All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.eclipse.jetty.util.AbstractTrie Maven / Gradle / Ivy

There is a newer version: 2.0.32
Show newest version
//
// ========================================================================
// Copyright (c) 1995 Mort Bay Consulting Pty Ltd and others.
//
// This program and the accompanying materials are made available under the
// terms of the Eclipse Public License v. 2.0 which is available at
// https://www.eclipse.org/legal/epl-2.0, or the Apache License, Version 2.0
// which is available at https://www.apache.org/licenses/LICENSE-2.0.
//
// SPDX-License-Identifier: EPL-2.0 OR Apache-2.0
// ========================================================================
//

package org.eclipse.jetty.util;

import java.nio.ByteBuffer;
import java.nio.charset.StandardCharsets;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.stream.Collectors;

/**
 * Abstract Trie implementation.
 * 

Provides some common implementations, which may not be the most * efficient. For byte operations, the assumption is made that the charset * is ISO-8859-1

* * @param the type of object that the Trie holds */ abstract class AbstractTrie implements Index.Mutable { final boolean _caseSensitive; protected AbstractTrie(boolean caseSensitive) { _caseSensitive = caseSensitive; } public boolean isCaseInsensitive() { return !_caseSensitive; } public boolean isCaseSensitive() { return _caseSensitive; } public boolean put(V v) { return put(v.toString(), v); } public V remove(String s) { V o = get(s); put(s, null); return o; } public V get(String s) { return get(s, 0, s == null ? 0 : s.length()); } public V get(ByteBuffer b) { return get(b, 0, b.remaining()); } public V getBest(String s) { return getBest(s, 0, s == null ? 0 : s.length()); } public V getBest(byte[] b, int offset, int len) { return getBest(new String(b, offset, len, StandardCharsets.ISO_8859_1)); } /** * Calculate required Trie capacity in nodes of a tree decomposition of the keys. * For example given the keys: *
    *
  • utf_16
  • *
  • utf_8
  • *
  • utf16
  • *
  • utf8
  • *
* The tree switching by character is: *
     *                            1 - 6
     *                          /
     *                        _ - 8
     *                      /
     *     root - u - t - f - 1 - 6
     *                      \
     *                        8
     * 
* The count also applies to ternary trees as follows: *
     *     root - u - t - f - _ ----- 1 - 6
     *                         \       \
     *                          1 - 6   8
     *                           \
     *                            8
     * 
* In both cases above there are 10 character nodes plus the root node that can * hold a value for the empty string key, so the returned capacity is 11. * * @param keys The keys to be put in a Trie * @param caseSensitive true if the capacity should be calculated with case-sensitive keys * @return The capacity in nodes of a tree decomposition */ protected static int requiredCapacity(Set keys, boolean caseSensitive) { List list = caseSensitive ? new ArrayList<>(keys) : keys.stream().map(String::toLowerCase).collect(Collectors.toList()); Collections.sort(list); return 1 + AbstractTrie.requiredCapacity(list, 0, list.size(), 0); } /** * Calculate required Trie capacity in nodes of a sub-tree decomposition of the keys. * @param keys The keys to calculate the capacity for * @param offset The offset of the first key to be considered * @param length The number of keys to be considered * @param index The character to be considered * @return The capacity in tree nodes of the substree */ private static int requiredCapacity(List keys, int offset, int length, int index) { int required = 0; while (true) { // Examine all the keys in the subtree Character nodeChar = null; for (int i = 0; i < length; i++) { String k = keys.get(offset + i); // If the key is shorter than our current index then ignore it if (k.length() <= index) continue; // Get the character at the index of the current key char c = k.charAt(index); // If the character is the same as the current node, then we are // still in the current node and need to continue searching for the // next node or the end of the keys if (nodeChar != null && c == nodeChar) continue; // The character is a new node, so increase required by 1 required++; // if we had a previous node, then add the required nodes for the subtree under it. if (nodeChar != null) required += AbstractTrie.requiredCapacity(keys, offset, i, index + 1); // set the char for the new node nodeChar = c; // reset the offset, length and index to continue iteration from the start of the new node offset += i; length -= i; i = 0; } // If we finish the iteration with a nodeChar, then we must add the required nodes for the subtree under it. if (nodeChar != null) { // instead of recursion here, we loop to avoid tail recursion index++; continue; } return required; } } protected boolean putAll(Map contents) { for (Map.Entry entry : contents.entrySet()) { if (!put(entry.getKey(), entry.getValue())) return false; } return true; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy