All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.crypto.tink.internal.EllipticCurvesUtil Maven / Gradle / Ivy

Go to download

Tink is a small cryptographic library that provides a safe, simple, agile and fast way to accomplish some common cryptographic tasks.

The newest version!
// Copyright 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
////////////////////////////////////////////////////////////////////////////////

package com.google.crypto.tink.internal;

import com.google.crypto.tink.subtle.Random;
import java.math.BigInteger;
import java.security.GeneralSecurityException;
import java.security.spec.ECField;
import java.security.spec.ECFieldFp;
import java.security.spec.ECParameterSpec;
import java.security.spec.ECPoint;
import java.security.spec.EllipticCurve;

/** Utility functions for elliptic curve crypto, used in ECDSA and ECDH. */
public final class EllipticCurvesUtil {

  public static final ECParameterSpec NIST_P256_PARAMS = getNistP256Params();
  public static final ECParameterSpec NIST_P384_PARAMS = getNistP384Params();
  public static final ECParameterSpec NIST_P521_PARAMS = getNistP521Params();

  private static ECParameterSpec getNistP256Params() {
    return getNistCurveSpec(
        "115792089210356248762697446949407573530086143415290314195533631308867097853951",
        "115792089210356248762697446949407573529996955224135760342422259061068512044369",
        "5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b",
        "6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296",
        "4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5");
  }

  private static ECParameterSpec getNistP384Params() {
    return getNistCurveSpec(
        "3940200619639447921227904010014361380507973927046544666794829340"
            + "4245721771496870329047266088258938001861606973112319",
        "3940200619639447921227904010014361380507973927046544666794690527"
            + "9627659399113263569398956308152294913554433653942643",
        "b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875a"
            + "c656398d8a2ed19d2a85c8edd3ec2aef",
        "aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a38"
            + "5502f25dbf55296c3a545e3872760ab7",
        "3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c0"
            + "0a60b1ce1d7e819d7a431d7c90ea0e5f");
  }

  private static ECParameterSpec getNistP521Params() {
    return getNistCurveSpec(
        "6864797660130609714981900799081393217269435300143305409394463459"
            + "18554318339765605212255964066145455497729631139148085803712198"
            + "7999716643812574028291115057151",
        "6864797660130609714981900799081393217269435300143305409394463459"
            + "18554318339765539424505774633321719753296399637136332111386476"
            + "8612440380340372808892707005449",
        "051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef10"
            + "9e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00",
        "c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3d"
            + "baa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66",
        "11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e6"
            + "62c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650");
  }

  /**
   * Checks that a point is on a given elliptic curve.
   *
   * 

This method implements the partial public key validation routine from Section 5.6.2.6 of NIST SP * 800-56A. A partial public key validation is sufficient for curves with cofactor 1. See * Section B.3 of http://www.nsa.gov/ia/_files/SuiteB_Implementer_G-113808.pdf. * *

The point validations above are taken from recommendations for ECDH, because parameter * checks in ECDH are much more important than for the case of ECDSA. Performing this test for * ECDSA keys is mainly a sanity check. * * @param point the point that needs verification * @param ec the elliptic curve. This must be a curve over a prime order field. * @throws GeneralSecurityException if the field is binary or if the point is not on the curve. */ public static void checkPointOnCurve(ECPoint point, EllipticCurve ec) throws GeneralSecurityException { BigInteger p = getModulus(ec); BigInteger x = point.getAffineX(); BigInteger y = point.getAffineY(); if (x == null || y == null) { throw new GeneralSecurityException("point is at infinity"); } // Check 0 <= x < p and 0 <= y < p. if (x.signum() == -1 || x.compareTo(p) >= 0) { throw new GeneralSecurityException("x is out of range"); } if (y.signum() == -1 || y.compareTo(p) >= 0) { throw new GeneralSecurityException("y is out of range"); } // Check y^2 == x^3 + a x + b (mod p) BigInteger lhs = y.multiply(y).mod(p); BigInteger rhs = x.multiply(x).add(ec.getA()).multiply(x).add(ec.getB()).mod(p); if (!lhs.equals(rhs)) { throw new GeneralSecurityException("Point is not on curve"); } } /** Returns whether {@code spec} is a {@link ECParameterSpec} of one of the NIST curves. */ public static boolean isNistEcParameterSpec(ECParameterSpec spec) { return isSameEcParameterSpec(spec, NIST_P256_PARAMS) || isSameEcParameterSpec(spec, NIST_P384_PARAMS) || isSameEcParameterSpec(spec, NIST_P521_PARAMS); } /** Returns whether {@code one} is the same {@link ECParameterSpec} as {@code two}. */ public static boolean isSameEcParameterSpec(ECParameterSpec one, ECParameterSpec two) { return one.getCurve().equals(two.getCurve()) && one.getGenerator().equals(two.getGenerator()) && one.getOrder().equals(two.getOrder()) && one.getCofactor() == two.getCofactor(); } /** * Returns the modulus of the field used by the curve specified in ecParams. * * @param curve must be a prime order elliptic curve * @return the order of the finite field over which curve is defined. */ public static BigInteger getModulus(EllipticCurve curve) throws GeneralSecurityException { ECField field = curve.getField(); if (field instanceof ECFieldFp) { return ((ECFieldFp) field).getP(); } else { throw new GeneralSecurityException("Only curves over prime order fields are supported"); } } private static ECParameterSpec getNistCurveSpec( String decimalP, String decimalN, String hexB, String hexGX, String hexGY) { final BigInteger p = new BigInteger(decimalP); final BigInteger n = new BigInteger(decimalN); final BigInteger three = new BigInteger("3"); final BigInteger a = p.subtract(three); final BigInteger b = new BigInteger(hexB, 16); final BigInteger gx = new BigInteger(hexGX, 16); final BigInteger gy = new BigInteger(hexGY, 16); final int h = 1; ECFieldFp fp = new ECFieldFp(p); EllipticCurve curveSpec = new EllipticCurve(fp, a, b); ECPoint g = new ECPoint(gx, gy); ECParameterSpec ecSpec = new ECParameterSpec(curveSpec, g, n, h); return ecSpec; } /** * Calculates x times the generator of the give elliptic curve spec using the Montgomery ladder. * *

This should only be used to validate keys, and not to sign or verify messages. * *

See: Elliptic * curve point multiplication. * * @param x must be larger than 0 and smaller than the order of the generator. * @return the ECPoint that is x times the generator. */ public static ECPoint multiplyByGenerator(BigInteger x, ECParameterSpec spec) throws GeneralSecurityException { if (!EllipticCurvesUtil.isNistEcParameterSpec(spec)) { throw new GeneralSecurityException("spec must be NIST P256, P384 or P521"); } if (x.signum() != 1) { throw new GeneralSecurityException("k must be positive"); } if (x.compareTo(spec.getOrder()) >= 0) { throw new GeneralSecurityException("k must be smaller than the order of the generator"); } EllipticCurve curve = spec.getCurve(); ECPoint generator = spec.getGenerator(); checkPointOnCurve(generator, curve); BigInteger a = spec.getCurve().getA(); BigInteger modulus = getModulus(curve); JacobianEcPoint r0 = toJacobianEcPoint(ECPoint.POINT_INFINITY, modulus); JacobianEcPoint r1 = toJacobianEcPoint(generator, modulus); for (int i = x.bitLength(); i >= 0; i--) { if (x.testBit(i)) { r0 = addJacobianPoints(r0, r1, a, modulus); r1 = doubleJacobianPoint(r1, a, modulus); } else { r1 = addJacobianPoints(r0, r1, a, modulus); r0 = doubleJacobianPoint(r0, a, modulus); } } ECPoint output = r0.toECPoint(modulus); checkPointOnCurve(output, curve); return output; } private static final BigInteger TWO = BigInteger.valueOf(2); private static final BigInteger THREE = BigInteger.valueOf(3); private static final BigInteger FOUR = BigInteger.valueOf(4); private static final BigInteger EIGHT = BigInteger.valueOf(8); /** * Jacobian representation of elliptic curve points. * *

The point (X, Y) is represented by a triple (x, y, z), where X = x/z^2 and Y = y/z^3. */ static class JacobianEcPoint { BigInteger x; BigInteger y; BigInteger z; JacobianEcPoint(BigInteger x, BigInteger y, BigInteger z) { this.x = x; this.y = y; this.z = z; } boolean isInfinity() { return this.z.equals(BigInteger.ZERO); } ECPoint toECPoint(BigInteger modulus) { if (isInfinity()) { return ECPoint.POINT_INFINITY; } BigInteger zInv = z.modInverse(modulus); BigInteger zInv2 = zInv.multiply(zInv).mod(modulus); return new ECPoint( x.multiply(zInv2).mod(modulus), y.multiply(zInv2).mod(modulus).multiply(zInv).mod(modulus)); } static final JacobianEcPoint INFINITY = new JacobianEcPoint(BigInteger.ONE, BigInteger.ONE, BigInteger.ZERO); } static JacobianEcPoint toJacobianEcPoint(ECPoint p, BigInteger modulus) { if (p.equals(ECPoint.POINT_INFINITY)) { return JacobianEcPoint.INFINITY; } // Randomize the coordinates to get some protection against timing side channels. // Note that this randomization does not protect against all attacks, since it does not // randomize the value 0. A paper exploiting this is "Zero-Value Point Attacks on Elliptic Curve // Cryptosystem" by T. Akishita and T. Takagi // https://download.hrz.tu-darmstadt.de/pub/FB20/Dekanat/Publikationen/CDC/TI-03-01.zvp.pdf // A consequence of this paper is that this implementation should not be used for ECDH. BigInteger z = new BigInteger(1, Random.randBytes((modulus.bitLength() + 8) / 8)).mod(modulus); BigInteger zz = z.multiply(z).mod(modulus); BigInteger zzz = zz.multiply(z).mod(modulus); return new JacobianEcPoint( p.getAffineX().multiply(zz).mod(modulus), p.getAffineY().multiply(zzz).mod(modulus), z); } static JacobianEcPoint doubleJacobianPoint(JacobianEcPoint p, BigInteger a, BigInteger modulus) { // http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl if (p.y.equals(BigInteger.ZERO)) { return JacobianEcPoint.INFINITY; } BigInteger xx = p.x.multiply(p.x).mod(modulus); BigInteger yy = p.y.multiply(p.y).mod(modulus); BigInteger yyyy = yy.multiply(yy).mod(modulus); BigInteger zz = p.z.multiply(p.z).mod(modulus); BigInteger x1yy = p.x.add(yy); BigInteger s = x1yy.multiply(x1yy).mod(modulus).subtract(xx).subtract(yyyy).multiply(TWO); BigInteger m = xx.multiply(THREE).add(a.multiply(zz).multiply(zz).mod(modulus)); BigInteger t = m.multiply(m).mod(modulus).subtract(s.multiply(TWO)).mod(modulus); BigInteger x3 = t; BigInteger y3 = m.multiply(s.subtract(t)).mod(modulus).subtract(yyyy.multiply(EIGHT)).mod(modulus); BigInteger y1z1 = p.y.add(p.z); BigInteger z3 = y1z1.multiply(y1z1).mod(modulus).subtract(yy).subtract(zz).mod(modulus); return new JacobianEcPoint(x3, y3, z3); } static JacobianEcPoint addJacobianPoints( JacobianEcPoint p1, JacobianEcPoint p2, BigInteger a, BigInteger modulus) { // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#addition-add-2007-bl // and https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates if (p1.isInfinity()) { return p2; } if (p2.isInfinity()) { return p1; } BigInteger z1z1 = p1.z.multiply(p1.z).mod(modulus); BigInteger z2z2 = p2.z.multiply(p2.z).mod(modulus); BigInteger u1 = p1.x.multiply(z2z2).mod(modulus); BigInteger u2 = p2.x.multiply(z1z1).mod(modulus); BigInteger s1 = p1.y.multiply(p2.z).mod(modulus).multiply(z2z2).mod(modulus); BigInteger s2 = p2.y.multiply(p1.z).mod(modulus).multiply(z1z1).mod(modulus); if (u1.equals(u2)) { if (!s1.equals(s2)) { return JacobianEcPoint.INFINITY; } else { return doubleJacobianPoint(p1, a, modulus); } } BigInteger h = u2.subtract(u1).mod(modulus); BigInteger i = h.multiply(FOUR).multiply(h).mod(modulus); BigInteger j = h.multiply(i).mod(modulus); BigInteger r = s2.subtract(s1).multiply(TWO).mod(modulus); BigInteger v = u1.multiply(i).mod(modulus); BigInteger x3 = r.multiply(r).mod(modulus).subtract(j).subtract(v.multiply(TWO)).mod(modulus); BigInteger y3 = r.multiply(v.subtract(x3)).subtract(s1.multiply(TWO).multiply(j)).mod(modulus); BigInteger z12 = p1.z.add(p2.z); BigInteger z3 = z12.multiply(z12).mod(modulus).subtract(z1z1).subtract(z2z2).multiply(h).mod(modulus); return new JacobianEcPoint(x3, y3, z3); } private EllipticCurvesUtil() {} }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy