All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.cloud.aiplatform.v1beta1.PredictionServiceClient Maven / Gradle / Ivy

There is a newer version: 3.55.0
Show newest version
/*
 * Copyright 2023 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.cloud.aiplatform.v1beta1;

import com.google.api.HttpBody;
import com.google.api.core.ApiFuture;
import com.google.api.core.ApiFutures;
import com.google.api.core.BetaApi;
import com.google.api.gax.core.BackgroundResource;
import com.google.api.gax.paging.AbstractFixedSizeCollection;
import com.google.api.gax.paging.AbstractPage;
import com.google.api.gax.paging.AbstractPagedListResponse;
import com.google.api.gax.rpc.PageContext;
import com.google.api.gax.rpc.ServerStreamingCallable;
import com.google.api.gax.rpc.UnaryCallable;
import com.google.cloud.aiplatform.v1beta1.stub.PredictionServiceStub;
import com.google.cloud.aiplatform.v1beta1.stub.PredictionServiceStubSettings;
import com.google.cloud.location.GetLocationRequest;
import com.google.cloud.location.ListLocationsRequest;
import com.google.cloud.location.ListLocationsResponse;
import com.google.cloud.location.Location;
import com.google.common.util.concurrent.MoreExecutors;
import com.google.iam.v1.GetIamPolicyRequest;
import com.google.iam.v1.Policy;
import com.google.iam.v1.SetIamPolicyRequest;
import com.google.iam.v1.TestIamPermissionsRequest;
import com.google.iam.v1.TestIamPermissionsResponse;
import com.google.protobuf.Value;
import java.io.IOException;
import java.util.List;
import java.util.concurrent.TimeUnit;
import javax.annotation.Generated;

// AUTO-GENERATED DOCUMENTATION AND CLASS.
/**
 * Service Description: A service for online predictions and explanations.
 *
 * 

This class provides the ability to make remote calls to the backing service through method * calls that map to API methods. Sample code to get started: * *

{@code
 * // This snippet has been automatically generated and should be regarded as a code template only.
 * // It will require modifications to work:
 * // - It may require correct/in-range values for request initialization.
 * // - It may require specifying regional endpoints when creating the service client as shown in
 * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
 *   EndpointName endpoint =
 *       EndpointName.ofProjectLocationEndpointName("[PROJECT]", "[LOCATION]", "[ENDPOINT]");
 *   List instances = new ArrayList<>();
 *   Value parameters = Value.newBuilder().setBoolValue(true).build();
 *   PredictResponse response = predictionServiceClient.predict(endpoint, instances, parameters);
 * }
 * }
* *

Note: close() needs to be called on the PredictionServiceClient object to clean up resources * such as threads. In the example above, try-with-resources is used, which automatically calls * close(). * *

The surface of this class includes several types of Java methods for each of the API's * methods: * *

    *
  1. A "flattened" method. With this type of method, the fields of the request type have been * converted into function parameters. It may be the case that not all fields are available as * parameters, and not every API method will have a flattened method entry point. *
  2. A "request object" method. This type of method only takes one parameter, a request object, * which must be constructed before the call. Not every API method will have a request object * method. *
  3. A "callable" method. This type of method takes no parameters and returns an immutable API * callable object, which can be used to initiate calls to the service. *
* *

See the individual methods for example code. * *

Many parameters require resource names to be formatted in a particular way. To assist with * these names, this class includes a format method for each type of name, and additionally a parse * method to extract the individual identifiers contained within names that are returned. * *

This class can be customized by passing in a custom instance of PredictionServiceSettings to * create(). For example: * *

To customize credentials: * *

{@code
 * // This snippet has been automatically generated and should be regarded as a code template only.
 * // It will require modifications to work:
 * // - It may require correct/in-range values for request initialization.
 * // - It may require specifying regional endpoints when creating the service client as shown in
 * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 * PredictionServiceSettings predictionServiceSettings =
 *     PredictionServiceSettings.newBuilder()
 *         .setCredentialsProvider(FixedCredentialsProvider.create(myCredentials))
 *         .build();
 * PredictionServiceClient predictionServiceClient =
 *     PredictionServiceClient.create(predictionServiceSettings);
 * }
* *

To customize the endpoint: * *

{@code
 * // This snippet has been automatically generated and should be regarded as a code template only.
 * // It will require modifications to work:
 * // - It may require correct/in-range values for request initialization.
 * // - It may require specifying regional endpoints when creating the service client as shown in
 * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 * PredictionServiceSettings predictionServiceSettings =
 *     PredictionServiceSettings.newBuilder().setEndpoint(myEndpoint).build();
 * PredictionServiceClient predictionServiceClient =
 *     PredictionServiceClient.create(predictionServiceSettings);
 * }
* *

Please refer to the GitHub repository's samples for more quickstart code snippets. */ @BetaApi @Generated("by gapic-generator-java") public class PredictionServiceClient implements BackgroundResource { private final PredictionServiceSettings settings; private final PredictionServiceStub stub; /** Constructs an instance of PredictionServiceClient with default settings. */ public static final PredictionServiceClient create() throws IOException { return create(PredictionServiceSettings.newBuilder().build()); } /** * Constructs an instance of PredictionServiceClient, using the given settings. The channels are * created based on the settings passed in, or defaults for any settings that are not set. */ public static final PredictionServiceClient create(PredictionServiceSettings settings) throws IOException { return new PredictionServiceClient(settings); } /** * Constructs an instance of PredictionServiceClient, using the given stub for making calls. This * is for advanced usage - prefer using create(PredictionServiceSettings). */ public static final PredictionServiceClient create(PredictionServiceStub stub) { return new PredictionServiceClient(stub); } /** * Constructs an instance of PredictionServiceClient, using the given settings. This is protected * so that it is easy to make a subclass, but otherwise, the static factory methods should be * preferred. */ protected PredictionServiceClient(PredictionServiceSettings settings) throws IOException { this.settings = settings; this.stub = ((PredictionServiceStubSettings) settings.getStubSettings()).createStub(); } protected PredictionServiceClient(PredictionServiceStub stub) { this.settings = null; this.stub = stub; } public final PredictionServiceSettings getSettings() { return settings; } public PredictionServiceStub getStub() { return stub; } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an online prediction. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   EndpointName endpoint =
   *       EndpointName.ofProjectLocationEndpointName("[PROJECT]", "[LOCATION]", "[ENDPOINT]");
   *   List instances = new ArrayList<>();
   *   Value parameters = Value.newBuilder().setBoolValue(true).build();
   *   PredictResponse response = predictionServiceClient.predict(endpoint, instances, parameters);
   * }
   * }
* * @param endpoint Required. The name of the Endpoint requested to serve the prediction. Format: * `projects/{project}/locations/{location}/endpoints/{endpoint}` * @param instances Required. The instances that are the input to the prediction call. A * DeployedModel may have an upper limit on the number of instances it supports per request, * and when it is exceeded the prediction call errors in case of AutoML Models, or, in case of * customer created Models, the behaviour is as documented by that Model. The schema of any * single instance may be specified via Endpoint's DeployedModels' * [Model's][google.cloud.aiplatform.v1beta1.DeployedModel.model] * [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata] * [instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri]. * @param parameters The parameters that govern the prediction. The schema of the parameters may * be specified via Endpoint's DeployedModels' [Model's * ][google.cloud.aiplatform.v1beta1.DeployedModel.model] * [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata] * [parameters_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.parameters_schema_uri]. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final PredictResponse predict( EndpointName endpoint, List instances, Value parameters) { PredictRequest request = PredictRequest.newBuilder() .setEndpoint(endpoint == null ? null : endpoint.toString()) .addAllInstances(instances) .setParameters(parameters) .build(); return predict(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an online prediction. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   String endpoint =
   *       EndpointName.ofProjectLocationEndpointName("[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *           .toString();
   *   List instances = new ArrayList<>();
   *   Value parameters = Value.newBuilder().setBoolValue(true).build();
   *   PredictResponse response = predictionServiceClient.predict(endpoint, instances, parameters);
   * }
   * }
* * @param endpoint Required. The name of the Endpoint requested to serve the prediction. Format: * `projects/{project}/locations/{location}/endpoints/{endpoint}` * @param instances Required. The instances that are the input to the prediction call. A * DeployedModel may have an upper limit on the number of instances it supports per request, * and when it is exceeded the prediction call errors in case of AutoML Models, or, in case of * customer created Models, the behaviour is as documented by that Model. The schema of any * single instance may be specified via Endpoint's DeployedModels' * [Model's][google.cloud.aiplatform.v1beta1.DeployedModel.model] * [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata] * [instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri]. * @param parameters The parameters that govern the prediction. The schema of the parameters may * be specified via Endpoint's DeployedModels' [Model's * ][google.cloud.aiplatform.v1beta1.DeployedModel.model] * [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata] * [parameters_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.parameters_schema_uri]. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final PredictResponse predict(String endpoint, List instances, Value parameters) { PredictRequest request = PredictRequest.newBuilder() .setEndpoint(endpoint) .addAllInstances(instances) .setParameters(parameters) .build(); return predict(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an online prediction. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   PredictRequest request =
   *       PredictRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .addAllInstances(new ArrayList())
   *           .setParameters(Value.newBuilder().setBoolValue(true).build())
   *           .build();
   *   PredictResponse response = predictionServiceClient.predict(request);
   * }
   * }
* * @param request The request object containing all of the parameters for the API call. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final PredictResponse predict(PredictRequest request) { return predictCallable().call(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an online prediction. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   PredictRequest request =
   *       PredictRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .addAllInstances(new ArrayList())
   *           .setParameters(Value.newBuilder().setBoolValue(true).build())
   *           .build();
   *   ApiFuture future =
   *       predictionServiceClient.predictCallable().futureCall(request);
   *   // Do something.
   *   PredictResponse response = future.get();
   * }
   * }
*/ public final UnaryCallable predictCallable() { return stub.predictCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an online prediction with an arbitrary HTTP payload. * *

The response includes the following HTTP headers: * *

    *
  • `X-Vertex-AI-Endpoint-Id`: ID of the [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] * that served this prediction. *
* *
    *
  • `X-Vertex-AI-Deployed-Model-Id`: ID of the Endpoint's * [DeployedModel][google.cloud.aiplatform.v1beta1.DeployedModel] that served this * prediction. *
* *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   EndpointName endpoint =
   *       EndpointName.ofProjectLocationEndpointName("[PROJECT]", "[LOCATION]", "[ENDPOINT]");
   *   HttpBody httpBody = HttpBody.newBuilder().build();
   *   HttpBody response = predictionServiceClient.rawPredict(endpoint, httpBody);
   * }
   * }
* * @param endpoint Required. The name of the Endpoint requested to serve the prediction. Format: * `projects/{project}/locations/{location}/endpoints/{endpoint}` * @param httpBody The prediction input. Supports HTTP headers and arbitrary data payload. *

A [DeployedModel][google.cloud.aiplatform.v1beta1.DeployedModel] may have an upper limit * on the number of instances it supports per request. When this limit it is exceeded for an * AutoML model, the * [RawPredict][google.cloud.aiplatform.v1beta1.PredictionService.RawPredict] method returns * an error. When this limit is exceeded for a custom-trained model, the behavior varies * depending on the model. *

You can specify the schema for each instance in the * [predict_schemata.instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri] * field when you create a [Model][google.cloud.aiplatform.v1beta1.Model]. This schema applies * when you deploy the `Model` as a `DeployedModel` to an * [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] and use the `RawPredict` method. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final HttpBody rawPredict(EndpointName endpoint, HttpBody httpBody) { RawPredictRequest request = RawPredictRequest.newBuilder() .setEndpoint(endpoint == null ? null : endpoint.toString()) .setHttpBody(httpBody) .build(); return rawPredict(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an online prediction with an arbitrary HTTP payload. * *

The response includes the following HTTP headers: * *

    *
  • `X-Vertex-AI-Endpoint-Id`: ID of the [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] * that served this prediction. *
* *
    *
  • `X-Vertex-AI-Deployed-Model-Id`: ID of the Endpoint's * [DeployedModel][google.cloud.aiplatform.v1beta1.DeployedModel] that served this * prediction. *
* *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   String endpoint =
   *       EndpointName.ofProjectLocationEndpointName("[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *           .toString();
   *   HttpBody httpBody = HttpBody.newBuilder().build();
   *   HttpBody response = predictionServiceClient.rawPredict(endpoint, httpBody);
   * }
   * }
* * @param endpoint Required. The name of the Endpoint requested to serve the prediction. Format: * `projects/{project}/locations/{location}/endpoints/{endpoint}` * @param httpBody The prediction input. Supports HTTP headers and arbitrary data payload. *

A [DeployedModel][google.cloud.aiplatform.v1beta1.DeployedModel] may have an upper limit * on the number of instances it supports per request. When this limit it is exceeded for an * AutoML model, the * [RawPredict][google.cloud.aiplatform.v1beta1.PredictionService.RawPredict] method returns * an error. When this limit is exceeded for a custom-trained model, the behavior varies * depending on the model. *

You can specify the schema for each instance in the * [predict_schemata.instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri] * field when you create a [Model][google.cloud.aiplatform.v1beta1.Model]. This schema applies * when you deploy the `Model` as a `DeployedModel` to an * [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] and use the `RawPredict` method. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final HttpBody rawPredict(String endpoint, HttpBody httpBody) { RawPredictRequest request = RawPredictRequest.newBuilder().setEndpoint(endpoint).setHttpBody(httpBody).build(); return rawPredict(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an online prediction with an arbitrary HTTP payload. * *

The response includes the following HTTP headers: * *

    *
  • `X-Vertex-AI-Endpoint-Id`: ID of the [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] * that served this prediction. *
* *
    *
  • `X-Vertex-AI-Deployed-Model-Id`: ID of the Endpoint's * [DeployedModel][google.cloud.aiplatform.v1beta1.DeployedModel] that served this * prediction. *
* *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   RawPredictRequest request =
   *       RawPredictRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .setHttpBody(HttpBody.newBuilder().build())
   *           .build();
   *   HttpBody response = predictionServiceClient.rawPredict(request);
   * }
   * }
* * @param request The request object containing all of the parameters for the API call. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final HttpBody rawPredict(RawPredictRequest request) { return rawPredictCallable().call(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an online prediction with an arbitrary HTTP payload. * *

The response includes the following HTTP headers: * *

    *
  • `X-Vertex-AI-Endpoint-Id`: ID of the [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] * that served this prediction. *
* *
    *
  • `X-Vertex-AI-Deployed-Model-Id`: ID of the Endpoint's * [DeployedModel][google.cloud.aiplatform.v1beta1.DeployedModel] that served this * prediction. *
* *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   RawPredictRequest request =
   *       RawPredictRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .setHttpBody(HttpBody.newBuilder().build())
   *           .build();
   *   ApiFuture future = predictionServiceClient.rawPredictCallable().futureCall(request);
   *   // Do something.
   *   HttpBody response = future.get();
   * }
   * }
*/ public final UnaryCallable rawPredictCallable() { return stub.rawPredictCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform a server-side streaming online prediction request for Vertex LLM streaming. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   StreamingPredictRequest request =
   *       StreamingPredictRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .addAllInputs(new ArrayList())
   *           .setParameters(Tensor.newBuilder().build())
   *           .build();
   *   ServerStream stream =
   *       predictionServiceClient.serverStreamingPredictCallable().call(request);
   *   for (StreamingPredictResponse response : stream) {
   *     // Do something when a response is received.
   *   }
   * }
   * }
*/ public final ServerStreamingCallable serverStreamingPredictCallable() { return stub.serverStreamingPredictCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an online explanation. * *

If [deployed_model_id][google.cloud.aiplatform.v1beta1.ExplainRequest.deployed_model_id] is * specified, the corresponding DeployModel must have * [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] populated. * If [deployed_model_id][google.cloud.aiplatform.v1beta1.ExplainRequest.deployed_model_id] is not * specified, all DeployedModels must have * [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] populated. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   EndpointName endpoint =
   *       EndpointName.ofProjectLocationEndpointName("[PROJECT]", "[LOCATION]", "[ENDPOINT]");
   *   List instances = new ArrayList<>();
   *   Value parameters = Value.newBuilder().setBoolValue(true).build();
   *   String deployedModelId = "deployedModelId-1817547906";
   *   ExplainResponse response =
   *       predictionServiceClient.explain(endpoint, instances, parameters, deployedModelId);
   * }
   * }
* * @param endpoint Required. The name of the Endpoint requested to serve the explanation. Format: * `projects/{project}/locations/{location}/endpoints/{endpoint}` * @param instances Required. The instances that are the input to the explanation call. A * DeployedModel may have an upper limit on the number of instances it supports per request, * and when it is exceeded the explanation call errors in case of AutoML Models, or, in case * of customer created Models, the behaviour is as documented by that Model. The schema of any * single instance may be specified via Endpoint's DeployedModels' * [Model's][google.cloud.aiplatform.v1beta1.DeployedModel.model] * [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata] * [instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri]. * @param parameters The parameters that govern the prediction. The schema of the parameters may * be specified via Endpoint's DeployedModels' [Model's * ][google.cloud.aiplatform.v1beta1.DeployedModel.model] * [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata] * [parameters_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.parameters_schema_uri]. * @param deployedModelId If specified, this ExplainRequest will be served by the chosen * DeployedModel, overriding * [Endpoint.traffic_split][google.cloud.aiplatform.v1beta1.Endpoint.traffic_split]. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final ExplainResponse explain( EndpointName endpoint, List instances, Value parameters, String deployedModelId) { ExplainRequest request = ExplainRequest.newBuilder() .setEndpoint(endpoint == null ? null : endpoint.toString()) .addAllInstances(instances) .setParameters(parameters) .setDeployedModelId(deployedModelId) .build(); return explain(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an online explanation. * *

If [deployed_model_id][google.cloud.aiplatform.v1beta1.ExplainRequest.deployed_model_id] is * specified, the corresponding DeployModel must have * [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] populated. * If [deployed_model_id][google.cloud.aiplatform.v1beta1.ExplainRequest.deployed_model_id] is not * specified, all DeployedModels must have * [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] populated. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   String endpoint =
   *       EndpointName.ofProjectLocationEndpointName("[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *           .toString();
   *   List instances = new ArrayList<>();
   *   Value parameters = Value.newBuilder().setBoolValue(true).build();
   *   String deployedModelId = "deployedModelId-1817547906";
   *   ExplainResponse response =
   *       predictionServiceClient.explain(endpoint, instances, parameters, deployedModelId);
   * }
   * }
* * @param endpoint Required. The name of the Endpoint requested to serve the explanation. Format: * `projects/{project}/locations/{location}/endpoints/{endpoint}` * @param instances Required. The instances that are the input to the explanation call. A * DeployedModel may have an upper limit on the number of instances it supports per request, * and when it is exceeded the explanation call errors in case of AutoML Models, or, in case * of customer created Models, the behaviour is as documented by that Model. The schema of any * single instance may be specified via Endpoint's DeployedModels' * [Model's][google.cloud.aiplatform.v1beta1.DeployedModel.model] * [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata] * [instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri]. * @param parameters The parameters that govern the prediction. The schema of the parameters may * be specified via Endpoint's DeployedModels' [Model's * ][google.cloud.aiplatform.v1beta1.DeployedModel.model] * [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata] * [parameters_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.parameters_schema_uri]. * @param deployedModelId If specified, this ExplainRequest will be served by the chosen * DeployedModel, overriding * [Endpoint.traffic_split][google.cloud.aiplatform.v1beta1.Endpoint.traffic_split]. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final ExplainResponse explain( String endpoint, List instances, Value parameters, String deployedModelId) { ExplainRequest request = ExplainRequest.newBuilder() .setEndpoint(endpoint) .addAllInstances(instances) .setParameters(parameters) .setDeployedModelId(deployedModelId) .build(); return explain(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an online explanation. * *

If [deployed_model_id][google.cloud.aiplatform.v1beta1.ExplainRequest.deployed_model_id] is * specified, the corresponding DeployModel must have * [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] populated. * If [deployed_model_id][google.cloud.aiplatform.v1beta1.ExplainRequest.deployed_model_id] is not * specified, all DeployedModels must have * [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] populated. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   ExplainRequest request =
   *       ExplainRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .addAllInstances(new ArrayList())
   *           .setParameters(Value.newBuilder().setBoolValue(true).build())
   *           .setExplanationSpecOverride(ExplanationSpecOverride.newBuilder().build())
   *           .putAllConcurrentExplanationSpecOverride(
   *               new HashMap())
   *           .setDeployedModelId("deployedModelId-1817547906")
   *           .build();
   *   ExplainResponse response = predictionServiceClient.explain(request);
   * }
   * }
* * @param request The request object containing all of the parameters for the API call. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final ExplainResponse explain(ExplainRequest request) { return explainCallable().call(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an online explanation. * *

If [deployed_model_id][google.cloud.aiplatform.v1beta1.ExplainRequest.deployed_model_id] is * specified, the corresponding DeployModel must have * [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] populated. * If [deployed_model_id][google.cloud.aiplatform.v1beta1.ExplainRequest.deployed_model_id] is not * specified, all DeployedModels must have * [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] populated. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   ExplainRequest request =
   *       ExplainRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .addAllInstances(new ArrayList())
   *           .setParameters(Value.newBuilder().setBoolValue(true).build())
   *           .setExplanationSpecOverride(ExplanationSpecOverride.newBuilder().build())
   *           .putAllConcurrentExplanationSpecOverride(
   *               new HashMap())
   *           .setDeployedModelId("deployedModelId-1817547906")
   *           .build();
   *   ApiFuture future =
   *       predictionServiceClient.explainCallable().futureCall(request);
   *   // Do something.
   *   ExplainResponse response = future.get();
   * }
   * }
*/ public final UnaryCallable explainCallable() { return stub.explainCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform a token counting. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   EndpointName endpoint =
   *       EndpointName.ofProjectLocationEndpointName("[PROJECT]", "[LOCATION]", "[ENDPOINT]");
   *   List instances = new ArrayList<>();
   *   CountTokensResponse response = predictionServiceClient.countTokens(endpoint, instances);
   * }
   * }
* * @param endpoint Required. The name of the Endpoint requested to perform token counting. Format: * `projects/{project}/locations/{location}/endpoints/{endpoint}` * @param instances Required. The instances that are the input to token counting call. Schema is * identical to the prediction schema of the underlying model. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final CountTokensResponse countTokens(EndpointName endpoint, List instances) { CountTokensRequest request = CountTokensRequest.newBuilder() .setEndpoint(endpoint == null ? null : endpoint.toString()) .addAllInstances(instances) .build(); return countTokens(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform a token counting. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   String endpoint =
   *       EndpointName.ofProjectLocationEndpointName("[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *           .toString();
   *   List instances = new ArrayList<>();
   *   CountTokensResponse response = predictionServiceClient.countTokens(endpoint, instances);
   * }
   * }
* * @param endpoint Required. The name of the Endpoint requested to perform token counting. Format: * `projects/{project}/locations/{location}/endpoints/{endpoint}` * @param instances Required. The instances that are the input to token counting call. Schema is * identical to the prediction schema of the underlying model. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final CountTokensResponse countTokens(String endpoint, List instances) { CountTokensRequest request = CountTokensRequest.newBuilder().setEndpoint(endpoint).addAllInstances(instances).build(); return countTokens(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform a token counting. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   CountTokensRequest request =
   *       CountTokensRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .addAllInstances(new ArrayList())
   *           .build();
   *   CountTokensResponse response = predictionServiceClient.countTokens(request);
   * }
   * }
* * @param request The request object containing all of the parameters for the API call. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final CountTokensResponse countTokens(CountTokensRequest request) { return countTokensCallable().call(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform a token counting. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   CountTokensRequest request =
   *       CountTokensRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .addAllInstances(new ArrayList())
   *           .build();
   *   ApiFuture future =
   *       predictionServiceClient.countTokensCallable().futureCall(request);
   *   // Do something.
   *   CountTokensResponse response = future.get();
   * }
   * }
*/ public final UnaryCallable countTokensCallable() { return stub.countTokensCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Lists information about the supported locations for this service. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   ListLocationsRequest request =
   *       ListLocationsRequest.newBuilder()
   *           .setName("name3373707")
   *           .setFilter("filter-1274492040")
   *           .setPageSize(883849137)
   *           .setPageToken("pageToken873572522")
   *           .build();
   *   for (Location element : predictionServiceClient.listLocations(request).iterateAll()) {
   *     // doThingsWith(element);
   *   }
   * }
   * }
* * @param request The request object containing all of the parameters for the API call. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final ListLocationsPagedResponse listLocations(ListLocationsRequest request) { return listLocationsPagedCallable().call(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Lists information about the supported locations for this service. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   ListLocationsRequest request =
   *       ListLocationsRequest.newBuilder()
   *           .setName("name3373707")
   *           .setFilter("filter-1274492040")
   *           .setPageSize(883849137)
   *           .setPageToken("pageToken873572522")
   *           .build();
   *   ApiFuture future =
   *       predictionServiceClient.listLocationsPagedCallable().futureCall(request);
   *   // Do something.
   *   for (Location element : future.get().iterateAll()) {
   *     // doThingsWith(element);
   *   }
   * }
   * }
*/ public final UnaryCallable listLocationsPagedCallable() { return stub.listLocationsPagedCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Lists information about the supported locations for this service. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   ListLocationsRequest request =
   *       ListLocationsRequest.newBuilder()
   *           .setName("name3373707")
   *           .setFilter("filter-1274492040")
   *           .setPageSize(883849137)
   *           .setPageToken("pageToken873572522")
   *           .build();
   *   while (true) {
   *     ListLocationsResponse response =
   *         predictionServiceClient.listLocationsCallable().call(request);
   *     for (Location element : response.getLocationsList()) {
   *       // doThingsWith(element);
   *     }
   *     String nextPageToken = response.getNextPageToken();
   *     if (!Strings.isNullOrEmpty(nextPageToken)) {
   *       request = request.toBuilder().setPageToken(nextPageToken).build();
   *     } else {
   *       break;
   *     }
   *   }
   * }
   * }
*/ public final UnaryCallable listLocationsCallable() { return stub.listLocationsCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Gets information about a location. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   GetLocationRequest request = GetLocationRequest.newBuilder().setName("name3373707").build();
   *   Location response = predictionServiceClient.getLocation(request);
   * }
   * }
* * @param request The request object containing all of the parameters for the API call. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final Location getLocation(GetLocationRequest request) { return getLocationCallable().call(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Gets information about a location. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   GetLocationRequest request = GetLocationRequest.newBuilder().setName("name3373707").build();
   *   ApiFuture future =
   *       predictionServiceClient.getLocationCallable().futureCall(request);
   *   // Do something.
   *   Location response = future.get();
   * }
   * }
*/ public final UnaryCallable getLocationCallable() { return stub.getLocationCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Sets the access control policy on the specified resource. Replacesany existing policy. * *

Can return `NOT_FOUND`, `INVALID_ARGUMENT`, and `PERMISSION_DENIED`errors. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   SetIamPolicyRequest request =
   *       SetIamPolicyRequest.newBuilder()
   *           .setResource(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .setPolicy(Policy.newBuilder().build())
   *           .setUpdateMask(FieldMask.newBuilder().build())
   *           .build();
   *   Policy response = predictionServiceClient.setIamPolicy(request);
   * }
   * }
* * @param request The request object containing all of the parameters for the API call. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final Policy setIamPolicy(SetIamPolicyRequest request) { return setIamPolicyCallable().call(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Sets the access control policy on the specified resource. Replacesany existing policy. * *

Can return `NOT_FOUND`, `INVALID_ARGUMENT`, and `PERMISSION_DENIED`errors. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   SetIamPolicyRequest request =
   *       SetIamPolicyRequest.newBuilder()
   *           .setResource(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .setPolicy(Policy.newBuilder().build())
   *           .setUpdateMask(FieldMask.newBuilder().build())
   *           .build();
   *   ApiFuture future = predictionServiceClient.setIamPolicyCallable().futureCall(request);
   *   // Do something.
   *   Policy response = future.get();
   * }
   * }
*/ public final UnaryCallable setIamPolicyCallable() { return stub.setIamPolicyCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Gets the access control policy for a resource. Returns an empty policyif the resource exists * and does not have a policy set. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   GetIamPolicyRequest request =
   *       GetIamPolicyRequest.newBuilder()
   *           .setResource(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .setOptions(GetPolicyOptions.newBuilder().build())
   *           .build();
   *   Policy response = predictionServiceClient.getIamPolicy(request);
   * }
   * }
* * @param request The request object containing all of the parameters for the API call. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final Policy getIamPolicy(GetIamPolicyRequest request) { return getIamPolicyCallable().call(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Gets the access control policy for a resource. Returns an empty policyif the resource exists * and does not have a policy set. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   GetIamPolicyRequest request =
   *       GetIamPolicyRequest.newBuilder()
   *           .setResource(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .setOptions(GetPolicyOptions.newBuilder().build())
   *           .build();
   *   ApiFuture future = predictionServiceClient.getIamPolicyCallable().futureCall(request);
   *   // Do something.
   *   Policy response = future.get();
   * }
   * }
*/ public final UnaryCallable getIamPolicyCallable() { return stub.getIamPolicyCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Returns permissions that a caller has on the specified resource. If theresource does not exist, * this will return an empty set ofpermissions, not a `NOT_FOUND` error. * *

Note: This operation is designed to be used for buildingpermission-aware UIs and * command-line tools, not for authorizationchecking. This operation may "fail open" without * warning. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   TestIamPermissionsRequest request =
   *       TestIamPermissionsRequest.newBuilder()
   *           .setResource(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .addAllPermissions(new ArrayList())
   *           .build();
   *   TestIamPermissionsResponse response = predictionServiceClient.testIamPermissions(request);
   * }
   * }
* * @param request The request object containing all of the parameters for the API call. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final TestIamPermissionsResponse testIamPermissions(TestIamPermissionsRequest request) { return testIamPermissionsCallable().call(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Returns permissions that a caller has on the specified resource. If theresource does not exist, * this will return an empty set ofpermissions, not a `NOT_FOUND` error. * *

Note: This operation is designed to be used for buildingpermission-aware UIs and * command-line tools, not for authorizationchecking. This operation may "fail open" without * warning. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   TestIamPermissionsRequest request =
   *       TestIamPermissionsRequest.newBuilder()
   *           .setResource(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .addAllPermissions(new ArrayList())
   *           .build();
   *   ApiFuture future =
   *       predictionServiceClient.testIamPermissionsCallable().futureCall(request);
   *   // Do something.
   *   TestIamPermissionsResponse response = future.get();
   * }
   * }
*/ public final UnaryCallable testIamPermissionsCallable() { return stub.testIamPermissionsCallable(); } @Override public final void close() { stub.close(); } @Override public void shutdown() { stub.shutdown(); } @Override public boolean isShutdown() { return stub.isShutdown(); } @Override public boolean isTerminated() { return stub.isTerminated(); } @Override public void shutdownNow() { stub.shutdownNow(); } @Override public boolean awaitTermination(long duration, TimeUnit unit) throws InterruptedException { return stub.awaitTermination(duration, unit); } public static class ListLocationsPagedResponse extends AbstractPagedListResponse< ListLocationsRequest, ListLocationsResponse, Location, ListLocationsPage, ListLocationsFixedSizeCollection> { public static ApiFuture createAsync( PageContext context, ApiFuture futureResponse) { ApiFuture futurePage = ListLocationsPage.createEmptyPage().createPageAsync(context, futureResponse); return ApiFutures.transform( futurePage, input -> new ListLocationsPagedResponse(input), MoreExecutors.directExecutor()); } private ListLocationsPagedResponse(ListLocationsPage page) { super(page, ListLocationsFixedSizeCollection.createEmptyCollection()); } } public static class ListLocationsPage extends AbstractPage< ListLocationsRequest, ListLocationsResponse, Location, ListLocationsPage> { private ListLocationsPage( PageContext context, ListLocationsResponse response) { super(context, response); } private static ListLocationsPage createEmptyPage() { return new ListLocationsPage(null, null); } @Override protected ListLocationsPage createPage( PageContext context, ListLocationsResponse response) { return new ListLocationsPage(context, response); } @Override public ApiFuture createPageAsync( PageContext context, ApiFuture futureResponse) { return super.createPageAsync(context, futureResponse); } } public static class ListLocationsFixedSizeCollection extends AbstractFixedSizeCollection< ListLocationsRequest, ListLocationsResponse, Location, ListLocationsPage, ListLocationsFixedSizeCollection> { private ListLocationsFixedSizeCollection(List pages, int collectionSize) { super(pages, collectionSize); } private static ListLocationsFixedSizeCollection createEmptyCollection() { return new ListLocationsFixedSizeCollection(null, 0); } @Override protected ListLocationsFixedSizeCollection createCollection( List pages, int collectionSize) { return new ListLocationsFixedSizeCollection(pages, collectionSize); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy