none
      • setTfVersion

        public TrainingOptions setTfVersion(String tfVersion)
        Based on the selected TF version, the corresponding docker image is used to train external models.
        Parameters:
        tfVersion - tfVersion or null for none
      • getTimeSeriesDataColumn

        public String getTimeSeriesDataColumn()
        Column to be designated as time series data for ARIMA model.
        Returns:
        value or null for none
      • setTimeSeriesDataColumn

        public TrainingOptions setTimeSeriesDataColumn(String timeSeriesDataColumn)
        Column to be designated as time series data for ARIMA model.
        Parameters:
        timeSeriesDataColumn - timeSeriesDataColumn or null for none
      • getTimeSeriesIdColumn

        public String getTimeSeriesIdColumn()
        The time series id column that was used during ARIMA model training.
        Returns:
        value or null for none
      • setTimeSeriesIdColumn

        public TrainingOptions setTimeSeriesIdColumn(String timeSeriesIdColumn)
        The time series id column that was used during ARIMA model training.
        Parameters:
        timeSeriesIdColumn - timeSeriesIdColumn or null for none
      • getTimeSeriesIdColumns

        public List<String> getTimeSeriesIdColumns()
        The time series id columns that were used during ARIMA model training.
        Returns:
        value or null for none
      • setTimeSeriesIdColumns

        public TrainingOptions setTimeSeriesIdColumns(List<String> timeSeriesIdColumns)
        The time series id columns that were used during ARIMA model training.
        Parameters:
        timeSeriesIdColumns - timeSeriesIdColumns or null for none
      • getTimeSeriesLengthFraction

        public Double getTimeSeriesLengthFraction()
        The fraction of the interpolated length of the time series that's used to model the time series trend component. All of the time points of the time series are used to model the non-trend component. This training option accelerates modeling training without sacrificing much forecasting accuracy. You can use this option with `minTimeSeriesLength` but not with `maxTimeSeriesLength`.
        Returns:
        value or null for none
      • setTimeSeriesLengthFraction

        public TrainingOptions setTimeSeriesLengthFraction(Double timeSeriesLengthFraction)
        The fraction of the interpolated length of the time series that's used to model the time series trend component. All of the time points of the time series are used to model the non-trend component. This training option accelerates modeling training without sacrificing much forecasting accuracy. You can use this option with `minTimeSeriesLength` but not with `maxTimeSeriesLength`.
        Parameters:
        timeSeriesLengthFraction - timeSeriesLengthFraction or null for none
      • getTimeSeriesTimestampColumn

        public String getTimeSeriesTimestampColumn()
        Column to be designated as time series timestamp for ARIMA model.
        Returns:
        value or null for none
      • setTimeSeriesTimestampColumn

        public TrainingOptions setTimeSeriesTimestampColumn(String timeSeriesTimestampColumn)
        Column to be designated as time series timestamp for ARIMA model.
        Parameters:
        timeSeriesTimestampColumn - timeSeriesTimestampColumn or null for none
      • getTreeMethod

        public String getTreeMethod()
        Tree construction algorithm for boosted tree models.
        Returns:
        value or null for none
      • setTreeMethod

        public TrainingOptions setTreeMethod(String treeMethod)
        Tree construction algorithm for boosted tree models.
        Parameters:
        treeMethod - treeMethod or null for none
      • getTrendSmoothingWindowSize

        public Long getTrendSmoothingWindowSize()
        Smoothing window size for the trend component. When a positive value is specified, a center moving average smoothing is applied on the history trend. When the smoothing window is out of the boundary at the beginning or the end of the trend, the first element or the last element is padded to fill the smoothing window before the average is applied.
        Returns:
        value or null for none
      • setTrendSmoothingWindowSize

        public TrainingOptions setTrendSmoothingWindowSize(Long trendSmoothingWindowSize)
        Smoothing window size for the trend component. When a positive value is specified, a center moving average smoothing is applied on the history trend. When the smoothing window is out of the boundary at the beginning or the end of the trend, the first element or the last element is padded to fill the smoothing window before the average is applied.
        Parameters:
        trendSmoothingWindowSize - trendSmoothingWindowSize or null for none
      • getUserColumn

        public String getUserColumn()
        User column specified for matrix factorization models.
        Returns:
        value or null for none
      • setUserColumn

        public TrainingOptions setUserColumn(String userColumn)
        User column specified for matrix factorization models.
        Parameters:
        userColumn - userColumn or null for none
      • getVertexAiModelVersionAliases

        public List<String> getVertexAiModelVersionAliases()
        The version aliases to apply in Vertex AI model registry. Always overwrite if the version aliases exists in a existing model.
        Returns:
        value or null for none
      • setVertexAiModelVersionAliases

        public TrainingOptions setVertexAiModelVersionAliases(List<String> vertexAiModelVersionAliases)
        The version aliases to apply in Vertex AI model registry. Always overwrite if the version aliases exists in a existing model.
        Parameters:
        vertexAiModelVersionAliases - vertexAiModelVersionAliases or null for none
      • getWalsAlpha

        public Double getWalsAlpha()
        Hyperparameter for matrix factoration when implicit feedback type is specified.
        Returns:
        value or null for none
      • setWalsAlpha

        public TrainingOptions setWalsAlpha(Double walsAlpha)
        Hyperparameter for matrix factoration when implicit feedback type is specified.
        Parameters:
        walsAlpha - walsAlpha or null for none
      • getWarmStart

        public Boolean getWarmStart()
        Whether to train a model from the last checkpoint.
        Returns:
        value or null for none
      • setWarmStart

        public TrainingOptions setWarmStart(Boolean warmStart)
        Whether to train a model from the last checkpoint.
        Parameters:
        warmStart - warmStart or null for none
      • getXgboostVersion

        public String getXgboostVersion()
        User-selected XGBoost versions for training of XGBoost models.
        Returns:
        value or null for none
      • setXgboostVersion

        public TrainingOptions setXgboostVersion(String xgboostVersion)
        User-selected XGBoost versions for training of XGBoost models.
        Parameters:
        xgboostVersion - xgboostVersion or null for none
      • clone

        public TrainingOptions clone()
        Overrides:
        clone in class com.google.api.client.json.GenericJson

Copyright © 2011–2024 Google. All rights reserved.





© 2015 - 2024 Weber Informatics LLC | Privacy Policy