target.apidocs.com.google.api.services.bigquery.model.HparamSearchSpaces.html Maven / Gradle / Ivy
HparamSearchSpaces (BigQuery API v2-rev20240919-2.0.0)
com.google.api.services.bigquery.model
Class HparamSearchSpaces
- java.lang.Object
-
- java.util.AbstractMap<String,Object>
-
- com.google.api.client.util.GenericData
-
- com.google.api.client.json.GenericJson
-
- com.google.api.services.bigquery.model.HparamSearchSpaces
-
public final class HparamSearchSpaces
extends com.google.api.client.json.GenericJson
Hyperparameter search spaces. These should be a subset of training_options.
This is the Java data model class that specifies how to parse/serialize into the JSON that is
transmitted over HTTP when working with the BigQuery API. For a detailed explanation see:
https://developers.google.com/api-client-library/java/google-http-java-client/json
- Author:
- Google, Inc.
-
-
Nested Class Summary
-
Nested classes/interfaces inherited from class com.google.api.client.util.GenericData
com.google.api.client.util.GenericData.Flags
-
Nested classes/interfaces inherited from class java.util.AbstractMap
AbstractMap.SimpleEntry<K,V>, AbstractMap.SimpleImmutableEntry<K,V>
-
Constructor Summary
Constructors
Constructor and Description
HparamSearchSpaces()
-
Method Summary
All Methods Instance Methods Concrete Methods
Modifier and Type
Method and Description
HparamSearchSpaces
clone()
StringHparamSearchSpace
getActivationFn()
Activation functions of neural network models.
IntHparamSearchSpace
getBatchSize()
Mini batch sample size.
StringHparamSearchSpace
getBoosterType()
Booster type for boosted tree models.
DoubleHparamSearchSpace
getColsampleBylevel()
Subsample ratio of columns for each level for boosted tree models.
DoubleHparamSearchSpace
getColsampleBynode()
Subsample ratio of columns for each node(split) for boosted tree models.
DoubleHparamSearchSpace
getColsampleBytree()
Subsample ratio of columns when constructing each tree for boosted tree models.
StringHparamSearchSpace
getDartNormalizeType()
Dart normalization type for boosted tree models.
DoubleHparamSearchSpace
getDropout()
Dropout probability for dnn model training and boosted tree models using dart booster.
IntArrayHparamSearchSpace
getHiddenUnits()
Hidden units for neural network models.
DoubleHparamSearchSpace
getL1Reg()
L1 regularization coefficient.
DoubleHparamSearchSpace
getL2Reg()
L2 regularization coefficient.
DoubleHparamSearchSpace
getLearnRate()
Learning rate of training jobs.
IntHparamSearchSpace
getMaxTreeDepth()
Maximum depth of a tree for boosted tree models.
DoubleHparamSearchSpace
getMinSplitLoss()
Minimum split loss for boosted tree models.
IntHparamSearchSpace
getMinTreeChildWeight()
Minimum sum of instance weight needed in a child for boosted tree models.
IntHparamSearchSpace
getNumClusters()
Number of clusters for k-means.
IntHparamSearchSpace
getNumFactors()
Number of latent factors to train on.
IntHparamSearchSpace
getNumParallelTree()
Number of parallel trees for boosted tree models.
StringHparamSearchSpace
getOptimizer()
Optimizer of TF models.
DoubleHparamSearchSpace
getSubsample()
Subsample the training data to grow tree to prevent overfitting for boosted tree models.
StringHparamSearchSpace
getTreeMethod()
Tree construction algorithm for boosted tree models.
DoubleHparamSearchSpace
getWalsAlpha()
Hyperparameter for matrix factoration when implicit feedback type is specified.
HparamSearchSpaces
set(String fieldName,
Object value)
HparamSearchSpaces
setActivationFn(StringHparamSearchSpace activationFn)
Activation functions of neural network models.
HparamSearchSpaces
setBatchSize(IntHparamSearchSpace batchSize)
Mini batch sample size.
HparamSearchSpaces
setBoosterType(StringHparamSearchSpace boosterType)
Booster type for boosted tree models.
HparamSearchSpaces
setColsampleBylevel(DoubleHparamSearchSpace colsampleBylevel)
Subsample ratio of columns for each level for boosted tree models.
HparamSearchSpaces
setColsampleBynode(DoubleHparamSearchSpace colsampleBynode)
Subsample ratio of columns for each node(split) for boosted tree models.
HparamSearchSpaces
setColsampleBytree(DoubleHparamSearchSpace colsampleBytree)
Subsample ratio of columns when constructing each tree for boosted tree models.
HparamSearchSpaces
setDartNormalizeType(StringHparamSearchSpace dartNormalizeType)
Dart normalization type for boosted tree models.
HparamSearchSpaces
setDropout(DoubleHparamSearchSpace dropout)
Dropout probability for dnn model training and boosted tree models using dart booster.
HparamSearchSpaces
setHiddenUnits(IntArrayHparamSearchSpace hiddenUnits)
Hidden units for neural network models.
HparamSearchSpaces
setL1Reg(DoubleHparamSearchSpace l1Reg)
L1 regularization coefficient.
HparamSearchSpaces
setL2Reg(DoubleHparamSearchSpace l2Reg)
L2 regularization coefficient.
HparamSearchSpaces
setLearnRate(DoubleHparamSearchSpace learnRate)
Learning rate of training jobs.
HparamSearchSpaces
setMaxTreeDepth(IntHparamSearchSpace maxTreeDepth)
Maximum depth of a tree for boosted tree models.
HparamSearchSpaces
setMinSplitLoss(DoubleHparamSearchSpace minSplitLoss)
Minimum split loss for boosted tree models.
HparamSearchSpaces
setMinTreeChildWeight(IntHparamSearchSpace minTreeChildWeight)
Minimum sum of instance weight needed in a child for boosted tree models.
HparamSearchSpaces
setNumClusters(IntHparamSearchSpace numClusters)
Number of clusters for k-means.
HparamSearchSpaces
setNumFactors(IntHparamSearchSpace numFactors)
Number of latent factors to train on.
HparamSearchSpaces
setNumParallelTree(IntHparamSearchSpace numParallelTree)
Number of parallel trees for boosted tree models.
HparamSearchSpaces
setOptimizer(StringHparamSearchSpace optimizer)
Optimizer of TF models.
HparamSearchSpaces
setSubsample(DoubleHparamSearchSpace subsample)
Subsample the training data to grow tree to prevent overfitting for boosted tree models.
HparamSearchSpaces
setTreeMethod(StringHparamSearchSpace treeMethod)
Tree construction algorithm for boosted tree models.
HparamSearchSpaces
setWalsAlpha(DoubleHparamSearchSpace walsAlpha)
Hyperparameter for matrix factoration when implicit feedback type is specified.
-
Methods inherited from class com.google.api.client.json.GenericJson
getFactory, setFactory, toPrettyString, toString
-
Methods inherited from class com.google.api.client.util.GenericData
entrySet, equals, get, getClassInfo, getUnknownKeys, hashCode, put, putAll, remove, setUnknownKeys
-
Methods inherited from class java.util.AbstractMap
clear, containsKey, containsValue, isEmpty, keySet, size, values
-
Methods inherited from class java.lang.Object
finalize, getClass, notify, notifyAll, wait, wait, wait
-
Methods inherited from interface java.util.Map
compute, computeIfAbsent, computeIfPresent, forEach, getOrDefault, merge, putIfAbsent, remove, replace, replace, replaceAll
-
-
Method Detail
-
getActivationFn
public StringHparamSearchSpace getActivationFn()
Activation functions of neural network models.
- Returns:
- value or
null
for none
-
setActivationFn
public HparamSearchSpaces setActivationFn(StringHparamSearchSpace activationFn)
Activation functions of neural network models.
- Parameters:
activationFn
- activationFn or null
for none
-
getBatchSize
public IntHparamSearchSpace getBatchSize()
Mini batch sample size.
- Returns:
- value or
null
for none
-
setBatchSize
public HparamSearchSpaces setBatchSize(IntHparamSearchSpace batchSize)
Mini batch sample size.
- Parameters:
batchSize
- batchSize or null
for none
-
getBoosterType
public StringHparamSearchSpace getBoosterType()
Booster type for boosted tree models.
- Returns:
- value or
null
for none
-
setBoosterType
public HparamSearchSpaces setBoosterType(StringHparamSearchSpace boosterType)
Booster type for boosted tree models.
- Parameters:
boosterType
- boosterType or null
for none
-
getColsampleBylevel
public DoubleHparamSearchSpace getColsampleBylevel()
Subsample ratio of columns for each level for boosted tree models.
- Returns:
- value or
null
for none
-
setColsampleBylevel
public HparamSearchSpaces setColsampleBylevel(DoubleHparamSearchSpace colsampleBylevel)
Subsample ratio of columns for each level for boosted tree models.
- Parameters:
colsampleBylevel
- colsampleBylevel or null
for none
-
getColsampleBynode
public DoubleHparamSearchSpace getColsampleBynode()
Subsample ratio of columns for each node(split) for boosted tree models.
- Returns:
- value or
null
for none
-
setColsampleBynode
public HparamSearchSpaces setColsampleBynode(DoubleHparamSearchSpace colsampleBynode)
Subsample ratio of columns for each node(split) for boosted tree models.
- Parameters:
colsampleBynode
- colsampleBynode or null
for none
-
getColsampleBytree
public DoubleHparamSearchSpace getColsampleBytree()
Subsample ratio of columns when constructing each tree for boosted tree models.
- Returns:
- value or
null
for none
-
setColsampleBytree
public HparamSearchSpaces setColsampleBytree(DoubleHparamSearchSpace colsampleBytree)
Subsample ratio of columns when constructing each tree for boosted tree models.
- Parameters:
colsampleBytree
- colsampleBytree or null
for none
-
getDartNormalizeType
public StringHparamSearchSpace getDartNormalizeType()
Dart normalization type for boosted tree models.
- Returns:
- value or
null
for none
-
setDartNormalizeType
public HparamSearchSpaces setDartNormalizeType(StringHparamSearchSpace dartNormalizeType)
Dart normalization type for boosted tree models.
- Parameters:
dartNormalizeType
- dartNormalizeType or null
for none
-
getDropout
public DoubleHparamSearchSpace getDropout()
Dropout probability for dnn model training and boosted tree models using dart booster.
- Returns:
- value or
null
for none
-
setDropout
public HparamSearchSpaces setDropout(DoubleHparamSearchSpace dropout)
Dropout probability for dnn model training and boosted tree models using dart booster.
- Parameters:
dropout
- dropout or null
for none
-
getHiddenUnits
public IntArrayHparamSearchSpace getHiddenUnits()
Hidden units for neural network models.
- Returns:
- value or
null
for none
-
setHiddenUnits
public HparamSearchSpaces setHiddenUnits(IntArrayHparamSearchSpace hiddenUnits)
Hidden units for neural network models.
- Parameters:
hiddenUnits
- hiddenUnits or null
for none
-
getL1Reg
public DoubleHparamSearchSpace getL1Reg()
L1 regularization coefficient.
- Returns:
- value or
null
for none
-
setL1Reg
public HparamSearchSpaces setL1Reg(DoubleHparamSearchSpace l1Reg)
L1 regularization coefficient.
- Parameters:
l1Reg
- l1Reg or null
for none
-
getL2Reg
public DoubleHparamSearchSpace getL2Reg()
L2 regularization coefficient.
- Returns:
- value or
null
for none
-
setL2Reg
public HparamSearchSpaces setL2Reg(DoubleHparamSearchSpace l2Reg)
L2 regularization coefficient.
- Parameters:
l2Reg
- l2Reg or null
for none
-
getLearnRate
public DoubleHparamSearchSpace getLearnRate()
Learning rate of training jobs.
- Returns:
- value or
null
for none
-
setLearnRate
public HparamSearchSpaces setLearnRate(DoubleHparamSearchSpace learnRate)
Learning rate of training jobs.
- Parameters:
learnRate
- learnRate or null
for none
-
getMaxTreeDepth
public IntHparamSearchSpace getMaxTreeDepth()
Maximum depth of a tree for boosted tree models.
- Returns:
- value or
null
for none
-
setMaxTreeDepth
public HparamSearchSpaces setMaxTreeDepth(IntHparamSearchSpace maxTreeDepth)
Maximum depth of a tree for boosted tree models.
- Parameters:
maxTreeDepth
- maxTreeDepth or null
for none
-
getMinSplitLoss
public DoubleHparamSearchSpace getMinSplitLoss()
Minimum split loss for boosted tree models.
- Returns:
- value or
null
for none
-
setMinSplitLoss
public HparamSearchSpaces setMinSplitLoss(DoubleHparamSearchSpace minSplitLoss)
Minimum split loss for boosted tree models.
- Parameters:
minSplitLoss
- minSplitLoss or null
for none
-
getMinTreeChildWeight
public IntHparamSearchSpace getMinTreeChildWeight()
Minimum sum of instance weight needed in a child for boosted tree models.
- Returns:
- value or
null
for none
-
setMinTreeChildWeight
public HparamSearchSpaces setMinTreeChildWeight(IntHparamSearchSpace minTreeChildWeight)
Minimum sum of instance weight needed in a child for boosted tree models.
- Parameters:
minTreeChildWeight
- minTreeChildWeight or null
for none
-
getNumClusters
public IntHparamSearchSpace getNumClusters()
Number of clusters for k-means.
- Returns:
- value or
null
for none
-
setNumClusters
public HparamSearchSpaces setNumClusters(IntHparamSearchSpace numClusters)
Number of clusters for k-means.
- Parameters:
numClusters
- numClusters or null
for none
-
getNumFactors
public IntHparamSearchSpace getNumFactors()
Number of latent factors to train on.
- Returns:
- value or
null
for none
-
setNumFactors
public HparamSearchSpaces setNumFactors(IntHparamSearchSpace numFactors)
Number of latent factors to train on.
- Parameters:
numFactors
- numFactors or null
for none
-
getNumParallelTree
public IntHparamSearchSpace getNumParallelTree()
Number of parallel trees for boosted tree models.
- Returns:
- value or
null
for none
-
setNumParallelTree
public HparamSearchSpaces setNumParallelTree(IntHparamSearchSpace numParallelTree)
Number of parallel trees for boosted tree models.
- Parameters:
numParallelTree
- numParallelTree or null
for none
-
getOptimizer
public StringHparamSearchSpace getOptimizer()
Optimizer of TF models.
- Returns:
- value or
null
for none
-
setOptimizer
public HparamSearchSpaces setOptimizer(StringHparamSearchSpace optimizer)
Optimizer of TF models.
- Parameters:
optimizer
- optimizer or null
for none
-
getSubsample
public DoubleHparamSearchSpace getSubsample()
Subsample the training data to grow tree to prevent overfitting for boosted tree models.
- Returns:
- value or
null
for none
-
setSubsample
public HparamSearchSpaces setSubsample(DoubleHparamSearchSpace subsample)
Subsample the training data to grow tree to prevent overfitting for boosted tree models.
- Parameters:
subsample
- subsample or null
for none
-
getTreeMethod
public StringHparamSearchSpace getTreeMethod()
Tree construction algorithm for boosted tree models.
- Returns:
- value or
null
for none
-
setTreeMethod
public HparamSearchSpaces setTreeMethod(StringHparamSearchSpace treeMethod)
Tree construction algorithm for boosted tree models.
- Parameters:
treeMethod
- treeMethod or null
for none
-
getWalsAlpha
public DoubleHparamSearchSpace getWalsAlpha()
Hyperparameter for matrix factoration when implicit feedback type is specified.
- Returns:
- value or
null
for none
-
setWalsAlpha
public HparamSearchSpaces setWalsAlpha(DoubleHparamSearchSpace walsAlpha)
Hyperparameter for matrix factoration when implicit feedback type is specified.
- Parameters:
walsAlpha
- walsAlpha or null
for none
-
set
public HparamSearchSpaces set(String fieldName,
Object value)
- Overrides:
set
in class com.google.api.client.json.GenericJson
-
clone
public HparamSearchSpaces clone()
- Overrides:
clone
in class com.google.api.client.json.GenericJson
Copyright © 2011–2024 Google. All rights reserved.
© 2015 - 2025 Weber Informatics LLC | Privacy Policy