com.google.crypto.tink.internal.Field25519 Maven / Gradle / Ivy
Show all versions of tink-android Show documentation
// Copyright 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
////////////////////////////////////////////////////////////////////////////////
package com.google.crypto.tink.internal;
import com.google.crypto.tink.annotations.Alpha;
import java.util.Arrays;
/**
* Defines field 25519 function based on curve25519-donna C
* implementation (mostly identical).
*
* Field elements are written as an array of signed, 64-bit limbs (an array of longs), least
* significant first. The value of the field element is:
*
*
* x[0] + 2^26·x[1] + 2^51·x[2] + 2^77·x[3] + 2^102·x[4] + 2^128·x[5] + 2^153·x[6] + 2^179·x[7] +
* 2^204·x[8] + 2^230·x[9],
*
*
* i.e. the limbs are 26, 25, 26, 25, ... bits wide.
*/
@Alpha
public final class Field25519 {
/**
* During Field25519 computation, the mixed radix representation may be in different forms:
*
*
* - Reduced-size form: the array has size at most 10.
*
- Non-reduced-size form: the array is not reduced modulo 2^255 - 19 and has size at most
* 19.
*
*
* TODO(quannguyen):
*
*
* - Clarify ill-defined terminologies.
*
- The reduction procedure is different from DJB's paper
* (http://cr.yp.to/ecdh/curve25519-20060209.pdf). The coefficients after reducing degree
* and reducing coefficients aren't guaranteed to be in range {-2^25, ..., 2^25}. We should
* check to see what's going on.
*
- Consider using method mult() everywhere and making product() private.
*
*/
public static final int FIELD_LEN = 32;
public static final int LIMB_CNT = 10;
private static final long TWO_TO_25 = 1 << 25;
private static final long TWO_TO_26 = TWO_TO_25 << 1;
private static final int[] EXPAND_START = {0, 3, 6, 9, 12, 16, 19, 22, 25, 28};
private static final int[] EXPAND_SHIFT = {0, 2, 3, 5, 6, 0, 1, 3, 4, 6};
private static final int[] MASK = {0x3ffffff, 0x1ffffff};
private static final int[] SHIFT = {26, 25};
/**
* Sums two numbers: output = in1 + in2
*
* On entry: in1, in2 are in reduced-size form.
*/
static void sum(long[] output, long[] in1, long[] in2) {
for (int i = 0; i < LIMB_CNT; i++) {
output[i] = in1[i] + in2[i];
}
}
/**
* Sums two numbers: output += in
*
*
On entry: in is in reduced-size form.
*/
static void sum(long[] output, long[] in) {
sum(output, output, in);
}
/**
* Find the difference of two numbers: output = in1 - in2 (note the order of the arguments!).
*
*
On entry: in1, in2 are in reduced-size form.
*/
static void sub(long[] output, long[] in1, long[] in2) {
for (int i = 0; i < LIMB_CNT; i++) {
output[i] = in1[i] - in2[i];
}
}
/**
* Find the difference of two numbers: output = in - output (note the order of the arguments!).
*
*
On entry: in, output are in reduced-size form.
*/
static void sub(long[] output, long[] in) {
sub(output, in, output);
}
/** Multiply a number by a scalar: output = in * scalar */
static void scalarProduct(long[] output, long[] in, long scalar) {
for (int i = 0; i < LIMB_CNT; i++) {
output[i] = in[i] * scalar;
}
}
/**
* Multiply two numbers: out = in2 * in
*
*
output must be distinct to both inputs. The inputs are reduced coefficient form, the output
* is not.
*
*
out[x] <= 14 * the largest product of the input limbs.
*/
static void product(long[] out, long[] in2, long[] in) {
out[0] = in2[0] * in[0];
out[1] = in2[0] * in[1] + in2[1] * in[0];
out[2] = 2 * in2[1] * in[1] + in2[0] * in[2] + in2[2] * in[0];
out[3] = in2[1] * in[2] + in2[2] * in[1] + in2[0] * in[3] + in2[3] * in[0];
out[4] =
in2[2] * in[2] + 2 * (in2[1] * in[3] + in2[3] * in[1]) + in2[0] * in[4] + in2[4] * in[0];
out[5] =
in2[2] * in[3]
+ in2[3] * in[2]
+ in2[1] * in[4]
+ in2[4] * in[1]
+ in2[0] * in[5]
+ in2[5] * in[0];
out[6] =
2 * (in2[3] * in[3] + in2[1] * in[5] + in2[5] * in[1])
+ in2[2] * in[4]
+ in2[4] * in[2]
+ in2[0] * in[6]
+ in2[6] * in[0];
out[7] =
in2[3] * in[4]
+ in2[4] * in[3]
+ in2[2] * in[5]
+ in2[5] * in[2]
+ in2[1] * in[6]
+ in2[6] * in[1]
+ in2[0] * in[7]
+ in2[7] * in[0];
out[8] =
in2[4] * in[4]
+ 2 * (in2[3] * in[5] + in2[5] * in[3] + in2[1] * in[7] + in2[7] * in[1])
+ in2[2] * in[6]
+ in2[6] * in[2]
+ in2[0] * in[8]
+ in2[8] * in[0];
out[9] =
in2[4] * in[5]
+ in2[5] * in[4]
+ in2[3] * in[6]
+ in2[6] * in[3]
+ in2[2] * in[7]
+ in2[7] * in[2]
+ in2[1] * in[8]
+ in2[8] * in[1]
+ in2[0] * in[9]
+ in2[9] * in[0];
out[10] =
2 * (in2[5] * in[5] + in2[3] * in[7] + in2[7] * in[3] + in2[1] * in[9] + in2[9] * in[1])
+ in2[4] * in[6]
+ in2[6] * in[4]
+ in2[2] * in[8]
+ in2[8] * in[2];
out[11] =
in2[5] * in[6]
+ in2[6] * in[5]
+ in2[4] * in[7]
+ in2[7] * in[4]
+ in2[3] * in[8]
+ in2[8] * in[3]
+ in2[2] * in[9]
+ in2[9] * in[2];
out[12] =
in2[6] * in[6]
+ 2 * (in2[5] * in[7] + in2[7] * in[5] + in2[3] * in[9] + in2[9] * in[3])
+ in2[4] * in[8]
+ in2[8] * in[4];
out[13] =
in2[6] * in[7]
+ in2[7] * in[6]
+ in2[5] * in[8]
+ in2[8] * in[5]
+ in2[4] * in[9]
+ in2[9] * in[4];
out[14] =
2 * (in2[7] * in[7] + in2[5] * in[9] + in2[9] * in[5]) + in2[6] * in[8] + in2[8] * in[6];
out[15] = in2[7] * in[8] + in2[8] * in[7] + in2[6] * in[9] + in2[9] * in[6];
out[16] = in2[8] * in[8] + 2 * (in2[7] * in[9] + in2[9] * in[7]);
out[17] = in2[8] * in[9] + in2[9] * in[8];
out[18] = 2 * in2[9] * in[9];
}
/**
* Reduce a field element by calling reduceSizeByModularReduction and reduceCoefficients.
*
* @param input An input array of any length. If the array has 19 elements, it will be used as
* temporary buffer and its contents changed.
* @param output An output array of size LIMB_CNT. After the call |output[i]| < 2^26 will hold.
*/
static void reduce(long[] input, long[] output) {
long[] tmp;
if (input.length == 19) {
tmp = input;
} else {
tmp = new long[19];
System.arraycopy(input, 0, tmp, 0, input.length);
}
reduceSizeByModularReduction(tmp);
reduceCoefficients(tmp);
System.arraycopy(tmp, 0, output, 0, LIMB_CNT);
}
/**
* Reduce a long form to a reduced-size form by taking the input mod 2^255 - 19.
*
*
On entry: |output[i]| < 14*2^54 On exit: |output[0..8]| < 280*2^54
*/
static void reduceSizeByModularReduction(long[] output) {
// The coefficients x[10], x[11],..., x[18] are eliminated by reduction modulo 2^255 - 19.
// For example, the coefficient x[18] is multiplied by 19 and added to the coefficient x[8].
//
// Each of these shifts and adds ends up multiplying the value by 19.
//
// For output[0..8], the absolute entry value is < 14*2^54 and we add, at most, 19*14*2^54 thus,
// on exit, |output[0..8]| < 280*2^54.
output[8] += output[18] << 4;
output[8] += output[18] << 1;
output[8] += output[18];
output[7] += output[17] << 4;
output[7] += output[17] << 1;
output[7] += output[17];
output[6] += output[16] << 4;
output[6] += output[16] << 1;
output[6] += output[16];
output[5] += output[15] << 4;
output[5] += output[15] << 1;
output[5] += output[15];
output[4] += output[14] << 4;
output[4] += output[14] << 1;
output[4] += output[14];
output[3] += output[13] << 4;
output[3] += output[13] << 1;
output[3] += output[13];
output[2] += output[12] << 4;
output[2] += output[12] << 1;
output[2] += output[12];
output[1] += output[11] << 4;
output[1] += output[11] << 1;
output[1] += output[11];
output[0] += output[10] << 4;
output[0] += output[10] << 1;
output[0] += output[10];
}
/**
* Reduce all coefficients of the short form input so that |x| < 2^26.
*
*
On entry: |output[i]| < 280*2^54
*/
static void reduceCoefficients(long[] output) {
output[10] = 0;
for (int i = 0; i < LIMB_CNT; i += 2) {
long over = output[i] / TWO_TO_26;
// The entry condition (that |output[i]| < 280*2^54) means that over is, at most, 280*2^28 in
// the first iteration of this loop. This is added to the next limb and we can approximate the
// resulting bound of that limb by 281*2^54.
output[i] -= over << 26;
output[i + 1] += over;
// For the first iteration, |output[i+1]| < 281*2^54, thus |over| < 281*2^29. When this is
// added to the next limb, the resulting bound can be approximated as 281*2^54.
//
// For subsequent iterations of the loop, 281*2^54 remains a conservative bound and no
// overflow occurs.
over = output[i + 1] / TWO_TO_25;
output[i + 1] -= over << 25;
output[i + 2] += over;
}
// Now |output[10]| < 281*2^29 and all other coefficients are reduced.
output[0] += output[10] << 4;
output[0] += output[10] << 1;
output[0] += output[10];
output[10] = 0;
// Now output[1..9] are reduced, and |output[0]| < 2^26 + 19*281*2^29 so |over| will be no more
// than 2^16.
long over = output[0] / TWO_TO_26;
output[0] -= over << 26;
output[1] += over;
// Now output[0,2..9] are reduced, and |output[1]| < 2^25 + 2^16 < 2^26. The bound on
// |output[1]| is sufficient to meet our needs.
}
/**
* A helpful wrapper around {@ref Field25519#product}: output = in * in2.
*
*
On entry: |in[i]| < 2^27 and |in2[i]| < 2^27.
*
*
The output is reduced degree (indeed, one need only provide storage for 10 limbs) and
* |output[i]| < 2^26.
*/
static void mult(long[] output, long[] in, long[] in2) {
long[] t = new long[19];
product(t, in, in2);
// |t[i]| < 2^26
reduce(t, output);
}
/**
* Square a number: out = in**2
*
*
output must be distinct from the input. The inputs are reduced coefficient form, the output
* is not.
*
*
out[x] <= 14 * the largest product of the input limbs.
*/
private static void squareInner(long[] out, long[] in) {
out[0] = in[0] * in[0];
out[1] = 2 * in[0] * in[1];
out[2] = 2 * (in[1] * in[1] + in[0] * in[2]);
out[3] = 2 * (in[1] * in[2] + in[0] * in[3]);
out[4] = in[2] * in[2] + 4 * in[1] * in[3] + 2 * in[0] * in[4];
out[5] = 2 * (in[2] * in[3] + in[1] * in[4] + in[0] * in[5]);
out[6] = 2 * (in[3] * in[3] + in[2] * in[4] + in[0] * in[6] + 2 * in[1] * in[5]);
out[7] = 2 * (in[3] * in[4] + in[2] * in[5] + in[1] * in[6] + in[0] * in[7]);
out[8] =
in[4] * in[4] + 2 * (in[2] * in[6] + in[0] * in[8] + 2 * (in[1] * in[7] + in[3] * in[5]));
out[9] = 2 * (in[4] * in[5] + in[3] * in[6] + in[2] * in[7] + in[1] * in[8] + in[0] * in[9]);
out[10] =
2 * (in[5] * in[5] + in[4] * in[6] + in[2] * in[8] + 2 * (in[3] * in[7] + in[1] * in[9]));
out[11] = 2 * (in[5] * in[6] + in[4] * in[7] + in[3] * in[8] + in[2] * in[9]);
out[12] = in[6] * in[6] + 2 * (in[4] * in[8] + 2 * (in[5] * in[7] + in[3] * in[9]));
out[13] = 2 * (in[6] * in[7] + in[5] * in[8] + in[4] * in[9]);
out[14] = 2 * (in[7] * in[7] + in[6] * in[8] + 2 * in[5] * in[9]);
out[15] = 2 * (in[7] * in[8] + in[6] * in[9]);
out[16] = in[8] * in[8] + 4 * in[7] * in[9];
out[17] = 2 * in[8] * in[9];
out[18] = 2 * in[9] * in[9];
}
/**
* Returns in^2.
*
*
On entry: The |in| argument is in reduced coefficients form and |in[i]| < 2^27.
*
*
On exit: The |output| argument is in reduced coefficients form (indeed, one need only
* provide storage for 10 limbs) and |out[i]| < 2^26.
*/
static void square(long[] output, long[] in) {
long[] t = new long[19];
squareInner(t, in);
// |t[i]| < 14*2^54 because the largest product of two limbs will be < 2^(27+27) and SquareInner
// adds together, at most, 14 of those products.
reduce(t, output);
}
/** Takes a little-endian, 32-byte number and expands it into mixed radix form. */
static long[] expand(byte[] input) {
long[] output = new long[LIMB_CNT];
for (int i = 0; i < LIMB_CNT; i++) {
output[i] =
((((long) (input[EXPAND_START[i]] & 0xff))
| ((long) (input[EXPAND_START[i] + 1] & 0xff)) << 8
| ((long) (input[EXPAND_START[i] + 2] & 0xff)) << 16
| ((long) (input[EXPAND_START[i] + 3] & 0xff)) << 24)
>> EXPAND_SHIFT[i])
& MASK[i & 1];
}
return output;
}
/**
* Takes a fully reduced mixed radix form number and contract it into a little-endian, 32-byte
* array.
*
*
On entry: |input_limbs[i]| < 2^26
*/
@SuppressWarnings("NarrowingCompoundAssignment")
public static byte[] contract(long[] inputLimbs) {
long[] input = Arrays.copyOf(inputLimbs, LIMB_CNT);
for (int j = 0; j < 2; j++) {
for (int i = 0; i < 9; i++) {
// This calculation is a time-invariant way to make input[i] non-negative by borrowing
// from the next-larger limb.
int carry = -(int) ((input[i] & (input[i] >> 31)) >> SHIFT[i & 1]);
input[i] = input[i] + (carry << SHIFT[i & 1]);
input[i + 1] -= carry;
}
// There's no greater limb for input[9] to borrow from, but we can multiply by 19 and borrow
// from input[0], which is valid mod 2^255-19.
{
int carry = -(int) ((input[9] & (input[9] >> 31)) >> 25);
input[9] += (carry << 25);
input[0] -= (carry * 19L);
}
// After the first iteration, input[1..9] are non-negative and fit within 25 or 26 bits,
// depending on position. However, input[0] may be negative.
}
// The first borrow-propagation pass above ended with every limb except (possibly) input[0]
// non-negative.
//
// If input[0] was negative after the first pass, then it was because of a carry from input[9].
// On entry, input[9] < 2^26 so the carry was, at most, one, since (2**26-1) >> 25 = 1. Thus
// input[0] >= -19.
//
// In the second pass, each limb is decreased by at most one. Thus the second borrow-propagation
// pass could only have wrapped around to decrease input[0] again if the first pass left
// input[0] negative *and* input[1] through input[9] were all zero. In that case, input[1] is
// now 2^25 - 1, and this last borrow-propagation step will leave input[1] non-negative.
{
int carry = -(int) ((input[0] & (input[0] >> 31)) >> 26);
input[0] += (carry << 26);
input[1] -= carry;
}
// All input[i] are now non-negative. However, there might be values between 2^25 and 2^26 in a
// limb which is, nominally, 25 bits wide.
for (int j = 0; j < 2; j++) {
for (int i = 0; i < 9; i++) {
int carry = (int) (input[i] >> SHIFT[i & 1]);
input[i] &= MASK[i & 1];
input[i + 1] += carry;
}
}
{
int carry = (int) (input[9] >> 25);
input[9] &= 0x1ffffff;
input[0] += 19L * carry;
}
// If the first carry-chain pass, just above, ended up with a carry from input[9], and that
// caused input[0] to be out-of-bounds, then input[0] was < 2^26 + 2*19, because the carry was,
// at most, two.
//
// If the second pass carried from input[9] again then input[0] is < 2*19 and the input[9] ->
// input[0] carry didn't push input[0] out of bounds.
// It still remains the case that input might be between 2^255-19 and 2^255. In this case,
// input[1..9] must take their maximum value and input[0] must be >= (2^255-19) & 0x3ffffff,
// which is 0x3ffffed.
int mask = gte((int) input[0], 0x3ffffed);
for (int i = 1; i < LIMB_CNT; i++) {
mask &= eq((int) input[i], MASK[i & 1]);
}
// mask is either 0xffffffff (if input >= 2^255-19) and zero otherwise. Thus this conditionally
// subtracts 2^255-19.
input[0] -= mask & 0x3ffffed;
input[1] -= mask & 0x1ffffff;
for (int i = 2; i < LIMB_CNT; i += 2) {
input[i] -= mask & 0x3ffffff;
input[i + 1] -= mask & 0x1ffffff;
}
for (int i = 0; i < LIMB_CNT; i++) {
input[i] <<= EXPAND_SHIFT[i];
}
byte[] output = new byte[FIELD_LEN];
for (int i = 0; i < LIMB_CNT; i++) {
output[EXPAND_START[i]] |= input[i] & 0xff;
output[EXPAND_START[i] + 1] |= (input[i] >> 8) & 0xff;
output[EXPAND_START[i] + 2] |= (input[i] >> 16) & 0xff;
output[EXPAND_START[i] + 3] |= (input[i] >> 24) & 0xff;
}
return output;
}
/**
* Computes inverse of z = z(2^255 - 21)
*
*
Shamelessly copied from agl's code which was shamelessly copied from djb's code. Only the
* comment format and the variable namings are different from those.
*/
static void inverse(long[] out, long[] z) {
long[] z2 = new long[Field25519.LIMB_CNT];
long[] z9 = new long[Field25519.LIMB_CNT];
long[] z11 = new long[Field25519.LIMB_CNT];
long[] z2To5Minus1 = new long[Field25519.LIMB_CNT];
long[] z2To10Minus1 = new long[Field25519.LIMB_CNT];
long[] z2To20Minus1 = new long[Field25519.LIMB_CNT];
long[] z2To50Minus1 = new long[Field25519.LIMB_CNT];
long[] z2To100Minus1 = new long[Field25519.LIMB_CNT];
long[] t0 = new long[Field25519.LIMB_CNT];
long[] t1 = new long[Field25519.LIMB_CNT];
square(z2, z); // 2
square(t1, z2); // 4
square(t0, t1); // 8
mult(z9, t0, z); // 9
mult(z11, z9, z2); // 11
square(t0, z11); // 22
mult(z2To5Minus1, t0, z9); // 2^5 - 2^0 = 31
square(t0, z2To5Minus1); // 2^6 - 2^1
square(t1, t0); // 2^7 - 2^2
square(t0, t1); // 2^8 - 2^3
square(t1, t0); // 2^9 - 2^4
square(t0, t1); // 2^10 - 2^5
mult(z2To10Minus1, t0, z2To5Minus1); // 2^10 - 2^0
square(t0, z2To10Minus1); // 2^11 - 2^1
square(t1, t0); // 2^12 - 2^2
for (int i = 2; i < 10; i += 2) { // 2^20 - 2^10
square(t0, t1);
square(t1, t0);
}
mult(z2To20Minus1, t1, z2To10Minus1); // 2^20 - 2^0
square(t0, z2To20Minus1); // 2^21 - 2^1
square(t1, t0); // 2^22 - 2^2
for (int i = 2; i < 20; i += 2) { // 2^40 - 2^20
square(t0, t1);
square(t1, t0);
}
mult(t0, t1, z2To20Minus1); // 2^40 - 2^0
square(t1, t0); // 2^41 - 2^1
square(t0, t1); // 2^42 - 2^2
for (int i = 2; i < 10; i += 2) { // 2^50 - 2^10
square(t1, t0);
square(t0, t1);
}
mult(z2To50Minus1, t0, z2To10Minus1); // 2^50 - 2^0
square(t0, z2To50Minus1); // 2^51 - 2^1
square(t1, t0); // 2^52 - 2^2
for (int i = 2; i < 50; i += 2) { // 2^100 - 2^50
square(t0, t1);
square(t1, t0);
}
mult(z2To100Minus1, t1, z2To50Minus1); // 2^100 - 2^0
square(t1, z2To100Minus1); // 2^101 - 2^1
square(t0, t1); // 2^102 - 2^2
for (int i = 2; i < 100; i += 2) { // 2^200 - 2^100
square(t1, t0);
square(t0, t1);
}
mult(t1, t0, z2To100Minus1); // 2^200 - 2^0
square(t0, t1); // 2^201 - 2^1
square(t1, t0); // 2^202 - 2^2
for (int i = 2; i < 50; i += 2) { // 2^250 - 2^50
square(t0, t1);
square(t1, t0);
}
mult(t0, t1, z2To50Minus1); // 2^250 - 2^0
square(t1, t0); // 2^251 - 2^1
square(t0, t1); // 2^252 - 2^2
square(t1, t0); // 2^253 - 2^3
square(t0, t1); // 2^254 - 2^4
square(t1, t0); // 2^255 - 2^5
mult(out, t1, z11); // 2^255 - 21
}
/** Returns 0xffffffff iff a == b and zero otherwise. */
private static int eq(int a, int b) {
a = ~(a ^ b);
a &= a << 16;
a &= a << 8;
a &= a << 4;
a &= a << 2;
a &= a << 1;
return a >> 31;
}
/** returns 0xffffffff if a >= b and zero otherwise, where a and b are both non-negative. */
private static int gte(int a, int b) {
a -= b;
// a >= 0 iff a >= b.
return ~(a >> 31);
}
private Field25519() {}
}