All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.api.services.bigquery.model.HparamSearchSpaces Maven / Gradle / Ivy

There is a newer version: v2-rev20241222-2.0.0
Show newest version
/*
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */
/*
 * This code was generated by https://github.com/googleapis/google-api-java-client-services/
 * Modify at your own risk.
 */

package com.google.api.services.bigquery.model;

/**
 * Hyperparameter search spaces. These should be a subset of training_options.
 *
 * 

This is the Java data model class that specifies how to parse/serialize into the JSON that is * transmitted over HTTP when working with the BigQuery API. For a detailed explanation see: * https://developers.google.com/api-client-library/java/google-http-java-client/json *

* * @author Google, Inc. */ @SuppressWarnings("javadoc") public final class HparamSearchSpaces extends com.google.api.client.json.GenericJson { /** * Activation functions of neural network models. * The value may be {@code null}. */ @com.google.api.client.util.Key private StringHparamSearchSpace activationFn; /** * Mini batch sample size. * The value may be {@code null}. */ @com.google.api.client.util.Key private IntHparamSearchSpace batchSize; /** * Booster type for boosted tree models. * The value may be {@code null}. */ @com.google.api.client.util.Key private StringHparamSearchSpace boosterType; /** * Subsample ratio of columns for each level for boosted tree models. * The value may be {@code null}. */ @com.google.api.client.util.Key private DoubleHparamSearchSpace colsampleBylevel; /** * Subsample ratio of columns for each node(split) for boosted tree models. * The value may be {@code null}. */ @com.google.api.client.util.Key private DoubleHparamSearchSpace colsampleBynode; /** * Subsample ratio of columns when constructing each tree for boosted tree models. * The value may be {@code null}. */ @com.google.api.client.util.Key private DoubleHparamSearchSpace colsampleBytree; /** * Dart normalization type for boosted tree models. * The value may be {@code null}. */ @com.google.api.client.util.Key private StringHparamSearchSpace dartNormalizeType; /** * Dropout probability for dnn model training and boosted tree models using dart booster. * The value may be {@code null}. */ @com.google.api.client.util.Key private DoubleHparamSearchSpace dropout; /** * Hidden units for neural network models. * The value may be {@code null}. */ @com.google.api.client.util.Key private IntArrayHparamSearchSpace hiddenUnits; /** * L1 regularization coefficient. * The value may be {@code null}. */ @com.google.api.client.util.Key private DoubleHparamSearchSpace l1Reg; /** * L2 regularization coefficient. * The value may be {@code null}. */ @com.google.api.client.util.Key private DoubleHparamSearchSpace l2Reg; /** * Learning rate of training jobs. * The value may be {@code null}. */ @com.google.api.client.util.Key private DoubleHparamSearchSpace learnRate; /** * Maximum depth of a tree for boosted tree models. * The value may be {@code null}. */ @com.google.api.client.util.Key private IntHparamSearchSpace maxTreeDepth; /** * Minimum split loss for boosted tree models. * The value may be {@code null}. */ @com.google.api.client.util.Key private DoubleHparamSearchSpace minSplitLoss; /** * Minimum sum of instance weight needed in a child for boosted tree models. * The value may be {@code null}. */ @com.google.api.client.util.Key private IntHparamSearchSpace minTreeChildWeight; /** * Number of clusters for k-means. * The value may be {@code null}. */ @com.google.api.client.util.Key private IntHparamSearchSpace numClusters; /** * Number of latent factors to train on. * The value may be {@code null}. */ @com.google.api.client.util.Key private IntHparamSearchSpace numFactors; /** * Number of parallel trees for boosted tree models. * The value may be {@code null}. */ @com.google.api.client.util.Key private IntHparamSearchSpace numParallelTree; /** * Optimizer of TF models. * The value may be {@code null}. */ @com.google.api.client.util.Key private StringHparamSearchSpace optimizer; /** * Subsample the training data to grow tree to prevent overfitting for boosted tree models. * The value may be {@code null}. */ @com.google.api.client.util.Key private DoubleHparamSearchSpace subsample; /** * Tree construction algorithm for boosted tree models. * The value may be {@code null}. */ @com.google.api.client.util.Key private StringHparamSearchSpace treeMethod; /** * Hyperparameter for matrix factoration when implicit feedback type is specified. * The value may be {@code null}. */ @com.google.api.client.util.Key private DoubleHparamSearchSpace walsAlpha; /** * Activation functions of neural network models. * @return value or {@code null} for none */ public StringHparamSearchSpace getActivationFn() { return activationFn; } /** * Activation functions of neural network models. * @param activationFn activationFn or {@code null} for none */ public HparamSearchSpaces setActivationFn(StringHparamSearchSpace activationFn) { this.activationFn = activationFn; return this; } /** * Mini batch sample size. * @return value or {@code null} for none */ public IntHparamSearchSpace getBatchSize() { return batchSize; } /** * Mini batch sample size. * @param batchSize batchSize or {@code null} for none */ public HparamSearchSpaces setBatchSize(IntHparamSearchSpace batchSize) { this.batchSize = batchSize; return this; } /** * Booster type for boosted tree models. * @return value or {@code null} for none */ public StringHparamSearchSpace getBoosterType() { return boosterType; } /** * Booster type for boosted tree models. * @param boosterType boosterType or {@code null} for none */ public HparamSearchSpaces setBoosterType(StringHparamSearchSpace boosterType) { this.boosterType = boosterType; return this; } /** * Subsample ratio of columns for each level for boosted tree models. * @return value or {@code null} for none */ public DoubleHparamSearchSpace getColsampleBylevel() { return colsampleBylevel; } /** * Subsample ratio of columns for each level for boosted tree models. * @param colsampleBylevel colsampleBylevel or {@code null} for none */ public HparamSearchSpaces setColsampleBylevel(DoubleHparamSearchSpace colsampleBylevel) { this.colsampleBylevel = colsampleBylevel; return this; } /** * Subsample ratio of columns for each node(split) for boosted tree models. * @return value or {@code null} for none */ public DoubleHparamSearchSpace getColsampleBynode() { return colsampleBynode; } /** * Subsample ratio of columns for each node(split) for boosted tree models. * @param colsampleBynode colsampleBynode or {@code null} for none */ public HparamSearchSpaces setColsampleBynode(DoubleHparamSearchSpace colsampleBynode) { this.colsampleBynode = colsampleBynode; return this; } /** * Subsample ratio of columns when constructing each tree for boosted tree models. * @return value or {@code null} for none */ public DoubleHparamSearchSpace getColsampleBytree() { return colsampleBytree; } /** * Subsample ratio of columns when constructing each tree for boosted tree models. * @param colsampleBytree colsampleBytree or {@code null} for none */ public HparamSearchSpaces setColsampleBytree(DoubleHparamSearchSpace colsampleBytree) { this.colsampleBytree = colsampleBytree; return this; } /** * Dart normalization type for boosted tree models. * @return value or {@code null} for none */ public StringHparamSearchSpace getDartNormalizeType() { return dartNormalizeType; } /** * Dart normalization type for boosted tree models. * @param dartNormalizeType dartNormalizeType or {@code null} for none */ public HparamSearchSpaces setDartNormalizeType(StringHparamSearchSpace dartNormalizeType) { this.dartNormalizeType = dartNormalizeType; return this; } /** * Dropout probability for dnn model training and boosted tree models using dart booster. * @return value or {@code null} for none */ public DoubleHparamSearchSpace getDropout() { return dropout; } /** * Dropout probability for dnn model training and boosted tree models using dart booster. * @param dropout dropout or {@code null} for none */ public HparamSearchSpaces setDropout(DoubleHparamSearchSpace dropout) { this.dropout = dropout; return this; } /** * Hidden units for neural network models. * @return value or {@code null} for none */ public IntArrayHparamSearchSpace getHiddenUnits() { return hiddenUnits; } /** * Hidden units for neural network models. * @param hiddenUnits hiddenUnits or {@code null} for none */ public HparamSearchSpaces setHiddenUnits(IntArrayHparamSearchSpace hiddenUnits) { this.hiddenUnits = hiddenUnits; return this; } /** * L1 regularization coefficient. * @return value or {@code null} for none */ public DoubleHparamSearchSpace getL1Reg() { return l1Reg; } /** * L1 regularization coefficient. * @param l1Reg l1Reg or {@code null} for none */ public HparamSearchSpaces setL1Reg(DoubleHparamSearchSpace l1Reg) { this.l1Reg = l1Reg; return this; } /** * L2 regularization coefficient. * @return value or {@code null} for none */ public DoubleHparamSearchSpace getL2Reg() { return l2Reg; } /** * L2 regularization coefficient. * @param l2Reg l2Reg or {@code null} for none */ public HparamSearchSpaces setL2Reg(DoubleHparamSearchSpace l2Reg) { this.l2Reg = l2Reg; return this; } /** * Learning rate of training jobs. * @return value or {@code null} for none */ public DoubleHparamSearchSpace getLearnRate() { return learnRate; } /** * Learning rate of training jobs. * @param learnRate learnRate or {@code null} for none */ public HparamSearchSpaces setLearnRate(DoubleHparamSearchSpace learnRate) { this.learnRate = learnRate; return this; } /** * Maximum depth of a tree for boosted tree models. * @return value or {@code null} for none */ public IntHparamSearchSpace getMaxTreeDepth() { return maxTreeDepth; } /** * Maximum depth of a tree for boosted tree models. * @param maxTreeDepth maxTreeDepth or {@code null} for none */ public HparamSearchSpaces setMaxTreeDepth(IntHparamSearchSpace maxTreeDepth) { this.maxTreeDepth = maxTreeDepth; return this; } /** * Minimum split loss for boosted tree models. * @return value or {@code null} for none */ public DoubleHparamSearchSpace getMinSplitLoss() { return minSplitLoss; } /** * Minimum split loss for boosted tree models. * @param minSplitLoss minSplitLoss or {@code null} for none */ public HparamSearchSpaces setMinSplitLoss(DoubleHparamSearchSpace minSplitLoss) { this.minSplitLoss = minSplitLoss; return this; } /** * Minimum sum of instance weight needed in a child for boosted tree models. * @return value or {@code null} for none */ public IntHparamSearchSpace getMinTreeChildWeight() { return minTreeChildWeight; } /** * Minimum sum of instance weight needed in a child for boosted tree models. * @param minTreeChildWeight minTreeChildWeight or {@code null} for none */ public HparamSearchSpaces setMinTreeChildWeight(IntHparamSearchSpace minTreeChildWeight) { this.minTreeChildWeight = minTreeChildWeight; return this; } /** * Number of clusters for k-means. * @return value or {@code null} for none */ public IntHparamSearchSpace getNumClusters() { return numClusters; } /** * Number of clusters for k-means. * @param numClusters numClusters or {@code null} for none */ public HparamSearchSpaces setNumClusters(IntHparamSearchSpace numClusters) { this.numClusters = numClusters; return this; } /** * Number of latent factors to train on. * @return value or {@code null} for none */ public IntHparamSearchSpace getNumFactors() { return numFactors; } /** * Number of latent factors to train on. * @param numFactors numFactors or {@code null} for none */ public HparamSearchSpaces setNumFactors(IntHparamSearchSpace numFactors) { this.numFactors = numFactors; return this; } /** * Number of parallel trees for boosted tree models. * @return value or {@code null} for none */ public IntHparamSearchSpace getNumParallelTree() { return numParallelTree; } /** * Number of parallel trees for boosted tree models. * @param numParallelTree numParallelTree or {@code null} for none */ public HparamSearchSpaces setNumParallelTree(IntHparamSearchSpace numParallelTree) { this.numParallelTree = numParallelTree; return this; } /** * Optimizer of TF models. * @return value or {@code null} for none */ public StringHparamSearchSpace getOptimizer() { return optimizer; } /** * Optimizer of TF models. * @param optimizer optimizer or {@code null} for none */ public HparamSearchSpaces setOptimizer(StringHparamSearchSpace optimizer) { this.optimizer = optimizer; return this; } /** * Subsample the training data to grow tree to prevent overfitting for boosted tree models. * @return value or {@code null} for none */ public DoubleHparamSearchSpace getSubsample() { return subsample; } /** * Subsample the training data to grow tree to prevent overfitting for boosted tree models. * @param subsample subsample or {@code null} for none */ public HparamSearchSpaces setSubsample(DoubleHparamSearchSpace subsample) { this.subsample = subsample; return this; } /** * Tree construction algorithm for boosted tree models. * @return value or {@code null} for none */ public StringHparamSearchSpace getTreeMethod() { return treeMethod; } /** * Tree construction algorithm for boosted tree models. * @param treeMethod treeMethod or {@code null} for none */ public HparamSearchSpaces setTreeMethod(StringHparamSearchSpace treeMethod) { this.treeMethod = treeMethod; return this; } /** * Hyperparameter for matrix factoration when implicit feedback type is specified. * @return value or {@code null} for none */ public DoubleHparamSearchSpace getWalsAlpha() { return walsAlpha; } /** * Hyperparameter for matrix factoration when implicit feedback type is specified. * @param walsAlpha walsAlpha or {@code null} for none */ public HparamSearchSpaces setWalsAlpha(DoubleHparamSearchSpace walsAlpha) { this.walsAlpha = walsAlpha; return this; } @Override public HparamSearchSpaces set(String fieldName, Object value) { return (HparamSearchSpaces) super.set(fieldName, value); } @Override public HparamSearchSpaces clone() { return (HparamSearchSpaces) super.clone(); } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy