All Downloads are FREE. Search and download functionalities are using the official Maven repository.

target.apidocs.com.google.api.services.bigquery.model.EvaluationMetrics.html Maven / Gradle / Ivy

There is a newer version: v2-rev20241027-2.0.0
Show newest version






EvaluationMetrics (BigQuery API v2-rev20240919-2.0.0)












com.google.api.services.bigquery.model

Class EvaluationMetrics

  • All Implemented Interfaces:
    Cloneable, Map<String,Object>


    public final class EvaluationMetrics
    extends com.google.api.client.json.GenericJson
    Evaluation metrics of a model. These are either computed on all training data or just the eval data based on whether eval data was used during training. These are not present for imported models.

    This is the Java data model class that specifies how to parse/serialize into the JSON that is transmitted over HTTP when working with the BigQuery API. For a detailed explanation see: https://developers.google.com/api-client-library/java/google-http-java-client/json

    Author:
    Google, Inc.
    • Constructor Detail

      • EvaluationMetrics

        public EvaluationMetrics()
    • Method Detail

      • getArimaForecastingMetrics

        public ArimaForecastingMetrics getArimaForecastingMetrics()
        Populated for ARIMA models.
        Returns:
        value or null for none
      • setArimaForecastingMetrics

        public EvaluationMetrics setArimaForecastingMetrics(ArimaForecastingMetrics arimaForecastingMetrics)
        Populated for ARIMA models.
        Parameters:
        arimaForecastingMetrics - arimaForecastingMetrics or null for none
      • getBinaryClassificationMetrics

        public BinaryClassificationMetrics getBinaryClassificationMetrics()
        Populated for binary classification/classifier models.
        Returns:
        value or null for none
      • setBinaryClassificationMetrics

        public EvaluationMetrics setBinaryClassificationMetrics(BinaryClassificationMetrics binaryClassificationMetrics)
        Populated for binary classification/classifier models.
        Parameters:
        binaryClassificationMetrics - binaryClassificationMetrics or null for none
      • getClusteringMetrics

        public ClusteringMetrics getClusteringMetrics()
        Populated for clustering models.
        Returns:
        value or null for none
      • setClusteringMetrics

        public EvaluationMetrics setClusteringMetrics(ClusteringMetrics clusteringMetrics)
        Populated for clustering models.
        Parameters:
        clusteringMetrics - clusteringMetrics or null for none
      • getDimensionalityReductionMetrics

        public DimensionalityReductionMetrics getDimensionalityReductionMetrics()
        Evaluation metrics when the model is a dimensionality reduction model, which currently includes PCA.
        Returns:
        value or null for none
      • setDimensionalityReductionMetrics

        public EvaluationMetrics setDimensionalityReductionMetrics(DimensionalityReductionMetrics dimensionalityReductionMetrics)
        Evaluation metrics when the model is a dimensionality reduction model, which currently includes PCA.
        Parameters:
        dimensionalityReductionMetrics - dimensionalityReductionMetrics or null for none
      • getMultiClassClassificationMetrics

        public MultiClassClassificationMetrics getMultiClassClassificationMetrics()
        Populated for multi-class classification/classifier models.
        Returns:
        value or null for none
      • setMultiClassClassificationMetrics

        public EvaluationMetrics setMultiClassClassificationMetrics(MultiClassClassificationMetrics multiClassClassificationMetrics)
        Populated for multi-class classification/classifier models.
        Parameters:
        multiClassClassificationMetrics - multiClassClassificationMetrics or null for none
      • getRankingMetrics

        public RankingMetrics getRankingMetrics()
        Populated for implicit feedback type matrix factorization models.
        Returns:
        value or null for none
      • setRankingMetrics

        public EvaluationMetrics setRankingMetrics(RankingMetrics rankingMetrics)
        Populated for implicit feedback type matrix factorization models.
        Parameters:
        rankingMetrics - rankingMetrics or null for none
      • getRegressionMetrics

        public RegressionMetrics getRegressionMetrics()
        Populated for regression models and explicit feedback type matrix factorization models.
        Returns:
        value or null for none
      • setRegressionMetrics

        public EvaluationMetrics setRegressionMetrics(RegressionMetrics regressionMetrics)
        Populated for regression models and explicit feedback type matrix factorization models.
        Parameters:
        regressionMetrics - regressionMetrics or null for none
      • clone

        public EvaluationMetrics clone()
        Overrides:
        clone in class com.google.api.client.json.GenericJson

Copyright © 2011–2024 Google. All rights reserved.





© 2015 - 2025 Weber Informatics LLC | Privacy Policy