All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.cloud.aiplatform.v1beta1.PredictionServiceClient Maven / Gradle / Ivy

There is a newer version: 3.55.0
Show newest version
/*
 * Copyright 2024 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.cloud.aiplatform.v1beta1;

import com.google.api.HttpBody;
import com.google.api.core.ApiFuture;
import com.google.api.core.ApiFutures;
import com.google.api.core.BetaApi;
import com.google.api.gax.core.BackgroundResource;
import com.google.api.gax.paging.AbstractFixedSizeCollection;
import com.google.api.gax.paging.AbstractPage;
import com.google.api.gax.paging.AbstractPagedListResponse;
import com.google.api.gax.rpc.BidiStreamingCallable;
import com.google.api.gax.rpc.PageContext;
import com.google.api.gax.rpc.ServerStreamingCallable;
import com.google.api.gax.rpc.UnaryCallable;
import com.google.cloud.aiplatform.v1beta1.stub.PredictionServiceStub;
import com.google.cloud.aiplatform.v1beta1.stub.PredictionServiceStubSettings;
import com.google.cloud.location.GetLocationRequest;
import com.google.cloud.location.ListLocationsRequest;
import com.google.cloud.location.ListLocationsResponse;
import com.google.cloud.location.Location;
import com.google.common.util.concurrent.MoreExecutors;
import com.google.iam.v1.GetIamPolicyRequest;
import com.google.iam.v1.Policy;
import com.google.iam.v1.SetIamPolicyRequest;
import com.google.iam.v1.TestIamPermissionsRequest;
import com.google.iam.v1.TestIamPermissionsResponse;
import com.google.protobuf.Value;
import java.io.IOException;
import java.util.List;
import java.util.concurrent.TimeUnit;
import javax.annotation.Generated;

// AUTO-GENERATED DOCUMENTATION AND CLASS.
/**
 * Service Description: A service for online predictions and explanations.
 *
 * 

This class provides the ability to make remote calls to the backing service through method * calls that map to API methods. Sample code to get started: * *

{@code
 * // This snippet has been automatically generated and should be regarded as a code template only.
 * // It will require modifications to work:
 * // - It may require correct/in-range values for request initialization.
 * // - It may require specifying regional endpoints when creating the service client as shown in
 * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
 *   EndpointName endpoint =
 *       EndpointName.ofProjectLocationEndpointName("[PROJECT]", "[LOCATION]", "[ENDPOINT]");
 *   List instances = new ArrayList<>();
 *   Value parameters = Value.newBuilder().setBoolValue(true).build();
 *   PredictResponse response = predictionServiceClient.predict(endpoint, instances, parameters);
 * }
 * }
* *

Note: close() needs to be called on the PredictionServiceClient object to clean up resources * such as threads. In the example above, try-with-resources is used, which automatically calls * close(). * *

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Methods
MethodDescriptionMethod Variants

Predict

Perform an online prediction.

*

Request object method variants only take one parameter, a request object, which must be constructed before the call.

*
    *
  • predict(PredictRequest request) *

*

"Flattened" method variants have converted the fields of the request object into function parameters to enable multiple ways to call the same method.

*
    *
  • predict(EndpointName endpoint, List<Value> instances, Value parameters) *

  • predict(String endpoint, List<Value> instances, Value parameters) *

*

Callable method variants take no parameters and return an immutable API callable object, which can be used to initiate calls to the service.

*
    *
  • predictCallable() *

*

RawPredict

Perform an online prediction with an arbitrary HTTP payload. *

The response includes the following HTTP headers: *

    *
  • `X-Vertex-AI-Endpoint-Id`: ID of the [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] that served this prediction. *
*
    *
  • `X-Vertex-AI-Deployed-Model-Id`: ID of the Endpoint's [DeployedModel][google.cloud.aiplatform.v1beta1.DeployedModel] that served this prediction. *
*

Request object method variants only take one parameter, a request object, which must be constructed before the call.

*
    *
  • rawPredict(RawPredictRequest request) *

*

"Flattened" method variants have converted the fields of the request object into function parameters to enable multiple ways to call the same method.

*
    *
  • rawPredict(EndpointName endpoint, HttpBody httpBody) *

  • rawPredict(String endpoint, HttpBody httpBody) *

*

Callable method variants take no parameters and return an immutable API callable object, which can be used to initiate calls to the service.

*
    *
  • rawPredictCallable() *

*

StreamRawPredict

Perform a streaming online prediction with an arbitrary HTTP payload.

*

Callable method variants take no parameters and return an immutable API callable object, which can be used to initiate calls to the service.

*
    *
  • streamRawPredictCallable() *

*

DirectPredict

Perform an unary online prediction request to a gRPC model server for Vertex first-party products and frameworks.

*

Request object method variants only take one parameter, a request object, which must be constructed before the call.

*
    *
  • directPredict(DirectPredictRequest request) *

*

Callable method variants take no parameters and return an immutable API callable object, which can be used to initiate calls to the service.

*
    *
  • directPredictCallable() *

*

DirectRawPredict

Perform an unary online prediction request to a gRPC model server for custom containers.

*

Request object method variants only take one parameter, a request object, which must be constructed before the call.

*
    *
  • directRawPredict(DirectRawPredictRequest request) *

*

Callable method variants take no parameters and return an immutable API callable object, which can be used to initiate calls to the service.

*
    *
  • directRawPredictCallable() *

*

StreamDirectPredict

Perform a streaming online prediction request to a gRPC model server for Vertex first-party products and frameworks.

*

Callable method variants take no parameters and return an immutable API callable object, which can be used to initiate calls to the service.

*
    *
  • streamDirectPredictCallable() *

*

StreamDirectRawPredict

Perform a streaming online prediction request to a gRPC model server for custom containers.

*

Callable method variants take no parameters and return an immutable API callable object, which can be used to initiate calls to the service.

*
    *
  • streamDirectRawPredictCallable() *

*

StreamingPredict

Perform a streaming online prediction request for Vertex first-party products and frameworks.

*

Callable method variants take no parameters and return an immutable API callable object, which can be used to initiate calls to the service.

*
    *
  • streamingPredictCallable() *

*

ServerStreamingPredict

Perform a server-side streaming online prediction request for Vertex LLM streaming.

*

Callable method variants take no parameters and return an immutable API callable object, which can be used to initiate calls to the service.

*
    *
  • serverStreamingPredictCallable() *

*

StreamingRawPredict

Perform a streaming online prediction request through gRPC.

*

Callable method variants take no parameters and return an immutable API callable object, which can be used to initiate calls to the service.

*
    *
  • streamingRawPredictCallable() *

*

Explain

Perform an online explanation. *

If [deployed_model_id][google.cloud.aiplatform.v1beta1.ExplainRequest.deployed_model_id] is specified, the corresponding DeployModel must have [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] populated. If [deployed_model_id][google.cloud.aiplatform.v1beta1.ExplainRequest.deployed_model_id] is not specified, all DeployedModels must have [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] populated.

*

Request object method variants only take one parameter, a request object, which must be constructed before the call.

*
    *
  • explain(ExplainRequest request) *

*

"Flattened" method variants have converted the fields of the request object into function parameters to enable multiple ways to call the same method.

*
    *
  • explain(EndpointName endpoint, List<Value> instances, Value parameters, String deployedModelId) *

  • explain(String endpoint, List<Value> instances, Value parameters, String deployedModelId) *

*

Callable method variants take no parameters and return an immutable API callable object, which can be used to initiate calls to the service.

*
    *
  • explainCallable() *

*

CountTokens

Perform a token counting.

*

Request object method variants only take one parameter, a request object, which must be constructed before the call.

*
    *
  • countTokens(CountTokensRequest request) *

*

"Flattened" method variants have converted the fields of the request object into function parameters to enable multiple ways to call the same method.

*
    *
  • countTokens(EndpointName endpoint, List<Value> instances) *

  • countTokens(String endpoint, List<Value> instances) *

*

Callable method variants take no parameters and return an immutable API callable object, which can be used to initiate calls to the service.

*
    *
  • countTokensCallable() *

*

GenerateContent

Generate content with multimodal inputs.

*

Request object method variants only take one parameter, a request object, which must be constructed before the call.

*
    *
  • generateContent(GenerateContentRequest request) *

*

"Flattened" method variants have converted the fields of the request object into function parameters to enable multiple ways to call the same method.

*
    *
  • generateContent(String model, List<Content> contents) *

*

Callable method variants take no parameters and return an immutable API callable object, which can be used to initiate calls to the service.

*
    *
  • generateContentCallable() *

*

StreamGenerateContent

Generate content with multimodal inputs with streaming support.

*

Callable method variants take no parameters and return an immutable API callable object, which can be used to initiate calls to the service.

*
    *
  • streamGenerateContentCallable() *

*

ChatCompletions

Exposes an OpenAI-compatible endpoint for chat completions.

*

Callable method variants take no parameters and return an immutable API callable object, which can be used to initiate calls to the service.

*
    *
  • chatCompletionsCallable() *

*

ListLocations

Lists information about the supported locations for this service.

*

Request object method variants only take one parameter, a request object, which must be constructed before the call.

*
    *
  • listLocations(ListLocationsRequest request) *

*

Callable method variants take no parameters and return an immutable API callable object, which can be used to initiate calls to the service.

*
    *
  • listLocationsPagedCallable() *

  • listLocationsCallable() *

*

GetLocation

Gets information about a location.

*

Request object method variants only take one parameter, a request object, which must be constructed before the call.

*
    *
  • getLocation(GetLocationRequest request) *

*

Callable method variants take no parameters and return an immutable API callable object, which can be used to initiate calls to the service.

*
    *
  • getLocationCallable() *

*

SetIamPolicy

Sets the access control policy on the specified resource. Replacesany existing policy. *

Can return `NOT_FOUND`, `INVALID_ARGUMENT`, and `PERMISSION_DENIED`errors.

*

Request object method variants only take one parameter, a request object, which must be constructed before the call.

*
    *
  • setIamPolicy(SetIamPolicyRequest request) *

*

Callable method variants take no parameters and return an immutable API callable object, which can be used to initiate calls to the service.

*
    *
  • setIamPolicyCallable() *

*

GetIamPolicy

Gets the access control policy for a resource. Returns an empty policyif the resource exists and does not have a policy set.

*

Request object method variants only take one parameter, a request object, which must be constructed before the call.

*
    *
  • getIamPolicy(GetIamPolicyRequest request) *

*

Callable method variants take no parameters and return an immutable API callable object, which can be used to initiate calls to the service.

*
    *
  • getIamPolicyCallable() *

*

TestIamPermissions

Returns permissions that a caller has on the specified resource. If theresource does not exist, this will return an empty set ofpermissions, not a `NOT_FOUND` error. *

Note: This operation is designed to be used for buildingpermission-aware UIs and command-line tools, not for authorizationchecking. This operation may "fail open" without warning.

*

Request object method variants only take one parameter, a request object, which must be constructed before the call.

*
    *
  • testIamPermissions(TestIamPermissionsRequest request) *

*

Callable method variants take no parameters and return an immutable API callable object, which can be used to initiate calls to the service.

*
    *
  • testIamPermissionsCallable() *

*
* *

See the individual methods for example code. * *

Many parameters require resource names to be formatted in a particular way. To assist with * these names, this class includes a format method for each type of name, and additionally a parse * method to extract the individual identifiers contained within names that are returned. * *

This class can be customized by passing in a custom instance of PredictionServiceSettings to * create(). For example: * *

To customize credentials: * *

{@code
 * // This snippet has been automatically generated and should be regarded as a code template only.
 * // It will require modifications to work:
 * // - It may require correct/in-range values for request initialization.
 * // - It may require specifying regional endpoints when creating the service client as shown in
 * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 * PredictionServiceSettings predictionServiceSettings =
 *     PredictionServiceSettings.newBuilder()
 *         .setCredentialsProvider(FixedCredentialsProvider.create(myCredentials))
 *         .build();
 * PredictionServiceClient predictionServiceClient =
 *     PredictionServiceClient.create(predictionServiceSettings);
 * }
* *

To customize the endpoint: * *

{@code
 * // This snippet has been automatically generated and should be regarded as a code template only.
 * // It will require modifications to work:
 * // - It may require correct/in-range values for request initialization.
 * // - It may require specifying regional endpoints when creating the service client as shown in
 * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 * PredictionServiceSettings predictionServiceSettings =
 *     PredictionServiceSettings.newBuilder().setEndpoint(myEndpoint).build();
 * PredictionServiceClient predictionServiceClient =
 *     PredictionServiceClient.create(predictionServiceSettings);
 * }
* *

Please refer to the GitHub repository's samples for more quickstart code snippets. */ @BetaApi @Generated("by gapic-generator-java") public class PredictionServiceClient implements BackgroundResource { private final PredictionServiceSettings settings; private final PredictionServiceStub stub; /** Constructs an instance of PredictionServiceClient with default settings. */ public static final PredictionServiceClient create() throws IOException { return create(PredictionServiceSettings.newBuilder().build()); } /** * Constructs an instance of PredictionServiceClient, using the given settings. The channels are * created based on the settings passed in, or defaults for any settings that are not set. */ public static final PredictionServiceClient create(PredictionServiceSettings settings) throws IOException { return new PredictionServiceClient(settings); } /** * Constructs an instance of PredictionServiceClient, using the given stub for making calls. This * is for advanced usage - prefer using create(PredictionServiceSettings). */ public static final PredictionServiceClient create(PredictionServiceStub stub) { return new PredictionServiceClient(stub); } /** * Constructs an instance of PredictionServiceClient, using the given settings. This is protected * so that it is easy to make a subclass, but otherwise, the static factory methods should be * preferred. */ protected PredictionServiceClient(PredictionServiceSettings settings) throws IOException { this.settings = settings; this.stub = ((PredictionServiceStubSettings) settings.getStubSettings()).createStub(); } protected PredictionServiceClient(PredictionServiceStub stub) { this.settings = null; this.stub = stub; } public final PredictionServiceSettings getSettings() { return settings; } public PredictionServiceStub getStub() { return stub; } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an online prediction. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   EndpointName endpoint =
   *       EndpointName.ofProjectLocationEndpointName("[PROJECT]", "[LOCATION]", "[ENDPOINT]");
   *   List instances = new ArrayList<>();
   *   Value parameters = Value.newBuilder().setBoolValue(true).build();
   *   PredictResponse response = predictionServiceClient.predict(endpoint, instances, parameters);
   * }
   * }
* * @param endpoint Required. The name of the Endpoint requested to serve the prediction. Format: * `projects/{project}/locations/{location}/endpoints/{endpoint}` * @param instances Required. The instances that are the input to the prediction call. A * DeployedModel may have an upper limit on the number of instances it supports per request, * and when it is exceeded the prediction call errors in case of AutoML Models, or, in case of * customer created Models, the behaviour is as documented by that Model. The schema of any * single instance may be specified via Endpoint's DeployedModels' * [Model's][google.cloud.aiplatform.v1beta1.DeployedModel.model] * [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata] * [instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri]. * @param parameters The parameters that govern the prediction. The schema of the parameters may * be specified via Endpoint's DeployedModels' [Model's * ][google.cloud.aiplatform.v1beta1.DeployedModel.model] * [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata] * [parameters_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.parameters_schema_uri]. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final PredictResponse predict( EndpointName endpoint, List instances, Value parameters) { PredictRequest request = PredictRequest.newBuilder() .setEndpoint(endpoint == null ? null : endpoint.toString()) .addAllInstances(instances) .setParameters(parameters) .build(); return predict(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an online prediction. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   String endpoint =
   *       EndpointName.ofProjectLocationEndpointName("[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *           .toString();
   *   List instances = new ArrayList<>();
   *   Value parameters = Value.newBuilder().setBoolValue(true).build();
   *   PredictResponse response = predictionServiceClient.predict(endpoint, instances, parameters);
   * }
   * }
* * @param endpoint Required. The name of the Endpoint requested to serve the prediction. Format: * `projects/{project}/locations/{location}/endpoints/{endpoint}` * @param instances Required. The instances that are the input to the prediction call. A * DeployedModel may have an upper limit on the number of instances it supports per request, * and when it is exceeded the prediction call errors in case of AutoML Models, or, in case of * customer created Models, the behaviour is as documented by that Model. The schema of any * single instance may be specified via Endpoint's DeployedModels' * [Model's][google.cloud.aiplatform.v1beta1.DeployedModel.model] * [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata] * [instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri]. * @param parameters The parameters that govern the prediction. The schema of the parameters may * be specified via Endpoint's DeployedModels' [Model's * ][google.cloud.aiplatform.v1beta1.DeployedModel.model] * [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata] * [parameters_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.parameters_schema_uri]. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final PredictResponse predict(String endpoint, List instances, Value parameters) { PredictRequest request = PredictRequest.newBuilder() .setEndpoint(endpoint) .addAllInstances(instances) .setParameters(parameters) .build(); return predict(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an online prediction. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   PredictRequest request =
   *       PredictRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .addAllInstances(new ArrayList())
   *           .setParameters(Value.newBuilder().setBoolValue(true).build())
   *           .build();
   *   PredictResponse response = predictionServiceClient.predict(request);
   * }
   * }
* * @param request The request object containing all of the parameters for the API call. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final PredictResponse predict(PredictRequest request) { return predictCallable().call(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an online prediction. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   PredictRequest request =
   *       PredictRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .addAllInstances(new ArrayList())
   *           .setParameters(Value.newBuilder().setBoolValue(true).build())
   *           .build();
   *   ApiFuture future =
   *       predictionServiceClient.predictCallable().futureCall(request);
   *   // Do something.
   *   PredictResponse response = future.get();
   * }
   * }
*/ public final UnaryCallable predictCallable() { return stub.predictCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an online prediction with an arbitrary HTTP payload. * *

The response includes the following HTTP headers: * *

    *
  • `X-Vertex-AI-Endpoint-Id`: ID of the [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] * that served this prediction. *
* *
    *
  • `X-Vertex-AI-Deployed-Model-Id`: ID of the Endpoint's * [DeployedModel][google.cloud.aiplatform.v1beta1.DeployedModel] that served this * prediction. *
* *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   EndpointName endpoint =
   *       EndpointName.ofProjectLocationEndpointName("[PROJECT]", "[LOCATION]", "[ENDPOINT]");
   *   HttpBody httpBody = HttpBody.newBuilder().build();
   *   HttpBody response = predictionServiceClient.rawPredict(endpoint, httpBody);
   * }
   * }
* * @param endpoint Required. The name of the Endpoint requested to serve the prediction. Format: * `projects/{project}/locations/{location}/endpoints/{endpoint}` * @param httpBody The prediction input. Supports HTTP headers and arbitrary data payload. *

A [DeployedModel][google.cloud.aiplatform.v1beta1.DeployedModel] may have an upper limit * on the number of instances it supports per request. When this limit it is exceeded for an * AutoML model, the * [RawPredict][google.cloud.aiplatform.v1beta1.PredictionService.RawPredict] method returns * an error. When this limit is exceeded for a custom-trained model, the behavior varies * depending on the model. *

You can specify the schema for each instance in the * [predict_schemata.instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri] * field when you create a [Model][google.cloud.aiplatform.v1beta1.Model]. This schema applies * when you deploy the `Model` as a `DeployedModel` to an * [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] and use the `RawPredict` method. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final HttpBody rawPredict(EndpointName endpoint, HttpBody httpBody) { RawPredictRequest request = RawPredictRequest.newBuilder() .setEndpoint(endpoint == null ? null : endpoint.toString()) .setHttpBody(httpBody) .build(); return rawPredict(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an online prediction with an arbitrary HTTP payload. * *

The response includes the following HTTP headers: * *

    *
  • `X-Vertex-AI-Endpoint-Id`: ID of the [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] * that served this prediction. *
* *
    *
  • `X-Vertex-AI-Deployed-Model-Id`: ID of the Endpoint's * [DeployedModel][google.cloud.aiplatform.v1beta1.DeployedModel] that served this * prediction. *
* *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   String endpoint =
   *       EndpointName.ofProjectLocationEndpointName("[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *           .toString();
   *   HttpBody httpBody = HttpBody.newBuilder().build();
   *   HttpBody response = predictionServiceClient.rawPredict(endpoint, httpBody);
   * }
   * }
* * @param endpoint Required. The name of the Endpoint requested to serve the prediction. Format: * `projects/{project}/locations/{location}/endpoints/{endpoint}` * @param httpBody The prediction input. Supports HTTP headers and arbitrary data payload. *

A [DeployedModel][google.cloud.aiplatform.v1beta1.DeployedModel] may have an upper limit * on the number of instances it supports per request. When this limit it is exceeded for an * AutoML model, the * [RawPredict][google.cloud.aiplatform.v1beta1.PredictionService.RawPredict] method returns * an error. When this limit is exceeded for a custom-trained model, the behavior varies * depending on the model. *

You can specify the schema for each instance in the * [predict_schemata.instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri] * field when you create a [Model][google.cloud.aiplatform.v1beta1.Model]. This schema applies * when you deploy the `Model` as a `DeployedModel` to an * [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] and use the `RawPredict` method. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final HttpBody rawPredict(String endpoint, HttpBody httpBody) { RawPredictRequest request = RawPredictRequest.newBuilder().setEndpoint(endpoint).setHttpBody(httpBody).build(); return rawPredict(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an online prediction with an arbitrary HTTP payload. * *

The response includes the following HTTP headers: * *

    *
  • `X-Vertex-AI-Endpoint-Id`: ID of the [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] * that served this prediction. *
* *
    *
  • `X-Vertex-AI-Deployed-Model-Id`: ID of the Endpoint's * [DeployedModel][google.cloud.aiplatform.v1beta1.DeployedModel] that served this * prediction. *
* *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   RawPredictRequest request =
   *       RawPredictRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .setHttpBody(HttpBody.newBuilder().build())
   *           .build();
   *   HttpBody response = predictionServiceClient.rawPredict(request);
   * }
   * }
* * @param request The request object containing all of the parameters for the API call. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final HttpBody rawPredict(RawPredictRequest request) { return rawPredictCallable().call(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an online prediction with an arbitrary HTTP payload. * *

The response includes the following HTTP headers: * *

    *
  • `X-Vertex-AI-Endpoint-Id`: ID of the [Endpoint][google.cloud.aiplatform.v1beta1.Endpoint] * that served this prediction. *
* *
    *
  • `X-Vertex-AI-Deployed-Model-Id`: ID of the Endpoint's * [DeployedModel][google.cloud.aiplatform.v1beta1.DeployedModel] that served this * prediction. *
* *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   RawPredictRequest request =
   *       RawPredictRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .setHttpBody(HttpBody.newBuilder().build())
   *           .build();
   *   ApiFuture future = predictionServiceClient.rawPredictCallable().futureCall(request);
   *   // Do something.
   *   HttpBody response = future.get();
   * }
   * }
*/ public final UnaryCallable rawPredictCallable() { return stub.rawPredictCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform a streaming online prediction with an arbitrary HTTP payload. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   StreamRawPredictRequest request =
   *       StreamRawPredictRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .setHttpBody(HttpBody.newBuilder().build())
   *           .build();
   *   ServerStream stream =
   *       predictionServiceClient.streamRawPredictCallable().call(request);
   *   for (HttpBody response : stream) {
   *     // Do something when a response is received.
   *   }
   * }
   * }
*/ public final ServerStreamingCallable streamRawPredictCallable() { return stub.streamRawPredictCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an unary online prediction request to a gRPC model server for Vertex first-party * products and frameworks. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   DirectPredictRequest request =
   *       DirectPredictRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .addAllInputs(new ArrayList())
   *           .setParameters(Tensor.newBuilder().build())
   *           .build();
   *   DirectPredictResponse response = predictionServiceClient.directPredict(request);
   * }
   * }
* * @param request The request object containing all of the parameters for the API call. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final DirectPredictResponse directPredict(DirectPredictRequest request) { return directPredictCallable().call(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an unary online prediction request to a gRPC model server for Vertex first-party * products and frameworks. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   DirectPredictRequest request =
   *       DirectPredictRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .addAllInputs(new ArrayList())
   *           .setParameters(Tensor.newBuilder().build())
   *           .build();
   *   ApiFuture future =
   *       predictionServiceClient.directPredictCallable().futureCall(request);
   *   // Do something.
   *   DirectPredictResponse response = future.get();
   * }
   * }
*/ public final UnaryCallable directPredictCallable() { return stub.directPredictCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an unary online prediction request to a gRPC model server for custom containers. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   DirectRawPredictRequest request =
   *       DirectRawPredictRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .setMethodName("methodName-723163380")
   *           .setInput(ByteString.EMPTY)
   *           .build();
   *   DirectRawPredictResponse response = predictionServiceClient.directRawPredict(request);
   * }
   * }
* * @param request The request object containing all of the parameters for the API call. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final DirectRawPredictResponse directRawPredict(DirectRawPredictRequest request) { return directRawPredictCallable().call(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an unary online prediction request to a gRPC model server for custom containers. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   DirectRawPredictRequest request =
   *       DirectRawPredictRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .setMethodName("methodName-723163380")
   *           .setInput(ByteString.EMPTY)
   *           .build();
   *   ApiFuture future =
   *       predictionServiceClient.directRawPredictCallable().futureCall(request);
   *   // Do something.
   *   DirectRawPredictResponse response = future.get();
   * }
   * }
*/ public final UnaryCallable directRawPredictCallable() { return stub.directRawPredictCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform a streaming online prediction request to a gRPC model server for Vertex first-party * products and frameworks. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   BidiStream bidiStream =
   *       predictionServiceClient.streamDirectPredictCallable().call();
   *   StreamDirectPredictRequest request =
   *       StreamDirectPredictRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .addAllInputs(new ArrayList())
   *           .setParameters(Tensor.newBuilder().build())
   *           .build();
   *   bidiStream.send(request);
   *   for (StreamDirectPredictResponse response : bidiStream) {
   *     // Do something when a response is received.
   *   }
   * }
   * }
*/ public final BidiStreamingCallable streamDirectPredictCallable() { return stub.streamDirectPredictCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform a streaming online prediction request to a gRPC model server for custom containers. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   BidiStream bidiStream =
   *       predictionServiceClient.streamDirectRawPredictCallable().call();
   *   StreamDirectRawPredictRequest request =
   *       StreamDirectRawPredictRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .setMethodName("methodName-723163380")
   *           .setInput(ByteString.EMPTY)
   *           .build();
   *   bidiStream.send(request);
   *   for (StreamDirectRawPredictResponse response : bidiStream) {
   *     // Do something when a response is received.
   *   }
   * }
   * }
*/ public final BidiStreamingCallable streamDirectRawPredictCallable() { return stub.streamDirectRawPredictCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform a streaming online prediction request for Vertex first-party products and frameworks. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   BidiStream bidiStream =
   *       predictionServiceClient.streamingPredictCallable().call();
   *   StreamingPredictRequest request =
   *       StreamingPredictRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .addAllInputs(new ArrayList())
   *           .setParameters(Tensor.newBuilder().build())
   *           .build();
   *   bidiStream.send(request);
   *   for (StreamingPredictResponse response : bidiStream) {
   *     // Do something when a response is received.
   *   }
   * }
   * }
*/ public final BidiStreamingCallable streamingPredictCallable() { return stub.streamingPredictCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform a server-side streaming online prediction request for Vertex LLM streaming. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   StreamingPredictRequest request =
   *       StreamingPredictRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .addAllInputs(new ArrayList())
   *           .setParameters(Tensor.newBuilder().build())
   *           .build();
   *   ServerStream stream =
   *       predictionServiceClient.serverStreamingPredictCallable().call(request);
   *   for (StreamingPredictResponse response : stream) {
   *     // Do something when a response is received.
   *   }
   * }
   * }
*/ public final ServerStreamingCallable serverStreamingPredictCallable() { return stub.serverStreamingPredictCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform a streaming online prediction request through gRPC. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   BidiStream bidiStream =
   *       predictionServiceClient.streamingRawPredictCallable().call();
   *   StreamingRawPredictRequest request =
   *       StreamingRawPredictRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .setMethodName("methodName-723163380")
   *           .setInput(ByteString.EMPTY)
   *           .build();
   *   bidiStream.send(request);
   *   for (StreamingRawPredictResponse response : bidiStream) {
   *     // Do something when a response is received.
   *   }
   * }
   * }
*/ public final BidiStreamingCallable streamingRawPredictCallable() { return stub.streamingRawPredictCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an online explanation. * *

If [deployed_model_id][google.cloud.aiplatform.v1beta1.ExplainRequest.deployed_model_id] is * specified, the corresponding DeployModel must have * [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] populated. * If [deployed_model_id][google.cloud.aiplatform.v1beta1.ExplainRequest.deployed_model_id] is not * specified, all DeployedModels must have * [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] populated. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   EndpointName endpoint =
   *       EndpointName.ofProjectLocationEndpointName("[PROJECT]", "[LOCATION]", "[ENDPOINT]");
   *   List instances = new ArrayList<>();
   *   Value parameters = Value.newBuilder().setBoolValue(true).build();
   *   String deployedModelId = "deployedModelId-1817547906";
   *   ExplainResponse response =
   *       predictionServiceClient.explain(endpoint, instances, parameters, deployedModelId);
   * }
   * }
* * @param endpoint Required. The name of the Endpoint requested to serve the explanation. Format: * `projects/{project}/locations/{location}/endpoints/{endpoint}` * @param instances Required. The instances that are the input to the explanation call. A * DeployedModel may have an upper limit on the number of instances it supports per request, * and when it is exceeded the explanation call errors in case of AutoML Models, or, in case * of customer created Models, the behaviour is as documented by that Model. The schema of any * single instance may be specified via Endpoint's DeployedModels' * [Model's][google.cloud.aiplatform.v1beta1.DeployedModel.model] * [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata] * [instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri]. * @param parameters The parameters that govern the prediction. The schema of the parameters may * be specified via Endpoint's DeployedModels' [Model's * ][google.cloud.aiplatform.v1beta1.DeployedModel.model] * [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata] * [parameters_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.parameters_schema_uri]. * @param deployedModelId If specified, this ExplainRequest will be served by the chosen * DeployedModel, overriding * [Endpoint.traffic_split][google.cloud.aiplatform.v1beta1.Endpoint.traffic_split]. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final ExplainResponse explain( EndpointName endpoint, List instances, Value parameters, String deployedModelId) { ExplainRequest request = ExplainRequest.newBuilder() .setEndpoint(endpoint == null ? null : endpoint.toString()) .addAllInstances(instances) .setParameters(parameters) .setDeployedModelId(deployedModelId) .build(); return explain(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an online explanation. * *

If [deployed_model_id][google.cloud.aiplatform.v1beta1.ExplainRequest.deployed_model_id] is * specified, the corresponding DeployModel must have * [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] populated. * If [deployed_model_id][google.cloud.aiplatform.v1beta1.ExplainRequest.deployed_model_id] is not * specified, all DeployedModels must have * [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] populated. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   String endpoint =
   *       EndpointName.ofProjectLocationEndpointName("[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *           .toString();
   *   List instances = new ArrayList<>();
   *   Value parameters = Value.newBuilder().setBoolValue(true).build();
   *   String deployedModelId = "deployedModelId-1817547906";
   *   ExplainResponse response =
   *       predictionServiceClient.explain(endpoint, instances, parameters, deployedModelId);
   * }
   * }
* * @param endpoint Required. The name of the Endpoint requested to serve the explanation. Format: * `projects/{project}/locations/{location}/endpoints/{endpoint}` * @param instances Required. The instances that are the input to the explanation call. A * DeployedModel may have an upper limit on the number of instances it supports per request, * and when it is exceeded the explanation call errors in case of AutoML Models, or, in case * of customer created Models, the behaviour is as documented by that Model. The schema of any * single instance may be specified via Endpoint's DeployedModels' * [Model's][google.cloud.aiplatform.v1beta1.DeployedModel.model] * [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata] * [instance_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.instance_schema_uri]. * @param parameters The parameters that govern the prediction. The schema of the parameters may * be specified via Endpoint's DeployedModels' [Model's * ][google.cloud.aiplatform.v1beta1.DeployedModel.model] * [PredictSchemata's][google.cloud.aiplatform.v1beta1.Model.predict_schemata] * [parameters_schema_uri][google.cloud.aiplatform.v1beta1.PredictSchemata.parameters_schema_uri]. * @param deployedModelId If specified, this ExplainRequest will be served by the chosen * DeployedModel, overriding * [Endpoint.traffic_split][google.cloud.aiplatform.v1beta1.Endpoint.traffic_split]. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final ExplainResponse explain( String endpoint, List instances, Value parameters, String deployedModelId) { ExplainRequest request = ExplainRequest.newBuilder() .setEndpoint(endpoint) .addAllInstances(instances) .setParameters(parameters) .setDeployedModelId(deployedModelId) .build(); return explain(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an online explanation. * *

If [deployed_model_id][google.cloud.aiplatform.v1beta1.ExplainRequest.deployed_model_id] is * specified, the corresponding DeployModel must have * [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] populated. * If [deployed_model_id][google.cloud.aiplatform.v1beta1.ExplainRequest.deployed_model_id] is not * specified, all DeployedModels must have * [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] populated. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   ExplainRequest request =
   *       ExplainRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .addAllInstances(new ArrayList())
   *           .setParameters(Value.newBuilder().setBoolValue(true).build())
   *           .setExplanationSpecOverride(ExplanationSpecOverride.newBuilder().build())
   *           .putAllConcurrentExplanationSpecOverride(
   *               new HashMap())
   *           .setDeployedModelId("deployedModelId-1817547906")
   *           .build();
   *   ExplainResponse response = predictionServiceClient.explain(request);
   * }
   * }
* * @param request The request object containing all of the parameters for the API call. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final ExplainResponse explain(ExplainRequest request) { return explainCallable().call(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform an online explanation. * *

If [deployed_model_id][google.cloud.aiplatform.v1beta1.ExplainRequest.deployed_model_id] is * specified, the corresponding DeployModel must have * [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] populated. * If [deployed_model_id][google.cloud.aiplatform.v1beta1.ExplainRequest.deployed_model_id] is not * specified, all DeployedModels must have * [explanation_spec][google.cloud.aiplatform.v1beta1.DeployedModel.explanation_spec] populated. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   ExplainRequest request =
   *       ExplainRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .addAllInstances(new ArrayList())
   *           .setParameters(Value.newBuilder().setBoolValue(true).build())
   *           .setExplanationSpecOverride(ExplanationSpecOverride.newBuilder().build())
   *           .putAllConcurrentExplanationSpecOverride(
   *               new HashMap())
   *           .setDeployedModelId("deployedModelId-1817547906")
   *           .build();
   *   ApiFuture future =
   *       predictionServiceClient.explainCallable().futureCall(request);
   *   // Do something.
   *   ExplainResponse response = future.get();
   * }
   * }
*/ public final UnaryCallable explainCallable() { return stub.explainCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform a token counting. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   EndpointName endpoint =
   *       EndpointName.ofProjectLocationEndpointName("[PROJECT]", "[LOCATION]", "[ENDPOINT]");
   *   List instances = new ArrayList<>();
   *   CountTokensResponse response = predictionServiceClient.countTokens(endpoint, instances);
   * }
   * }
* * @param endpoint Required. The name of the Endpoint requested to perform token counting. Format: * `projects/{project}/locations/{location}/endpoints/{endpoint}` * @param instances Optional. The instances that are the input to token counting call. Schema is * identical to the prediction schema of the underlying model. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final CountTokensResponse countTokens(EndpointName endpoint, List instances) { CountTokensRequest request = CountTokensRequest.newBuilder() .setEndpoint(endpoint == null ? null : endpoint.toString()) .addAllInstances(instances) .build(); return countTokens(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform a token counting. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   String endpoint =
   *       EndpointName.ofProjectLocationEndpointName("[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *           .toString();
   *   List instances = new ArrayList<>();
   *   CountTokensResponse response = predictionServiceClient.countTokens(endpoint, instances);
   * }
   * }
* * @param endpoint Required. The name of the Endpoint requested to perform token counting. Format: * `projects/{project}/locations/{location}/endpoints/{endpoint}` * @param instances Optional. The instances that are the input to token counting call. Schema is * identical to the prediction schema of the underlying model. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final CountTokensResponse countTokens(String endpoint, List instances) { CountTokensRequest request = CountTokensRequest.newBuilder().setEndpoint(endpoint).addAllInstances(instances).build(); return countTokens(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform a token counting. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   CountTokensRequest request =
   *       CountTokensRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .setModel("model104069929")
   *           .addAllInstances(new ArrayList())
   *           .addAllContents(new ArrayList())
   *           .setSystemInstruction(Content.newBuilder().build())
   *           .addAllTools(new ArrayList())
   *           .build();
   *   CountTokensResponse response = predictionServiceClient.countTokens(request);
   * }
   * }
* * @param request The request object containing all of the parameters for the API call. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final CountTokensResponse countTokens(CountTokensRequest request) { return countTokensCallable().call(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Perform a token counting. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   CountTokensRequest request =
   *       CountTokensRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .setModel("model104069929")
   *           .addAllInstances(new ArrayList())
   *           .addAllContents(new ArrayList())
   *           .setSystemInstruction(Content.newBuilder().build())
   *           .addAllTools(new ArrayList())
   *           .build();
   *   ApiFuture future =
   *       predictionServiceClient.countTokensCallable().futureCall(request);
   *   // Do something.
   *   CountTokensResponse response = future.get();
   * }
   * }
*/ public final UnaryCallable countTokensCallable() { return stub.countTokensCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Generate content with multimodal inputs. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   String model = "model104069929";
   *   List contents = new ArrayList<>();
   *   GenerateContentResponse response = predictionServiceClient.generateContent(model, contents);
   * }
   * }
* * @param model Required. The name of the publisher model requested to serve the prediction. * Format: `projects/{project}/locations/{location}/publishers/*/models/*` * @param contents Required. The content of the current conversation with the model. *

For single-turn queries, this is a single instance. For multi-turn queries, this is a * repeated field that contains conversation history + latest request. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final GenerateContentResponse generateContent(String model, List contents) { GenerateContentRequest request = GenerateContentRequest.newBuilder().setModel(model).addAllContents(contents).build(); return generateContent(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Generate content with multimodal inputs. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   GenerateContentRequest request =
   *       GenerateContentRequest.newBuilder()
   *           .setModel("model104069929")
   *           .addAllContents(new ArrayList())
   *           .setSystemInstruction(Content.newBuilder().build())
   *           .setCachedContent(
   *               CachedContentName.of("[PROJECT]", "[LOCATION]", "[CACHED_CONTENT]").toString())
   *           .addAllTools(new ArrayList())
   *           .setToolConfig(ToolConfig.newBuilder().build())
   *           .addAllSafetySettings(new ArrayList())
   *           .setGenerationConfig(GenerationConfig.newBuilder().build())
   *           .build();
   *   GenerateContentResponse response = predictionServiceClient.generateContent(request);
   * }
   * }
* * @param request The request object containing all of the parameters for the API call. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final GenerateContentResponse generateContent(GenerateContentRequest request) { return generateContentCallable().call(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Generate content with multimodal inputs. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   GenerateContentRequest request =
   *       GenerateContentRequest.newBuilder()
   *           .setModel("model104069929")
   *           .addAllContents(new ArrayList())
   *           .setSystemInstruction(Content.newBuilder().build())
   *           .setCachedContent(
   *               CachedContentName.of("[PROJECT]", "[LOCATION]", "[CACHED_CONTENT]").toString())
   *           .addAllTools(new ArrayList())
   *           .setToolConfig(ToolConfig.newBuilder().build())
   *           .addAllSafetySettings(new ArrayList())
   *           .setGenerationConfig(GenerationConfig.newBuilder().build())
   *           .build();
   *   ApiFuture future =
   *       predictionServiceClient.generateContentCallable().futureCall(request);
   *   // Do something.
   *   GenerateContentResponse response = future.get();
   * }
   * }
*/ public final UnaryCallable generateContentCallable() { return stub.generateContentCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Generate content with multimodal inputs with streaming support. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   GenerateContentRequest request =
   *       GenerateContentRequest.newBuilder()
   *           .setModel("model104069929")
   *           .addAllContents(new ArrayList())
   *           .setSystemInstruction(Content.newBuilder().build())
   *           .setCachedContent(
   *               CachedContentName.of("[PROJECT]", "[LOCATION]", "[CACHED_CONTENT]").toString())
   *           .addAllTools(new ArrayList())
   *           .setToolConfig(ToolConfig.newBuilder().build())
   *           .addAllSafetySettings(new ArrayList())
   *           .setGenerationConfig(GenerationConfig.newBuilder().build())
   *           .build();
   *   ServerStream stream =
   *       predictionServiceClient.streamGenerateContentCallable().call(request);
   *   for (GenerateContentResponse response : stream) {
   *     // Do something when a response is received.
   *   }
   * }
   * }
*/ public final ServerStreamingCallable streamGenerateContentCallable() { return stub.streamGenerateContentCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Exposes an OpenAI-compatible endpoint for chat completions. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   ChatCompletionsRequest request =
   *       ChatCompletionsRequest.newBuilder()
   *           .setEndpoint(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .setHttpBody(HttpBody.newBuilder().build())
   *           .build();
   *   ServerStream stream =
   *       predictionServiceClient.chatCompletionsCallable().call(request);
   *   for (HttpBody response : stream) {
   *     // Do something when a response is received.
   *   }
   * }
   * }
*/ public final ServerStreamingCallable chatCompletionsCallable() { return stub.chatCompletionsCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Lists information about the supported locations for this service. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   ListLocationsRequest request =
   *       ListLocationsRequest.newBuilder()
   *           .setName("name3373707")
   *           .setFilter("filter-1274492040")
   *           .setPageSize(883849137)
   *           .setPageToken("pageToken873572522")
   *           .build();
   *   for (Location element : predictionServiceClient.listLocations(request).iterateAll()) {
   *     // doThingsWith(element);
   *   }
   * }
   * }
* * @param request The request object containing all of the parameters for the API call. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final ListLocationsPagedResponse listLocations(ListLocationsRequest request) { return listLocationsPagedCallable().call(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Lists information about the supported locations for this service. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   ListLocationsRequest request =
   *       ListLocationsRequest.newBuilder()
   *           .setName("name3373707")
   *           .setFilter("filter-1274492040")
   *           .setPageSize(883849137)
   *           .setPageToken("pageToken873572522")
   *           .build();
   *   ApiFuture future =
   *       predictionServiceClient.listLocationsPagedCallable().futureCall(request);
   *   // Do something.
   *   for (Location element : future.get().iterateAll()) {
   *     // doThingsWith(element);
   *   }
   * }
   * }
*/ public final UnaryCallable listLocationsPagedCallable() { return stub.listLocationsPagedCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Lists information about the supported locations for this service. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   ListLocationsRequest request =
   *       ListLocationsRequest.newBuilder()
   *           .setName("name3373707")
   *           .setFilter("filter-1274492040")
   *           .setPageSize(883849137)
   *           .setPageToken("pageToken873572522")
   *           .build();
   *   while (true) {
   *     ListLocationsResponse response =
   *         predictionServiceClient.listLocationsCallable().call(request);
   *     for (Location element : response.getLocationsList()) {
   *       // doThingsWith(element);
   *     }
   *     String nextPageToken = response.getNextPageToken();
   *     if (!Strings.isNullOrEmpty(nextPageToken)) {
   *       request = request.toBuilder().setPageToken(nextPageToken).build();
   *     } else {
   *       break;
   *     }
   *   }
   * }
   * }
*/ public final UnaryCallable listLocationsCallable() { return stub.listLocationsCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Gets information about a location. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   GetLocationRequest request = GetLocationRequest.newBuilder().setName("name3373707").build();
   *   Location response = predictionServiceClient.getLocation(request);
   * }
   * }
* * @param request The request object containing all of the parameters for the API call. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final Location getLocation(GetLocationRequest request) { return getLocationCallable().call(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Gets information about a location. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   GetLocationRequest request = GetLocationRequest.newBuilder().setName("name3373707").build();
   *   ApiFuture future =
   *       predictionServiceClient.getLocationCallable().futureCall(request);
   *   // Do something.
   *   Location response = future.get();
   * }
   * }
*/ public final UnaryCallable getLocationCallable() { return stub.getLocationCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Sets the access control policy on the specified resource. Replacesany existing policy. * *

Can return `NOT_FOUND`, `INVALID_ARGUMENT`, and `PERMISSION_DENIED`errors. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   SetIamPolicyRequest request =
   *       SetIamPolicyRequest.newBuilder()
   *           .setResource(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .setPolicy(Policy.newBuilder().build())
   *           .setUpdateMask(FieldMask.newBuilder().build())
   *           .build();
   *   Policy response = predictionServiceClient.setIamPolicy(request);
   * }
   * }
* * @param request The request object containing all of the parameters for the API call. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final Policy setIamPolicy(SetIamPolicyRequest request) { return setIamPolicyCallable().call(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Sets the access control policy on the specified resource. Replacesany existing policy. * *

Can return `NOT_FOUND`, `INVALID_ARGUMENT`, and `PERMISSION_DENIED`errors. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   SetIamPolicyRequest request =
   *       SetIamPolicyRequest.newBuilder()
   *           .setResource(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .setPolicy(Policy.newBuilder().build())
   *           .setUpdateMask(FieldMask.newBuilder().build())
   *           .build();
   *   ApiFuture future = predictionServiceClient.setIamPolicyCallable().futureCall(request);
   *   // Do something.
   *   Policy response = future.get();
   * }
   * }
*/ public final UnaryCallable setIamPolicyCallable() { return stub.setIamPolicyCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Gets the access control policy for a resource. Returns an empty policyif the resource exists * and does not have a policy set. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   GetIamPolicyRequest request =
   *       GetIamPolicyRequest.newBuilder()
   *           .setResource(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .setOptions(GetPolicyOptions.newBuilder().build())
   *           .build();
   *   Policy response = predictionServiceClient.getIamPolicy(request);
   * }
   * }
* * @param request The request object containing all of the parameters for the API call. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final Policy getIamPolicy(GetIamPolicyRequest request) { return getIamPolicyCallable().call(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Gets the access control policy for a resource. Returns an empty policyif the resource exists * and does not have a policy set. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   GetIamPolicyRequest request =
   *       GetIamPolicyRequest.newBuilder()
   *           .setResource(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .setOptions(GetPolicyOptions.newBuilder().build())
   *           .build();
   *   ApiFuture future = predictionServiceClient.getIamPolicyCallable().futureCall(request);
   *   // Do something.
   *   Policy response = future.get();
   * }
   * }
*/ public final UnaryCallable getIamPolicyCallable() { return stub.getIamPolicyCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Returns permissions that a caller has on the specified resource. If theresource does not exist, * this will return an empty set ofpermissions, not a `NOT_FOUND` error. * *

Note: This operation is designed to be used for buildingpermission-aware UIs and * command-line tools, not for authorizationchecking. This operation may "fail open" without * warning. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   TestIamPermissionsRequest request =
   *       TestIamPermissionsRequest.newBuilder()
   *           .setResource(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .addAllPermissions(new ArrayList())
   *           .build();
   *   TestIamPermissionsResponse response = predictionServiceClient.testIamPermissions(request);
   * }
   * }
* * @param request The request object containing all of the parameters for the API call. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final TestIamPermissionsResponse testIamPermissions(TestIamPermissionsRequest request) { return testIamPermissionsCallable().call(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Returns permissions that a caller has on the specified resource. If theresource does not exist, * this will return an empty set ofpermissions, not a `NOT_FOUND` error. * *

Note: This operation is designed to be used for buildingpermission-aware UIs and * command-line tools, not for authorizationchecking. This operation may "fail open" without * warning. * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   TestIamPermissionsRequest request =
   *       TestIamPermissionsRequest.newBuilder()
   *           .setResource(
   *               EndpointName.ofProjectLocationEndpointName(
   *                       "[PROJECT]", "[LOCATION]", "[ENDPOINT]")
   *                   .toString())
   *           .addAllPermissions(new ArrayList())
   *           .build();
   *   ApiFuture future =
   *       predictionServiceClient.testIamPermissionsCallable().futureCall(request);
   *   // Do something.
   *   TestIamPermissionsResponse response = future.get();
   * }
   * }
*/ public final UnaryCallable testIamPermissionsCallable() { return stub.testIamPermissionsCallable(); } @Override public final void close() { stub.close(); } @Override public void shutdown() { stub.shutdown(); } @Override public boolean isShutdown() { return stub.isShutdown(); } @Override public boolean isTerminated() { return stub.isTerminated(); } @Override public void shutdownNow() { stub.shutdownNow(); } @Override public boolean awaitTermination(long duration, TimeUnit unit) throws InterruptedException { return stub.awaitTermination(duration, unit); } public static class ListLocationsPagedResponse extends AbstractPagedListResponse< ListLocationsRequest, ListLocationsResponse, Location, ListLocationsPage, ListLocationsFixedSizeCollection> { public static ApiFuture createAsync( PageContext context, ApiFuture futureResponse) { ApiFuture futurePage = ListLocationsPage.createEmptyPage().createPageAsync(context, futureResponse); return ApiFutures.transform( futurePage, input -> new ListLocationsPagedResponse(input), MoreExecutors.directExecutor()); } private ListLocationsPagedResponse(ListLocationsPage page) { super(page, ListLocationsFixedSizeCollection.createEmptyCollection()); } } public static class ListLocationsPage extends AbstractPage< ListLocationsRequest, ListLocationsResponse, Location, ListLocationsPage> { private ListLocationsPage( PageContext context, ListLocationsResponse response) { super(context, response); } private static ListLocationsPage createEmptyPage() { return new ListLocationsPage(null, null); } @Override protected ListLocationsPage createPage( PageContext context, ListLocationsResponse response) { return new ListLocationsPage(context, response); } @Override public ApiFuture createPageAsync( PageContext context, ApiFuture futureResponse) { return super.createPageAsync(context, futureResponse); } } public static class ListLocationsFixedSizeCollection extends AbstractFixedSizeCollection< ListLocationsRequest, ListLocationsResponse, Location, ListLocationsPage, ListLocationsFixedSizeCollection> { private ListLocationsFixedSizeCollection(List pages, int collectionSize) { super(pages, collectionSize); } private static ListLocationsFixedSizeCollection createEmptyCollection() { return new ListLocationsFixedSizeCollection(null, 0); } @Override protected ListLocationsFixedSizeCollection createCollection( List pages, int collectionSize) { return new ListLocationsFixedSizeCollection(pages, collectionSize); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy