All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.api.services.prediction.model.Training Maven / Gradle / Ivy

/*
 * Copyright 2010 Google Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */
/*
 * This code was generated by https://code.google.com/p/google-apis-client-generator/
 * (build: 2014-02-14 18:40:25 UTC)
 * on 2014-03-30 at 15:45:53 UTC 
 * Modify at your own risk.
 */

package com.google.api.services.prediction.model;

/**
 * Model definition for Training.
 *
 * 

This is the Java data model class that specifies how to parse/serialize into the JSON that is * transmitted over HTTP when working with the Prediction API. For a detailed explanation see: * http://code.google.com/p/google-http-java-client/wiki/JSON *

* * @author Google, Inc. */ @SuppressWarnings("javadoc") public final class Training extends com.google.api.client.json.GenericJson { /** * Data Analysis. * The value may be {@code null}. */ @com.google.api.client.util.Key private DataAnalysis dataAnalysis; /** * The unique name for the predictive model. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String id; /** * What kind of resource this is. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String kind; /** * Model metadata. * The value may be {@code null}. */ @com.google.api.client.util.Key private ModelInfo modelInfo; /** * A URL to re-request this resource. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String selfLink; /** * Google storage location of the training data file. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String storageDataLocation; /** * Google storage location of the preprocessing pmml file. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String storagePMMLLocation; /** * Google storage location of the pmml model file. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String storagePMMLModelLocation; /** * The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; * ERROR: TRAINING JOB NOT FOUND * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String trainingStatus; /** * A class weighting function, which allows the importance weights for class labels to be * specified [Categorical models only]. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.util.List> utility; /** * Data Analysis. * @return value or {@code null} for none */ public DataAnalysis getDataAnalysis() { return dataAnalysis; } /** * Data Analysis. * @param dataAnalysis dataAnalysis or {@code null} for none */ public Training setDataAnalysis(DataAnalysis dataAnalysis) { this.dataAnalysis = dataAnalysis; return this; } /** * The unique name for the predictive model. * @return value or {@code null} for none */ public java.lang.String getId() { return id; } /** * The unique name for the predictive model. * @param id id or {@code null} for none */ public Training setId(java.lang.String id) { this.id = id; return this; } /** * What kind of resource this is. * @return value or {@code null} for none */ public java.lang.String getKind() { return kind; } /** * What kind of resource this is. * @param kind kind or {@code null} for none */ public Training setKind(java.lang.String kind) { this.kind = kind; return this; } /** * Model metadata. * @return value or {@code null} for none */ public ModelInfo getModelInfo() { return modelInfo; } /** * Model metadata. * @param modelInfo modelInfo or {@code null} for none */ public Training setModelInfo(ModelInfo modelInfo) { this.modelInfo = modelInfo; return this; } /** * A URL to re-request this resource. * @return value or {@code null} for none */ public java.lang.String getSelfLink() { return selfLink; } /** * A URL to re-request this resource. * @param selfLink selfLink or {@code null} for none */ public Training setSelfLink(java.lang.String selfLink) { this.selfLink = selfLink; return this; } /** * Google storage location of the training data file. * @return value or {@code null} for none */ public java.lang.String getStorageDataLocation() { return storageDataLocation; } /** * Google storage location of the training data file. * @param storageDataLocation storageDataLocation or {@code null} for none */ public Training setStorageDataLocation(java.lang.String storageDataLocation) { this.storageDataLocation = storageDataLocation; return this; } /** * Google storage location of the preprocessing pmml file. * @return value or {@code null} for none */ public java.lang.String getStoragePMMLLocation() { return storagePMMLLocation; } /** * Google storage location of the preprocessing pmml file. * @param storagePMMLLocation storagePMMLLocation or {@code null} for none */ public Training setStoragePMMLLocation(java.lang.String storagePMMLLocation) { this.storagePMMLLocation = storagePMMLLocation; return this; } /** * Google storage location of the pmml model file. * @return value or {@code null} for none */ public java.lang.String getStoragePMMLModelLocation() { return storagePMMLModelLocation; } /** * Google storage location of the pmml model file. * @param storagePMMLModelLocation storagePMMLModelLocation or {@code null} for none */ public Training setStoragePMMLModelLocation(java.lang.String storagePMMLModelLocation) { this.storagePMMLModelLocation = storagePMMLModelLocation; return this; } /** * The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; * ERROR: TRAINING JOB NOT FOUND * @return value or {@code null} for none */ public java.lang.String getTrainingStatus() { return trainingStatus; } /** * The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; * ERROR: TRAINING JOB NOT FOUND * @param trainingStatus trainingStatus or {@code null} for none */ public Training setTrainingStatus(java.lang.String trainingStatus) { this.trainingStatus = trainingStatus; return this; } /** * A class weighting function, which allows the importance weights for class labels to be * specified [Categorical models only]. * @return value or {@code null} for none */ public java.util.List> getUtility() { return utility; } /** * A class weighting function, which allows the importance weights for class labels to be * specified [Categorical models only]. * @param utility utility or {@code null} for none */ public Training setUtility(java.util.List> utility) { this.utility = utility; return this; } @Override public Training set(String fieldName, Object value) { return (Training) super.set(fieldName, value); } @Override public Training clone() { return (Training) super.clone(); } /** * Data Analysis. */ public static final class DataAnalysis extends com.google.api.client.json.GenericJson { /** * The value may be {@code null}. */ @com.google.api.client.util.Key private java.util.List warnings; /** * @return value or {@code null} for none */ public java.util.List getWarnings() { return warnings; } /** * @param warnings warnings or {@code null} for none */ public DataAnalysis setWarnings(java.util.List warnings) { this.warnings = warnings; return this; } @Override public DataAnalysis set(String fieldName, Object value) { return (DataAnalysis) super.set(fieldName, value); } @Override public DataAnalysis clone() { return (DataAnalysis) super.clone(); } } /** * Model metadata. */ public static final class ModelInfo extends com.google.api.client.json.GenericJson { /** * Estimated accuracy of model taking utility weights into account [Categorical models only]. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double classWeightedAccuracy; /** * A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the * amount and quality of the training data, of the estimated prediction accuracy. You can use this * is a guide to decide whether the results are accurate enough for your needs. This estimate will * be more reliable if your real input data is similar to your training data [Categorical models * only]. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double classificationAccuracy; /** * An output confusion matrix. This shows an estimate for how this model will do in predictions. * This is first indexed by the true class label. For each true class label, this provides a pair * {predicted_label, count}, where count is the estimated number of times the model will predict * the predicted label given the true label. Will not output if more then 100 classes [Categorical * models only]. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.util.Map> confusionMatrix; /** * A list of the confusion matrix row totals * The value may be {@code null}. */ @com.google.api.client.util.Key private java.util.Map confusionMatrixRowTotals; /** * An estimated mean squared error. The can be used to measure the quality of the predicted model * [Regression models only]. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double meanSquaredError; /** * Type of predictive model (CLASSIFICATION or REGRESSION) * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String modelType; /** * Number of valid data instances used in the trained model. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.lang.Long numberInstances; /** * Number of class labels in the trained model [Categorical models only]. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.lang.Long numberLabels; /** * Estimated accuracy of model taking utility weights into account [Categorical models only]. * @return value or {@code null} for none */ public java.lang.Double getClassWeightedAccuracy() { return classWeightedAccuracy; } /** * Estimated accuracy of model taking utility weights into account [Categorical models only]. * @param classWeightedAccuracy classWeightedAccuracy or {@code null} for none */ public ModelInfo setClassWeightedAccuracy(java.lang.Double classWeightedAccuracy) { this.classWeightedAccuracy = classWeightedAccuracy; return this; } /** * A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the * amount and quality of the training data, of the estimated prediction accuracy. You can use this * is a guide to decide whether the results are accurate enough for your needs. This estimate will * be more reliable if your real input data is similar to your training data [Categorical models * only]. * @return value or {@code null} for none */ public java.lang.Double getClassificationAccuracy() { return classificationAccuracy; } /** * A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the * amount and quality of the training data, of the estimated prediction accuracy. You can use this * is a guide to decide whether the results are accurate enough for your needs. This estimate will * be more reliable if your real input data is similar to your training data [Categorical models * only]. * @param classificationAccuracy classificationAccuracy or {@code null} for none */ public ModelInfo setClassificationAccuracy(java.lang.Double classificationAccuracy) { this.classificationAccuracy = classificationAccuracy; return this; } /** * An output confusion matrix. This shows an estimate for how this model will do in predictions. * This is first indexed by the true class label. For each true class label, this provides a pair * {predicted_label, count}, where count is the estimated number of times the model will predict * the predicted label given the true label. Will not output if more then 100 classes [Categorical * models only]. * @return value or {@code null} for none */ public java.util.Map> getConfusionMatrix() { return confusionMatrix; } /** * An output confusion matrix. This shows an estimate for how this model will do in predictions. * This is first indexed by the true class label. For each true class label, this provides a pair * {predicted_label, count}, where count is the estimated number of times the model will predict * the predicted label given the true label. Will not output if more then 100 classes [Categorical * models only]. * @param confusionMatrix confusionMatrix or {@code null} for none */ public ModelInfo setConfusionMatrix(java.util.Map> confusionMatrix) { this.confusionMatrix = confusionMatrix; return this; } /** * A list of the confusion matrix row totals * @return value or {@code null} for none */ public java.util.Map getConfusionMatrixRowTotals() { return confusionMatrixRowTotals; } /** * A list of the confusion matrix row totals * @param confusionMatrixRowTotals confusionMatrixRowTotals or {@code null} for none */ public ModelInfo setConfusionMatrixRowTotals(java.util.Map confusionMatrixRowTotals) { this.confusionMatrixRowTotals = confusionMatrixRowTotals; return this; } /** * An estimated mean squared error. The can be used to measure the quality of the predicted model * [Regression models only]. * @return value or {@code null} for none */ public java.lang.Double getMeanSquaredError() { return meanSquaredError; } /** * An estimated mean squared error. The can be used to measure the quality of the predicted model * [Regression models only]. * @param meanSquaredError meanSquaredError or {@code null} for none */ public ModelInfo setMeanSquaredError(java.lang.Double meanSquaredError) { this.meanSquaredError = meanSquaredError; return this; } /** * Type of predictive model (CLASSIFICATION or REGRESSION) * @return value or {@code null} for none */ public java.lang.String getModelType() { return modelType; } /** * Type of predictive model (CLASSIFICATION or REGRESSION) * @param modelType modelType or {@code null} for none */ public ModelInfo setModelType(java.lang.String modelType) { this.modelType = modelType; return this; } /** * Number of valid data instances used in the trained model. * @return value or {@code null} for none */ public java.lang.Long getNumberInstances() { return numberInstances; } /** * Number of valid data instances used in the trained model. * @param numberInstances numberInstances or {@code null} for none */ public ModelInfo setNumberInstances(java.lang.Long numberInstances) { this.numberInstances = numberInstances; return this; } /** * Number of class labels in the trained model [Categorical models only]. * @return value or {@code null} for none */ public java.lang.Long getNumberLabels() { return numberLabels; } /** * Number of class labels in the trained model [Categorical models only]. * @param numberLabels numberLabels or {@code null} for none */ public ModelInfo setNumberLabels(java.lang.Long numberLabels) { this.numberLabels = numberLabels; return this; } @Override public ModelInfo set(String fieldName, Object value) { return (ModelInfo) super.set(fieldName, value); } @Override public ModelInfo clone() { return (ModelInfo) super.clone(); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy