All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.protobuf.util.Timestamps Maven / Gradle / Ivy

There is a newer version: 2.0.31
Show newest version
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

package com.google.protobuf.util;

import static com.google.common.math.IntMath.checkedAdd;
import static com.google.common.math.IntMath.checkedSubtract;
import static com.google.common.math.LongMath.checkedAdd;
import static com.google.common.math.LongMath.checkedMultiply;
import static com.google.common.math.LongMath.checkedSubtract;

import com.google.errorprone.annotations.CanIgnoreReturnValue;
import com.google.errorprone.annotations.CompileTimeConstant;
import com.google.j2objc.annotations.J2ObjCIncompatible;
import com.google.protobuf.Duration;
import com.google.protobuf.Timestamp;
import java.io.Serializable;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Comparator;
import java.util.Date;
import java.util.GregorianCalendar;
import java.util.Locale;
import java.util.TimeZone;

/**
 * Utilities to help create/manipulate {@code protobuf/timestamp.proto}. All operations throw an
 * {@link IllegalArgumentException} if the input(s) are not {@linkplain #isValid(Timestamp) valid}.
 */
public final class Timestamps {

  // Timestamp for "0001-01-01T00:00:00Z"
  static final long TIMESTAMP_SECONDS_MIN = -62135596800L;

  // Timestamp for "9999-12-31T23:59:59Z"
  static final long TIMESTAMP_SECONDS_MAX = 253402300799L;

  static final int NANOS_PER_SECOND = 1000000000;
  static final int NANOS_PER_MILLISECOND = 1000000;
  static final int NANOS_PER_MICROSECOND = 1000;
  static final int MILLIS_PER_SECOND = 1000;
  static final int MICROS_PER_SECOND = 1000000;

  /** A constant holding the minimum valid {@link Timestamp}, {@code 0001-01-01T00:00:00Z}. */
  public static final Timestamp MIN_VALUE =
      Timestamp.newBuilder().setSeconds(TIMESTAMP_SECONDS_MIN).setNanos(0).build();

  /**
   * A constant holding the maximum valid {@link Timestamp}, {@code 9999-12-31T23:59:59.999999999Z}.
   */
  public static final Timestamp MAX_VALUE =
      Timestamp.newBuilder().setSeconds(TIMESTAMP_SECONDS_MAX).setNanos(999999999).build();

  /**
   * A constant holding the {@link Timestamp} of epoch time, {@code 1970-01-01T00:00:00.000000000Z}.
   */
  public static final Timestamp EPOCH = Timestamp.newBuilder().setSeconds(0).setNanos(0).build();

  private static final ThreadLocal timestampFormat =
      new ThreadLocal() {
        @Override
        protected SimpleDateFormat initialValue() {
          return createTimestampFormat();
        }
      };

  private static SimpleDateFormat createTimestampFormat() {
    SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss", Locale.ENGLISH);
    GregorianCalendar calendar = new GregorianCalendar(TimeZone.getTimeZone("UTC"));
    // We use Proleptic Gregorian Calendar (i.e., Gregorian calendar extends
    // backwards to year one) for timestamp formatting.
    calendar.setGregorianChange(new Date(Long.MIN_VALUE));
    sdf.setCalendar(calendar);
    return sdf;
  }

  private Timestamps() {}

  private static enum TimestampComparator implements Comparator, Serializable {
    INSTANCE;

    @Override
    public int compare(Timestamp t1, Timestamp t2) {
      checkValid(t1);
      checkValid(t2);
      int secDiff = Long.compare(t1.getSeconds(), t2.getSeconds());
      return (secDiff != 0) ? secDiff : Integer.compare(t1.getNanos(), t2.getNanos());
    }
  }

  /**
   * Returns a {@link Comparator} for {@link Timestamp Timestamps} which sorts in increasing
   * chronological order. Nulls and invalid {@link Timestamp Timestamps} are not allowed (see
   * {@link #isValid}). The returned comparator is serializable.
   */
  public static Comparator comparator() {
    return TimestampComparator.INSTANCE;
  }

  /**
   * Compares two timestamps. The value returned is identical to what would be returned by: {@code
   * Timestamps.comparator().compare(x, y)}.
   *
   * @return the value {@code 0} if {@code x == y}; a value less than {@code 0} if {@code x < y};
   *     and a value greater than {@code 0} if {@code x > y}
   */
  public static int compare(Timestamp x, Timestamp y) {
    return TimestampComparator.INSTANCE.compare(x, y);
  }

  /**
   * Returns true if the given {@link Timestamp} is valid. The {@code seconds} value must be in the
   * range [-62,135,596,800, +253,402,300,799] (i.e., between 0001-01-01T00:00:00Z and
   * 9999-12-31T23:59:59Z). The {@code nanos} value must be in the range [0, +999,999,999].
   *
   * 

Note: Negative second values with fractional seconds must still have non-negative * nanos values that count forward in time. */ public static boolean isValid(Timestamp timestamp) { return isValid(timestamp.getSeconds(), timestamp.getNanos()); } /** * Returns true if the given number of seconds and nanos is a valid {@link Timestamp}. The {@code * seconds} value must be in the range [-62,135,596,800, +253,402,300,799] (i.e., between * 0001-01-01T00:00:00Z and 9999-12-31T23:59:59Z). The {@code nanos} value must be in the range * [0, +999,999,999]. * *

Note: Negative second values with fractional seconds must still have non-negative * nanos values that count forward in time. */ @SuppressWarnings("GoodTime") // this is a legacy conversion API public static boolean isValid(long seconds, int nanos) { if (seconds < TIMESTAMP_SECONDS_MIN || seconds > TIMESTAMP_SECONDS_MAX) { return false; } if (nanos < 0 || nanos >= NANOS_PER_SECOND) { return false; } return true; } /** Throws an {@link IllegalArgumentException} if the given {@link Timestamp} is not valid. */ @CanIgnoreReturnValue public static Timestamp checkValid(Timestamp timestamp) { long seconds = timestamp.getSeconds(); int nanos = timestamp.getNanos(); if (!isValid(seconds, nanos)) { throw new IllegalArgumentException( String.format( "Timestamp is not valid. See proto definition for valid values. " + "Seconds (%s) must be in range [-62,135,596,800, +253,402,300,799]. " + "Nanos (%s) must be in range [0, +999,999,999].", seconds, nanos)); } return timestamp; } /** * Builds the given builder and throws an {@link IllegalArgumentException} if it is not valid. See * {@link #checkValid(Timestamp)}. * * @return A valid, built {@link Timestamp}. */ public static Timestamp checkValid(Timestamp.Builder timestampBuilder) { return checkValid(timestampBuilder.build()); } /** * Convert Timestamp to RFC 3339 date string format. The output will always be Z-normalized and * uses 3, 6 or 9 fractional digits as required to represent the exact value. Note that Timestamp * can only represent time from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. See * https://www.ietf.org/rfc/rfc3339.txt * *

Example of generated format: "1972-01-01T10:00:20.021Z" * * @return The string representation of the given timestamp. * @throws IllegalArgumentException if the given timestamp is not in the valid range. */ public static String toString(Timestamp timestamp) { checkValid(timestamp); long seconds = timestamp.getSeconds(); int nanos = timestamp.getNanos(); StringBuilder result = new StringBuilder(); // Format the seconds part. Date date = new Date(seconds * MILLIS_PER_SECOND); result.append(timestampFormat.get().format(date)); // Format the nanos part. if (nanos != 0) { result.append("."); result.append(formatNanos(nanos)); } result.append("Z"); return result.toString(); } /** * Parse from RFC 3339 date string to Timestamp. This method accepts all outputs of {@link * #toString(Timestamp)} and it also accepts any fractional digits (or none) and any offset as * long as they fit into nano-seconds precision. * *

Example of accepted format: "1972-01-01T10:00:20.021-05:00" * * @return a Timestamp parsed from the string * @throws ParseException if parsing fails */ public static Timestamp parse(String value) throws ParseException { int dayOffset = value.indexOf('T'); if (dayOffset == -1) { throw new ParseException("Failed to parse timestamp: invalid timestamp \"" + value + "\"", 0); } int timezoneOffsetPosition = value.indexOf('Z', dayOffset); if (timezoneOffsetPosition == -1) { timezoneOffsetPosition = value.indexOf('+', dayOffset); } if (timezoneOffsetPosition == -1) { timezoneOffsetPosition = value.indexOf('-', dayOffset); } if (timezoneOffsetPosition == -1) { throw new ParseException("Failed to parse timestamp: missing valid timezone offset.", 0); } // Parse seconds and nanos. String timeValue = value.substring(0, timezoneOffsetPosition); String secondValue = timeValue; String nanoValue = ""; int pointPosition = timeValue.indexOf('.'); if (pointPosition != -1) { secondValue = timeValue.substring(0, pointPosition); nanoValue = timeValue.substring(pointPosition + 1); } Date date = timestampFormat.get().parse(secondValue); long seconds = date.getTime() / MILLIS_PER_SECOND; int nanos = nanoValue.isEmpty() ? 0 : parseNanos(nanoValue); // Parse timezone offsets. if (value.charAt(timezoneOffsetPosition) == 'Z') { if (value.length() != timezoneOffsetPosition + 1) { throw new ParseException( "Failed to parse timestamp: invalid trailing data \"" + value.substring(timezoneOffsetPosition) + "\"", 0); } } else { String offsetValue = value.substring(timezoneOffsetPosition + 1); long offset = parseTimezoneOffset(offsetValue); if (value.charAt(timezoneOffsetPosition) == '+') { seconds -= offset; } else { seconds += offset; } } try { return normalizedTimestamp(seconds, nanos); } catch (IllegalArgumentException e) { ParseException ex = new ParseException( "Failed to parse timestamp " + value + " Timestamp is out of range.", 0); ex.initCause(e); throw ex; } } /** * Parses a string in RFC 3339 format into a {@link Timestamp}. * *

Identical to {@link #parse(String)}, but throws an {@link IllegalArgumentException} instead * of a {@link ParseException} if parsing fails. * * @return a {@link Timestamp} parsed from the string * @throws IllegalArgumentException if parsing fails */ public static Timestamp parseUnchecked(@CompileTimeConstant String value) { try { return parse(value); } catch (ParseException e) { // While `java.time.format.DateTimeParseException` is a more accurate representation of the // failure, this library is currently not JDK8 ready because of Android dependencies. throw new IllegalArgumentException(e); } } /** Create a Timestamp from the number of seconds elapsed from the epoch. */ @SuppressWarnings("GoodTime") // this is a legacy conversion API public static Timestamp fromSeconds(long seconds) { return normalizedTimestamp(seconds, 0); } /** * Convert a Timestamp to the number of seconds elapsed from the epoch. * *

The result will be rounded down to the nearest second. E.g., if the timestamp represents * "1969-12-31T23:59:59.999999999Z", it will be rounded to -1 second. */ @SuppressWarnings("GoodTime") // this is a legacy conversion API public static long toSeconds(Timestamp timestamp) { return checkValid(timestamp).getSeconds(); } /** Create a Timestamp from the number of milliseconds elapsed from the epoch. */ @SuppressWarnings("GoodTime") // this is a legacy conversion API public static Timestamp fromMillis(long milliseconds) { return normalizedTimestamp( milliseconds / MILLIS_PER_SECOND, (int) (milliseconds % MILLIS_PER_SECOND * NANOS_PER_MILLISECOND)); } /** * Create a Timestamp from a java.util.Date. If the java.util.Date is a java.sql.Timestamp, * full nanonsecond precision is retained. * * @throws IllegalArgumentException if the year is before 1 CE or after 9999 CE */ @SuppressWarnings("GoodTime") // this is a legacy conversion API @J2ObjCIncompatible public static Timestamp fromDate(Date date) { if (date instanceof java.sql.Timestamp) { java.sql.Timestamp sqlTimestamp = (java.sql.Timestamp) date; long integralSeconds = sqlTimestamp.getTime() / 1000L; // truncate the fractional seconds return Timestamp.newBuilder() .setSeconds(integralSeconds) .setNanos(sqlTimestamp.getNanos()) .build(); } else { return fromMillis(date.getTime()); } } /** * Convert a Timestamp to the number of milliseconds elapsed from the epoch. * *

The result will be rounded down to the nearest millisecond. For instance, if the timestamp * represents "1969-12-31T23:59:59.999999999Z", it will be rounded to -1 millisecond. */ @SuppressWarnings("GoodTime") // this is a legacy conversion API public static long toMillis(Timestamp timestamp) { checkValid(timestamp); return checkedAdd( checkedMultiply(timestamp.getSeconds(), MILLIS_PER_SECOND), timestamp.getNanos() / NANOS_PER_MILLISECOND); } /** Create a Timestamp from the number of microseconds elapsed from the epoch. */ @SuppressWarnings("GoodTime") // this is a legacy conversion API public static Timestamp fromMicros(long microseconds) { return normalizedTimestamp( microseconds / MICROS_PER_SECOND, (int) (microseconds % MICROS_PER_SECOND * NANOS_PER_MICROSECOND)); } /** * Convert a Timestamp to the number of microseconds elapsed from the epoch. * *

The result will be rounded down to the nearest microsecond. E.g., if the timestamp * represents "1969-12-31T23:59:59.999999999Z", it will be rounded to -1 microsecond. */ @SuppressWarnings("GoodTime") // this is a legacy conversion API public static long toMicros(Timestamp timestamp) { checkValid(timestamp); return checkedAdd( checkedMultiply(timestamp.getSeconds(), MICROS_PER_SECOND), timestamp.getNanos() / NANOS_PER_MICROSECOND); } /** Create a Timestamp from the number of nanoseconds elapsed from the epoch. */ @SuppressWarnings("GoodTime") // this is a legacy conversion API public static Timestamp fromNanos(long nanoseconds) { return normalizedTimestamp( nanoseconds / NANOS_PER_SECOND, (int) (nanoseconds % NANOS_PER_SECOND)); } /** Convert a Timestamp to the number of nanoseconds elapsed from the epoch. */ @SuppressWarnings("GoodTime") // this is a legacy conversion API public static long toNanos(Timestamp timestamp) { checkValid(timestamp); return checkedAdd( checkedMultiply(timestamp.getSeconds(), NANOS_PER_SECOND), timestamp.getNanos()); } /** Calculate the difference between two timestamps. */ public static Duration between(Timestamp from, Timestamp to) { checkValid(from); checkValid(to); return Durations.normalizedDuration( checkedSubtract(to.getSeconds(), from.getSeconds()), checkedSubtract(to.getNanos(), from.getNanos())); } /** Add a duration to a timestamp. */ public static Timestamp add(Timestamp start, Duration length) { checkValid(start); Durations.checkValid(length); return normalizedTimestamp( checkedAdd(start.getSeconds(), length.getSeconds()), checkedAdd(start.getNanos(), length.getNanos())); } /** Subtract a duration from a timestamp. */ public static Timestamp subtract(Timestamp start, Duration length) { checkValid(start); Durations.checkValid(length); return normalizedTimestamp( checkedSubtract(start.getSeconds(), length.getSeconds()), checkedSubtract(start.getNanos(), length.getNanos())); } static Timestamp normalizedTimestamp(long seconds, int nanos) { if (nanos <= -NANOS_PER_SECOND || nanos >= NANOS_PER_SECOND) { seconds = checkedAdd(seconds, nanos / NANOS_PER_SECOND); nanos = (int) (nanos % NANOS_PER_SECOND); } if (nanos < 0) { nanos = (int) (nanos + NANOS_PER_SECOND); // no overflow since nanos is negative (and we're adding) seconds = checkedSubtract(seconds, 1); } Timestamp timestamp = Timestamp.newBuilder().setSeconds(seconds).setNanos(nanos).build(); return checkValid(timestamp); } private static long parseTimezoneOffset(String value) throws ParseException { int pos = value.indexOf(':'); if (pos == -1) { throw new ParseException("Invalid offset value: " + value, 0); } String hours = value.substring(0, pos); String minutes = value.substring(pos + 1); return (Long.parseLong(hours) * 60 + Long.parseLong(minutes)) * 60; } static int parseNanos(String value) throws ParseException { int result = 0; for (int i = 0; i < 9; ++i) { result = result * 10; if (i < value.length()) { if (value.charAt(i) < '0' || value.charAt(i) > '9') { throw new ParseException("Invalid nanoseconds.", 0); } result += value.charAt(i) - '0'; } } return result; } /** Format the nano part of a timestamp or a duration. */ static String formatNanos(int nanos) { // Determine whether to use 3, 6, or 9 digits for the nano part. if (nanos % NANOS_PER_MILLISECOND == 0) { return String.format(Locale.ENGLISH, "%1$03d", nanos / NANOS_PER_MILLISECOND); } else if (nanos % NANOS_PER_MICROSECOND == 0) { return String.format(Locale.ENGLISH, "%1$06d", nanos / NANOS_PER_MICROSECOND); } else { return String.format(Locale.ENGLISH, "%1$09d", nanos); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy