All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.cloud.recommendationengine.v1beta1.PredictionServiceClient Maven / Gradle / Ivy

There is a newer version: 0.62.0
Show newest version
/*
 * Copyright 2024 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      https://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.cloud.recommendationengine.v1beta1;

import com.google.api.core.ApiFuture;
import com.google.api.core.ApiFutures;
import com.google.api.core.BetaApi;
import com.google.api.gax.core.BackgroundResource;
import com.google.api.gax.paging.AbstractFixedSizeCollection;
import com.google.api.gax.paging.AbstractPage;
import com.google.api.gax.paging.AbstractPagedListResponse;
import com.google.api.gax.rpc.PageContext;
import com.google.api.gax.rpc.UnaryCallable;
import com.google.cloud.recommendationengine.v1beta1.stub.PredictionServiceStub;
import com.google.cloud.recommendationengine.v1beta1.stub.PredictionServiceStubSettings;
import com.google.common.util.concurrent.MoreExecutors;
import com.google.protobuf.Value;
import java.io.IOException;
import java.util.List;
import java.util.Map;
import java.util.concurrent.TimeUnit;
import javax.annotation.Generated;

// AUTO-GENERATED DOCUMENTATION AND CLASS.
/**
 * Service Description: Service for making recommendation prediction.
 *
 * 

This class provides the ability to make remote calls to the backing service through method * calls that map to API methods. Sample code to get started: * *

{@code
 * // This snippet has been automatically generated and should be regarded as a code template only.
 * // It will require modifications to work:
 * // - It may require correct/in-range values for request initialization.
 * // - It may require specifying regional endpoints when creating the service client as shown in
 * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
 *   PlacementName name =
 *       PlacementName.of("[PROJECT]", "[LOCATION]", "[CATALOG]", "[EVENT_STORE]", "[PLACEMENT]");
 *   UserEvent userEvent = UserEvent.newBuilder().build();
 *   for (Map.Entry element :
 *       predictionServiceClient.predict(name, userEvent).iterateAll()) {
 *     // doThingsWith(element);
 *   }
 * }
 * }
* *

Note: close() needs to be called on the PredictionServiceClient object to clean up resources * such as threads. In the example above, try-with-resources is used, which automatically calls * close(). * *

* * * * * * * * * * * *
Methods
MethodDescriptionMethod Variants

Predict

Makes a recommendation prediction. If using API Key based authentication, the API Key must be registered using the [PredictionApiKeyRegistry][google.cloud.recommendationengine.v1beta1.PredictionApiKeyRegistry] service. [Learn more](/recommendations-ai/docs/setting-up#register-key).

*

Request object method variants only take one parameter, a request object, which must be constructed before the call.

*
    *
  • predict(PredictRequest request) *

*

"Flattened" method variants have converted the fields of the request object into function parameters to enable multiple ways to call the same method.

*
    *
  • predict(PlacementName name, UserEvent userEvent) *

  • predict(String name, UserEvent userEvent) *

*

Callable method variants take no parameters and return an immutable API callable object, which can be used to initiate calls to the service.

*
    *
  • predictPagedCallable() *

  • predictCallable() *

*
* *

See the individual methods for example code. * *

Many parameters require resource names to be formatted in a particular way. To assist with * these names, this class includes a format method for each type of name, and additionally a parse * method to extract the individual identifiers contained within names that are returned. * *

This class can be customized by passing in a custom instance of PredictionServiceSettings to * create(). For example: * *

To customize credentials: * *

{@code
 * // This snippet has been automatically generated and should be regarded as a code template only.
 * // It will require modifications to work:
 * // - It may require correct/in-range values for request initialization.
 * // - It may require specifying regional endpoints when creating the service client as shown in
 * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 * PredictionServiceSettings predictionServiceSettings =
 *     PredictionServiceSettings.newBuilder()
 *         .setCredentialsProvider(FixedCredentialsProvider.create(myCredentials))
 *         .build();
 * PredictionServiceClient predictionServiceClient =
 *     PredictionServiceClient.create(predictionServiceSettings);
 * }
* *

To customize the endpoint: * *

{@code
 * // This snippet has been automatically generated and should be regarded as a code template only.
 * // It will require modifications to work:
 * // - It may require correct/in-range values for request initialization.
 * // - It may require specifying regional endpoints when creating the service client as shown in
 * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 * PredictionServiceSettings predictionServiceSettings =
 *     PredictionServiceSettings.newBuilder().setEndpoint(myEndpoint).build();
 * PredictionServiceClient predictionServiceClient =
 *     PredictionServiceClient.create(predictionServiceSettings);
 * }
* *

To use REST (HTTP1.1/JSON) transport (instead of gRPC) for sending and receiving requests over * the wire: * *

{@code
 * // This snippet has been automatically generated and should be regarded as a code template only.
 * // It will require modifications to work:
 * // - It may require correct/in-range values for request initialization.
 * // - It may require specifying regional endpoints when creating the service client as shown in
 * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
 * PredictionServiceSettings predictionServiceSettings =
 *     PredictionServiceSettings.newHttpJsonBuilder().build();
 * PredictionServiceClient predictionServiceClient =
 *     PredictionServiceClient.create(predictionServiceSettings);
 * }
* *

Please refer to the GitHub repository's samples for more quickstart code snippets. */ @BetaApi @Generated("by gapic-generator-java") public class PredictionServiceClient implements BackgroundResource { private final PredictionServiceSettings settings; private final PredictionServiceStub stub; /** Constructs an instance of PredictionServiceClient with default settings. */ public static final PredictionServiceClient create() throws IOException { return create(PredictionServiceSettings.newBuilder().build()); } /** * Constructs an instance of PredictionServiceClient, using the given settings. The channels are * created based on the settings passed in, or defaults for any settings that are not set. */ public static final PredictionServiceClient create(PredictionServiceSettings settings) throws IOException { return new PredictionServiceClient(settings); } /** * Constructs an instance of PredictionServiceClient, using the given stub for making calls. This * is for advanced usage - prefer using create(PredictionServiceSettings). */ public static final PredictionServiceClient create(PredictionServiceStub stub) { return new PredictionServiceClient(stub); } /** * Constructs an instance of PredictionServiceClient, using the given settings. This is protected * so that it is easy to make a subclass, but otherwise, the static factory methods should be * preferred. */ protected PredictionServiceClient(PredictionServiceSettings settings) throws IOException { this.settings = settings; this.stub = ((PredictionServiceStubSettings) settings.getStubSettings()).createStub(); } protected PredictionServiceClient(PredictionServiceStub stub) { this.settings = null; this.stub = stub; } public final PredictionServiceSettings getSettings() { return settings; } public PredictionServiceStub getStub() { return stub; } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Makes a recommendation prediction. If using API Key based authentication, the API Key must be * registered using the * [PredictionApiKeyRegistry][google.cloud.recommendationengine.v1beta1.PredictionApiKeyRegistry] * service. [Learn more](/recommendations-ai/docs/setting-up#register-key). * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   PlacementName name =
   *       PlacementName.of("[PROJECT]", "[LOCATION]", "[CATALOG]", "[EVENT_STORE]", "[PLACEMENT]");
   *   UserEvent userEvent = UserEvent.newBuilder().build();
   *   for (Map.Entry element :
   *       predictionServiceClient.predict(name, userEvent).iterateAll()) {
   *     // doThingsWith(element);
   *   }
   * }
   * }
* * @param name Required. Full resource name of the format: * `{name=projects/*/locations/global/catalogs/default_catalog/eventStores/default_event_store/placements/*}` * The id of the recommendation engine placement. This id is used to identify the set of * models that will be used to make the prediction. *

We currently support three placements with the following IDs by default: *

    *
  • `shopping_cart`: Predicts items frequently bought together with one or more catalog * items in the same shopping session. Commonly displayed after `add-to-cart` events, on * product detail pages, or on the shopping cart page. *
*
    *
  • `home_page`: Predicts the next product that a user will most likely engage with or * purchase based on the shopping or viewing history of the specified `userId` or * `visitorId`. For example - Recommendations for you. *
*
    *
  • `product_detail`: Predicts the next product that a user will most likely engage with * or purchase. The prediction is based on the shopping or viewing history of the * specified `userId` or `visitorId` and its relevance to a specified `CatalogItem`. * Typically used on product detail pages. For example - More items like this. *
*
    *
  • `recently_viewed_default`: Returns up to 75 items recently viewed by the specified * `userId` or `visitorId`, most recent ones first. Returns nothing if neither of them * has viewed any items yet. For example - Recently viewed. *
*

The full list of available placements can be seen at * https://console.cloud.google.com/recommendation/datafeeds/default_catalog/dashboard * @param userEvent Required. Context about the user, what they are looking at and what action * they took to trigger the predict request. Note that this user event detail won't be * ingested to userEvent logs. Thus, a separate userEvent write request is required for event * logging. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final PredictPagedResponse predict(PlacementName name, UserEvent userEvent) { PredictRequest request = PredictRequest.newBuilder() .setName(name == null ? null : name.toString()) .setUserEvent(userEvent) .build(); return predict(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Makes a recommendation prediction. If using API Key based authentication, the API Key must be * registered using the * [PredictionApiKeyRegistry][google.cloud.recommendationengine.v1beta1.PredictionApiKeyRegistry] * service. [Learn more](/recommendations-ai/docs/setting-up#register-key). * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   String name =
   *       PlacementName.of("[PROJECT]", "[LOCATION]", "[CATALOG]", "[EVENT_STORE]", "[PLACEMENT]")
   *           .toString();
   *   UserEvent userEvent = UserEvent.newBuilder().build();
   *   for (Map.Entry element :
   *       predictionServiceClient.predict(name, userEvent).iterateAll()) {
   *     // doThingsWith(element);
   *   }
   * }
   * }
* * @param name Required. Full resource name of the format: * `{name=projects/*/locations/global/catalogs/default_catalog/eventStores/default_event_store/placements/*}` * The id of the recommendation engine placement. This id is used to identify the set of * models that will be used to make the prediction. *

We currently support three placements with the following IDs by default: *

    *
  • `shopping_cart`: Predicts items frequently bought together with one or more catalog * items in the same shopping session. Commonly displayed after `add-to-cart` events, on * product detail pages, or on the shopping cart page. *
*
    *
  • `home_page`: Predicts the next product that a user will most likely engage with or * purchase based on the shopping or viewing history of the specified `userId` or * `visitorId`. For example - Recommendations for you. *
*
    *
  • `product_detail`: Predicts the next product that a user will most likely engage with * or purchase. The prediction is based on the shopping or viewing history of the * specified `userId` or `visitorId` and its relevance to a specified `CatalogItem`. * Typically used on product detail pages. For example - More items like this. *
*
    *
  • `recently_viewed_default`: Returns up to 75 items recently viewed by the specified * `userId` or `visitorId`, most recent ones first. Returns nothing if neither of them * has viewed any items yet. For example - Recently viewed. *
*

The full list of available placements can be seen at * https://console.cloud.google.com/recommendation/datafeeds/default_catalog/dashboard * @param userEvent Required. Context about the user, what they are looking at and what action * they took to trigger the predict request. Note that this user event detail won't be * ingested to userEvent logs. Thus, a separate userEvent write request is required for event * logging. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final PredictPagedResponse predict(String name, UserEvent userEvent) { PredictRequest request = PredictRequest.newBuilder().setName(name).setUserEvent(userEvent).build(); return predict(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Makes a recommendation prediction. If using API Key based authentication, the API Key must be * registered using the * [PredictionApiKeyRegistry][google.cloud.recommendationengine.v1beta1.PredictionApiKeyRegistry] * service. [Learn more](/recommendations-ai/docs/setting-up#register-key). * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   PredictRequest request =
   *       PredictRequest.newBuilder()
   *           .setName(
   *               PlacementName.of(
   *                       "[PROJECT]", "[LOCATION]", "[CATALOG]", "[EVENT_STORE]", "[PLACEMENT]")
   *                   .toString())
   *           .setUserEvent(UserEvent.newBuilder().build())
   *           .setPageSize(883849137)
   *           .setPageToken("pageToken873572522")
   *           .setFilter("filter-1274492040")
   *           .setDryRun(true)
   *           .putAllParams(new HashMap())
   *           .putAllLabels(new HashMap())
   *           .build();
   *   for (Map.Entry element :
   *       predictionServiceClient.predict(request).iterateAll()) {
   *     // doThingsWith(element);
   *   }
   * }
   * }
* * @param request The request object containing all of the parameters for the API call. * @throws com.google.api.gax.rpc.ApiException if the remote call fails */ public final PredictPagedResponse predict(PredictRequest request) { return predictPagedCallable().call(request); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Makes a recommendation prediction. If using API Key based authentication, the API Key must be * registered using the * [PredictionApiKeyRegistry][google.cloud.recommendationengine.v1beta1.PredictionApiKeyRegistry] * service. [Learn more](/recommendations-ai/docs/setting-up#register-key). * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   PredictRequest request =
   *       PredictRequest.newBuilder()
   *           .setName(
   *               PlacementName.of(
   *                       "[PROJECT]", "[LOCATION]", "[CATALOG]", "[EVENT_STORE]", "[PLACEMENT]")
   *                   .toString())
   *           .setUserEvent(UserEvent.newBuilder().build())
   *           .setPageSize(883849137)
   *           .setPageToken("pageToken873572522")
   *           .setFilter("filter-1274492040")
   *           .setDryRun(true)
   *           .putAllParams(new HashMap())
   *           .putAllLabels(new HashMap())
   *           .build();
   *   ApiFuture> future =
   *       predictionServiceClient.predictPagedCallable().futureCall(request);
   *   // Do something.
   *   for (Map.Entry element : future.get().iterateAll()) {
   *     // doThingsWith(element);
   *   }
   * }
   * }
*/ public final UnaryCallable predictPagedCallable() { return stub.predictPagedCallable(); } // AUTO-GENERATED DOCUMENTATION AND METHOD. /** * Makes a recommendation prediction. If using API Key based authentication, the API Key must be * registered using the * [PredictionApiKeyRegistry][google.cloud.recommendationengine.v1beta1.PredictionApiKeyRegistry] * service. [Learn more](/recommendations-ai/docs/setting-up#register-key). * *

Sample code: * *

{@code
   * // This snippet has been automatically generated and should be regarded as a code template only.
   * // It will require modifications to work:
   * // - It may require correct/in-range values for request initialization.
   * // - It may require specifying regional endpoints when creating the service client as shown in
   * // https://cloud.google.com/java/docs/setup#configure_endpoints_for_the_client_library
   * try (PredictionServiceClient predictionServiceClient = PredictionServiceClient.create()) {
   *   PredictRequest request =
   *       PredictRequest.newBuilder()
   *           .setName(
   *               PlacementName.of(
   *                       "[PROJECT]", "[LOCATION]", "[CATALOG]", "[EVENT_STORE]", "[PLACEMENT]")
   *                   .toString())
   *           .setUserEvent(UserEvent.newBuilder().build())
   *           .setPageSize(883849137)
   *           .setPageToken("pageToken873572522")
   *           .setFilter("filter-1274492040")
   *           .setDryRun(true)
   *           .putAllParams(new HashMap())
   *           .putAllLabels(new HashMap())
   *           .build();
   *   while (true) {
   *     PredictResponse response = predictionServiceClient.predictCallable().call(request);
   *     for (Map.Entry element : response.getMetadataList()) {
   *       // doThingsWith(element);
   *     }
   *     String nextPageToken = response.getNextPageToken();
   *     if (!Strings.isNullOrEmpty(nextPageToken)) {
   *       request = request.toBuilder().setPageToken(nextPageToken).build();
   *     } else {
   *       break;
   *     }
   *   }
   * }
   * }
*/ public final UnaryCallable predictCallable() { return stub.predictCallable(); } @Override public final void close() { stub.close(); } @Override public void shutdown() { stub.shutdown(); } @Override public boolean isShutdown() { return stub.isShutdown(); } @Override public boolean isTerminated() { return stub.isTerminated(); } @Override public void shutdownNow() { stub.shutdownNow(); } @Override public boolean awaitTermination(long duration, TimeUnit unit) throws InterruptedException { return stub.awaitTermination(duration, unit); } public static class PredictPagedResponse extends AbstractPagedListResponse< PredictRequest, PredictResponse, Map.Entry, PredictPage, PredictFixedSizeCollection> { public static ApiFuture createAsync( PageContext> context, ApiFuture futureResponse) { ApiFuture futurePage = PredictPage.createEmptyPage().createPageAsync(context, futureResponse); return ApiFutures.transform( futurePage, input -> new PredictPagedResponse(input), MoreExecutors.directExecutor()); } private PredictPagedResponse(PredictPage page) { super(page, PredictFixedSizeCollection.createEmptyCollection()); } } public static class PredictPage extends AbstractPage, PredictPage> { private PredictPage( PageContext> context, PredictResponse response) { super(context, response); } private static PredictPage createEmptyPage() { return new PredictPage(null, null); } @Override protected PredictPage createPage( PageContext> context, PredictResponse response) { return new PredictPage(context, response); } @Override public ApiFuture createPageAsync( PageContext> context, ApiFuture futureResponse) { return super.createPageAsync(context, futureResponse); } } public static class PredictFixedSizeCollection extends AbstractFixedSizeCollection< PredictRequest, PredictResponse, Map.Entry, PredictPage, PredictFixedSizeCollection> { private PredictFixedSizeCollection(List pages, int collectionSize) { super(pages, collectionSize); } private static PredictFixedSizeCollection createEmptyCollection() { return new PredictFixedSizeCollection(null, 0); } @Override protected PredictFixedSizeCollection createCollection( List pages, int collectionSize) { return new PredictFixedSizeCollection(pages, collectionSize); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy