com.google.crypto.tink.subtle.AesSiv Maven / Gradle / Ivy
Show all versions of tink-android Show documentation
// Copyright 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
////////////////////////////////////////////////////////////////////////////////
package com.google.crypto.tink.subtle;
import static com.google.crypto.tink.internal.Util.isPrefix;
import com.google.crypto.tink.AccessesPartialKey;
import com.google.crypto.tink.DeterministicAead;
import com.google.crypto.tink.InsecureSecretKeyAccess;
import com.google.crypto.tink.config.internal.TinkFipsUtil;
import com.google.crypto.tink.daead.AesSivKey;
import com.google.crypto.tink.mac.internal.AesUtil;
import com.google.crypto.tink.util.Bytes;
import java.security.GeneralSecurityException;
import java.security.InvalidKeyException;
import java.util.Arrays;
import java.util.Collection;
import javax.crypto.AEADBadTagException;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
/**
* AES-SIV, as described in RFC 5297.
*
* Each AES-SIV key consists of two sub keys. To meet the security requirements of {@link
* DeterministicAead}, each sub key must be 256 bits. The total size of ASE-SIV keys is then 512
* bits.
*
* @since 1.1.0
*/
public final class AesSiv implements DeterministicAead {
public static final TinkFipsUtil.AlgorithmFipsCompatibility FIPS =
TinkFipsUtil.AlgorithmFipsCompatibility.ALGORITHM_NOT_FIPS;
// Do not support 128-bit keys because it might not provide 128-bit security level in
// multi-user setting.
private static final Collection KEY_SIZES = Arrays.asList(64);
private static final byte[] BLOCK_ZERO = new byte[AesUtil.BLOCK_SIZE];
private static final byte[] BLOCK_ONE = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, (byte) 0x01
};
/** The internal AesCmac object for S2V */
private final PrfAesCmac cmacForS2V;
/** The key used for the CTR encryption */
private final byte[] aesCtrKey;
private final byte[] outputPrefix;
@AccessesPartialKey
public static DeterministicAead create(AesSivKey key) throws GeneralSecurityException {
return new AesSiv(
key.getKeyBytes().toByteArray(InsecureSecretKeyAccess.get()), key.getOutputPrefix());
}
private static final ThreadLocal localAesCtrCipher =
new ThreadLocal() {
@Override
protected Cipher initialValue() {
try {
return EngineFactory.CIPHER.getInstance("AES/CTR/NoPadding");
} catch (GeneralSecurityException ex) {
throw new IllegalStateException(ex);
}
}
};
private AesSiv(final byte[] key, Bytes outputPrefix) throws GeneralSecurityException {
if (!FIPS.isCompatible()) {
throw new GeneralSecurityException(
"Can not use AES-SIV in FIPS-mode.");
}
if (!KEY_SIZES.contains(key.length)) {
throw new InvalidKeyException(
"invalid key size: " + key.length + " bytes; key must have 64 bytes");
}
byte[] k1 = Arrays.copyOfRange(key, 0, key.length / 2);
this.aesCtrKey = Arrays.copyOfRange(key, key.length / 2, key.length);
this.cmacForS2V = new PrfAesCmac(k1);
this.outputPrefix = outputPrefix.toByteArray();
}
public AesSiv(final byte[] key) throws GeneralSecurityException {
this(key, Bytes.copyFrom(new byte[] {}));
}
/**
* s2v per https://tools.ietf.org/html/rfc5297
*
* @param s
* @return s2v(si)
* @throws GeneralSecurityException
*/
private byte[] s2v(final byte[]... s) throws GeneralSecurityException {
if (s.length == 0) {
// Should never happen with AES-SIV, but we include this for completeness.
return cmacForS2V.compute(BLOCK_ONE, AesUtil.BLOCK_SIZE);
}
byte[] result = cmacForS2V.compute(BLOCK_ZERO, AesUtil.BLOCK_SIZE);
for (int i = 0; i < s.length - 1; i++) {
final byte[] currBlock;
if (s[i] == null) {
currBlock = new byte[0];
} else {
currBlock = s[i];
}
result =
com.google.crypto.tink.subtle.Bytes.xor(
AesUtil.dbl(result), cmacForS2V.compute(currBlock, AesUtil.BLOCK_SIZE));
}
byte[] lastBlock = s[s.length - 1];
if (lastBlock.length >= 16) {
result = com.google.crypto.tink.subtle.Bytes.xorEnd(lastBlock, result);
} else {
result =
com.google.crypto.tink.subtle.Bytes.xor(AesUtil.cmacPad(lastBlock), AesUtil.dbl(result));
}
return cmacForS2V.compute(result, AesUtil.BLOCK_SIZE);
}
@Override
public byte[] encryptDeterministically(final byte[] plaintext, final byte[] associatedData)
throws GeneralSecurityException {
if (plaintext.length > Integer.MAX_VALUE - outputPrefix.length - AesUtil.BLOCK_SIZE) {
throw new GeneralSecurityException("plaintext too long");
}
Cipher aesCtr = localAesCtrCipher.get();
byte[] computedIv = s2v(associatedData, plaintext);
byte[] ivForJavaCrypto = computedIv.clone();
ivForJavaCrypto[8] &= (byte) 0x7F; // 63th bit from the right
ivForJavaCrypto[12] &= (byte) 0x7F; // 31st bit from the right
aesCtr.init(
Cipher.ENCRYPT_MODE,
new SecretKeySpec(this.aesCtrKey, "AES"),
new IvParameterSpec(ivForJavaCrypto));
int outputSize = outputPrefix.length + computedIv.length + plaintext.length;
byte[] output = Arrays.copyOf(outputPrefix, outputSize);
System.arraycopy(
/* src= */ computedIv,
/* srcPos= */ 0,
/* dest= */ output,
/* destPos= */ outputPrefix.length,
/* length= */ computedIv.length);
int written =
aesCtr.doFinal(
plaintext, 0, plaintext.length, output, outputPrefix.length + computedIv.length);
if (written != plaintext.length) {
throw new GeneralSecurityException("not enough data written");
}
return output;
}
@Override
public byte[] decryptDeterministically(final byte[] ciphertext, final byte[] associatedData)
throws GeneralSecurityException {
if (ciphertext.length < AesUtil.BLOCK_SIZE + outputPrefix.length) {
throw new GeneralSecurityException("Ciphertext too short.");
}
if (!isPrefix(outputPrefix, ciphertext)) {
throw new GeneralSecurityException("Decryption failed (OutputPrefix mismatch).");
}
Cipher aesCtr = localAesCtrCipher.get();
byte[] expectedIv =
Arrays.copyOfRange(
ciphertext, outputPrefix.length, AesUtil.BLOCK_SIZE + outputPrefix.length);
byte[] ivForJavaCrypto = expectedIv.clone();
ivForJavaCrypto[8] &= (byte) 0x7F; // 63th bit from the right
ivForJavaCrypto[12] &= (byte) 0x7F; // 31st bit from the right
aesCtr.init(
Cipher.DECRYPT_MODE,
new SecretKeySpec(this.aesCtrKey, "AES"),
new IvParameterSpec(ivForJavaCrypto));
int offset = AesUtil.BLOCK_SIZE + outputPrefix.length;
int ctrCiphertextLen = ciphertext.length - offset;
byte[] decryptedPt = aesCtr.doFinal(ciphertext, offset, ctrCiphertextLen);
if (ctrCiphertextLen == 0 && decryptedPt == null && SubtleUtil.isAndroid()) {
// On Android KitKat (19) and Lollipop (21), Cipher.doFinal returns a null pointer when the
// ciphertext is empty, instead of an empty plaintext. Here we attempt to fix this bug. This
// is safe because if the plaintext is not empty, the next integrity check would reject it.
decryptedPt = new byte[0];
}
byte[] computedIv = s2v(associatedData, decryptedPt);
if (com.google.crypto.tink.subtle.Bytes.equal(expectedIv, computedIv)) {
return decryptedPt;
} else {
throw new AEADBadTagException("Integrity check failed.");
}
}
}