All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.api.services.prediction.model.Training Maven / Gradle / Ivy

/*
 * Copyright 2010 Google Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
 * in compliance with the License. You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software distributed under the License
 * is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
 * or implied. See the License for the specific language governing permissions and limitations under
 * the License.
 */
/*
 * This code was generated by https://code.google.com/p/google-apis-client-generator/
 * (build: 2013-12-19 23:55:21 UTC)
 * on 2014-01-07 at 21:42:56 UTC 
 * Modify at your own risk.
 */

package com.google.api.services.prediction.model;

/**
 * Model definition for Training.
 *
 * 

This is the Java data model class that specifies how to parse/serialize into the JSON that is * transmitted over HTTP when working with the Prediction API. For a detailed explanation see: * http://code.google.com/p/google-api-java-client/wiki/Json *

* * @author Google, Inc. */ @SuppressWarnings("javadoc") public final class Training extends com.google.api.client.json.GenericJson { /** * Insert time of the model (as a RFC 3339 timestamp). * The value may be {@code null}. */ @com.google.api.client.util.Key private com.google.api.client.util.DateTime created; /** * The unique name for the predictive model. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String id; /** * What kind of resource this is. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String kind; /** * Model metadata. * The value may be {@code null}. */ @com.google.api.client.util.Key private ModelInfo modelInfo; /** * Type of predictive model (classification or regression) * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String modelType; /** * A URL to re-request this resource. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String selfLink; /** * Google storage location of the training data file. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String storageDataLocation; /** * Google storage location of the preprocessing pmml file. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String storagePMMLLocation; /** * Google storage location of the pmml model file. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String storagePMMLModelLocation; /** * Training completion time (as a RFC 3339 timestamp). * The value may be {@code null}. */ @com.google.api.client.util.Key private com.google.api.client.util.DateTime trainingComplete; /** * Instances to train model on. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.util.List trainingInstances; static { // hack to force ProGuard to consider TrainingInstances used, since otherwise it would be stripped out // see http://code.google.com/p/google-api-java-client/issues/detail?id=528 com.google.api.client.util.Data.nullOf(TrainingInstances.class); } /** * The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; * ERROR: TRAINING JOB NOT FOUND * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String trainingStatus; /** * A class weighting function, which allows the importance weights for class labels to be * specified [Categorical models only]. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.util.List> utility; /** * Insert time of the model (as a RFC 3339 timestamp). * @return value or {@code null} for none */ public com.google.api.client.util.DateTime getCreated() { return created; } /** * Insert time of the model (as a RFC 3339 timestamp). * @param created created or {@code null} for none */ public Training setCreated(com.google.api.client.util.DateTime created) { this.created = created; return this; } /** * The unique name for the predictive model. * @return value or {@code null} for none */ public java.lang.String getId() { return id; } /** * The unique name for the predictive model. * @param id id or {@code null} for none */ public Training setId(java.lang.String id) { this.id = id; return this; } /** * What kind of resource this is. * @return value or {@code null} for none */ public java.lang.String getKind() { return kind; } /** * What kind of resource this is. * @param kind kind or {@code null} for none */ public Training setKind(java.lang.String kind) { this.kind = kind; return this; } /** * Model metadata. * @return value or {@code null} for none */ public ModelInfo getModelInfo() { return modelInfo; } /** * Model metadata. * @param modelInfo modelInfo or {@code null} for none */ public Training setModelInfo(ModelInfo modelInfo) { this.modelInfo = modelInfo; return this; } /** * Type of predictive model (classification or regression) * @return value or {@code null} for none */ public java.lang.String getModelType() { return modelType; } /** * Type of predictive model (classification or regression) * @param modelType modelType or {@code null} for none */ public Training setModelType(java.lang.String modelType) { this.modelType = modelType; return this; } /** * A URL to re-request this resource. * @return value or {@code null} for none */ public java.lang.String getSelfLink() { return selfLink; } /** * A URL to re-request this resource. * @param selfLink selfLink or {@code null} for none */ public Training setSelfLink(java.lang.String selfLink) { this.selfLink = selfLink; return this; } /** * Google storage location of the training data file. * @return value or {@code null} for none */ public java.lang.String getStorageDataLocation() { return storageDataLocation; } /** * Google storage location of the training data file. * @param storageDataLocation storageDataLocation or {@code null} for none */ public Training setStorageDataLocation(java.lang.String storageDataLocation) { this.storageDataLocation = storageDataLocation; return this; } /** * Google storage location of the preprocessing pmml file. * @return value or {@code null} for none */ public java.lang.String getStoragePMMLLocation() { return storagePMMLLocation; } /** * Google storage location of the preprocessing pmml file. * @param storagePMMLLocation storagePMMLLocation or {@code null} for none */ public Training setStoragePMMLLocation(java.lang.String storagePMMLLocation) { this.storagePMMLLocation = storagePMMLLocation; return this; } /** * Google storage location of the pmml model file. * @return value or {@code null} for none */ public java.lang.String getStoragePMMLModelLocation() { return storagePMMLModelLocation; } /** * Google storage location of the pmml model file. * @param storagePMMLModelLocation storagePMMLModelLocation or {@code null} for none */ public Training setStoragePMMLModelLocation(java.lang.String storagePMMLModelLocation) { this.storagePMMLModelLocation = storagePMMLModelLocation; return this; } /** * Training completion time (as a RFC 3339 timestamp). * @return value or {@code null} for none */ public com.google.api.client.util.DateTime getTrainingComplete() { return trainingComplete; } /** * Training completion time (as a RFC 3339 timestamp). * @param trainingComplete trainingComplete or {@code null} for none */ public Training setTrainingComplete(com.google.api.client.util.DateTime trainingComplete) { this.trainingComplete = trainingComplete; return this; } /** * Instances to train model on. * @return value or {@code null} for none */ public java.util.List getTrainingInstances() { return trainingInstances; } /** * Instances to train model on. * @param trainingInstances trainingInstances or {@code null} for none */ public Training setTrainingInstances(java.util.List trainingInstances) { this.trainingInstances = trainingInstances; return this; } /** * The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; * ERROR: TRAINING JOB NOT FOUND * @return value or {@code null} for none */ public java.lang.String getTrainingStatus() { return trainingStatus; } /** * The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; * ERROR: TRAINING JOB NOT FOUND * @param trainingStatus trainingStatus or {@code null} for none */ public Training setTrainingStatus(java.lang.String trainingStatus) { this.trainingStatus = trainingStatus; return this; } /** * A class weighting function, which allows the importance weights for class labels to be * specified [Categorical models only]. * @return value or {@code null} for none */ public java.util.List> getUtility() { return utility; } /** * A class weighting function, which allows the importance weights for class labels to be * specified [Categorical models only]. * @param utility utility or {@code null} for none */ public Training setUtility(java.util.List> utility) { this.utility = utility; return this; } @Override public Training set(String fieldName, Object value) { return (Training) super.set(fieldName, value); } @Override public Training clone() { return (Training) super.clone(); } /** * Model metadata. */ public static final class ModelInfo extends com.google.api.client.json.GenericJson { /** * Estimated accuracy of model taking utility weights into account [Categorical models only]. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double classWeightedAccuracy; /** * A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the * amount and quality of the training data, of the estimated prediction accuracy. You can use this * is a guide to decide whether the results are accurate enough for your needs. This estimate will * be more reliable if your real input data is similar to your training data [Categorical models * only]. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double classificationAccuracy; /** * An estimated mean squared error. The can be used to measure the quality of the predicted model * [Regression models only]. * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.Double meanSquaredError; /** * Type of predictive model (CLASSIFICATION or REGRESSION) * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String modelType; /** * Number of valid data instances used in the trained model. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.lang.Long numberInstances; /** * Number of class labels in the trained model [Categorical models only]. * The value may be {@code null}. */ @com.google.api.client.util.Key @com.google.api.client.json.JsonString private java.lang.Long numberLabels; /** * Estimated accuracy of model taking utility weights into account [Categorical models only]. * @return value or {@code null} for none */ public java.lang.Double getClassWeightedAccuracy() { return classWeightedAccuracy; } /** * Estimated accuracy of model taking utility weights into account [Categorical models only]. * @param classWeightedAccuracy classWeightedAccuracy or {@code null} for none */ public ModelInfo setClassWeightedAccuracy(java.lang.Double classWeightedAccuracy) { this.classWeightedAccuracy = classWeightedAccuracy; return this; } /** * A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the * amount and quality of the training data, of the estimated prediction accuracy. You can use this * is a guide to decide whether the results are accurate enough for your needs. This estimate will * be more reliable if your real input data is similar to your training data [Categorical models * only]. * @return value or {@code null} for none */ public java.lang.Double getClassificationAccuracy() { return classificationAccuracy; } /** * A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the * amount and quality of the training data, of the estimated prediction accuracy. You can use this * is a guide to decide whether the results are accurate enough for your needs. This estimate will * be more reliable if your real input data is similar to your training data [Categorical models * only]. * @param classificationAccuracy classificationAccuracy or {@code null} for none */ public ModelInfo setClassificationAccuracy(java.lang.Double classificationAccuracy) { this.classificationAccuracy = classificationAccuracy; return this; } /** * An estimated mean squared error. The can be used to measure the quality of the predicted model * [Regression models only]. * @return value or {@code null} for none */ public java.lang.Double getMeanSquaredError() { return meanSquaredError; } /** * An estimated mean squared error. The can be used to measure the quality of the predicted model * [Regression models only]. * @param meanSquaredError meanSquaredError or {@code null} for none */ public ModelInfo setMeanSquaredError(java.lang.Double meanSquaredError) { this.meanSquaredError = meanSquaredError; return this; } /** * Type of predictive model (CLASSIFICATION or REGRESSION) * @return value or {@code null} for none */ public java.lang.String getModelType() { return modelType; } /** * Type of predictive model (CLASSIFICATION or REGRESSION) * @param modelType modelType or {@code null} for none */ public ModelInfo setModelType(java.lang.String modelType) { this.modelType = modelType; return this; } /** * Number of valid data instances used in the trained model. * @return value or {@code null} for none */ public java.lang.Long getNumberInstances() { return numberInstances; } /** * Number of valid data instances used in the trained model. * @param numberInstances numberInstances or {@code null} for none */ public ModelInfo setNumberInstances(java.lang.Long numberInstances) { this.numberInstances = numberInstances; return this; } /** * Number of class labels in the trained model [Categorical models only]. * @return value or {@code null} for none */ public java.lang.Long getNumberLabels() { return numberLabels; } /** * Number of class labels in the trained model [Categorical models only]. * @param numberLabels numberLabels or {@code null} for none */ public ModelInfo setNumberLabels(java.lang.Long numberLabels) { this.numberLabels = numberLabels; return this; } @Override public ModelInfo set(String fieldName, Object value) { return (ModelInfo) super.set(fieldName, value); } @Override public ModelInfo clone() { return (ModelInfo) super.clone(); } } /** * Model definition for TrainingTrainingInstances. */ public static final class TrainingInstances extends com.google.api.client.json.GenericJson { /** * The input features for this instance * The value may be {@code null}. */ @com.google.api.client.util.Key private java.util.List csvInstance; /** * The generic output value - could be regression or class label * The value may be {@code null}. */ @com.google.api.client.util.Key private java.lang.String output; /** * The input features for this instance * @return value or {@code null} for none */ public java.util.List getCsvInstance() { return csvInstance; } /** * The input features for this instance * @param csvInstance csvInstance or {@code null} for none */ public TrainingInstances setCsvInstance(java.util.List csvInstance) { this.csvInstance = csvInstance; return this; } /** * The generic output value - could be regression or class label * @return value or {@code null} for none */ public java.lang.String getOutput() { return output; } /** * The generic output value - could be regression or class label * @param output output or {@code null} for none */ public TrainingInstances setOutput(java.lang.String output) { this.output = output; return this; } @Override public TrainingInstances set(String fieldName, Object value) { return (TrainingInstances) super.set(fieldName, value); } @Override public TrainingInstances clone() { return (TrainingInstances) super.clone(); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy