com.google.crypto.tink.subtle.RsaSsaPssSignJce Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of tink-android Show documentation
Show all versions of tink-android Show documentation
Tink is a small cryptographic library that provides a safe, simple, agile and fast way to accomplish some common cryptographic tasks.
The newest version!
// Copyright 2018 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
////////////////////////////////////////////////////////////////////////////////
package com.google.crypto.tink.subtle;
import com.google.crypto.tink.AccessesPartialKey;
import com.google.crypto.tink.InsecureSecretKeyAccess;
import com.google.crypto.tink.PublicKeySign;
import com.google.crypto.tink.config.internal.TinkFipsUtil;
import com.google.crypto.tink.signature.RsaSsaPssParameters;
import com.google.crypto.tink.signature.RsaSsaPssPrivateKey;
import com.google.crypto.tink.signature.RsaSsaPssPublicKey;
import com.google.crypto.tink.signature.internal.RsaSsaPssSignConscrypt;
import com.google.crypto.tink.subtle.Enums.HashType;
import com.google.crypto.tink.util.SecretBigInteger;
import com.google.errorprone.annotations.Immutable;
import java.math.BigInteger;
import java.security.GeneralSecurityException;
import java.security.KeyFactory;
import java.security.MessageDigest;
import java.security.NoSuchProviderException;
import java.security.interfaces.RSAPrivateCrtKey;
import java.security.interfaces.RSAPublicKey;
import java.security.spec.RSAPrivateCrtKeySpec;
import java.security.spec.RSAPublicKeySpec;
import javax.crypto.Cipher;
/**
* RsaSsaPss (i.e. RSA Signature Schemes with Appendix (SSA) with PSS encoding) signing with JCE.
*/
@Immutable
public final class RsaSsaPssSignJce implements PublicKeySign {
public static final TinkFipsUtil.AlgorithmFipsCompatibility FIPS =
TinkFipsUtil.AlgorithmFipsCompatibility.ALGORITHM_REQUIRES_BORINGCRYPTO;
private static final byte[] EMPTY = new byte[0];
private static final byte[] LEGACY_MESSAGE_SUFFIX = new byte[] {0};
/**
* InternalImpl is an implementation of the RSA SSA PSS signature signing that only uses the JCE
* for raw RSA operations. The rest of the algorithm is implemented in Java. This allows it to be
* used on most Java platforms.
*/
private static final class InternalImpl implements PublicKeySign {
@SuppressWarnings("Immutable")
private final RSAPrivateCrtKey privateKey;
@SuppressWarnings("Immutable")
private final RSAPublicKey publicKey;
private final HashType sigHash;
private final HashType mgf1Hash;
private final int saltLength;
@SuppressWarnings("Immutable")
private final byte[] outputPrefix;
@SuppressWarnings("Immutable")
private final byte[] messageSuffix;
private static final String RAW_RSA_ALGORITHM = "RSA/ECB/NOPADDING";
private InternalImpl(
final RSAPrivateCrtKey priv,
HashType sigHash,
HashType mgf1Hash,
int saltLength,
byte[] outputPrefix,
byte[] messageSuffix)
throws GeneralSecurityException {
if (TinkFipsUtil.useOnlyFips()) {
throw new GeneralSecurityException(
"Can not use RSA PSS in FIPS-mode, as BoringCrypto module is not available.");
}
Validators.validateSignatureHash(sigHash);
if (!sigHash.equals(mgf1Hash)) {
throw new GeneralSecurityException("sigHash and mgf1Hash must be the same");
}
Validators.validateRsaModulusSize(priv.getModulus().bitLength());
Validators.validateRsaPublicExponent(priv.getPublicExponent());
this.privateKey = priv;
KeyFactory kf = EngineFactory.KEY_FACTORY.getInstance("RSA");
this.publicKey =
(RSAPublicKey)
kf.generatePublic(new RSAPublicKeySpec(priv.getModulus(), priv.getPublicExponent()));
this.sigHash = sigHash;
this.mgf1Hash = mgf1Hash;
this.saltLength = saltLength;
this.outputPrefix = outputPrefix;
this.messageSuffix = messageSuffix;
}
private byte[] noPrefixSign(final byte[] data)
throws GeneralSecurityException { // https://tools.ietf.org/html/rfc8017#section-8.1.1.
int modBits = publicKey.getModulus().bitLength();
byte[] em = emsaPssEncode(data, modBits - 1);
return rsasp1(em);
}
@Override
public byte[] sign(final byte[] data) throws GeneralSecurityException {
byte[] signature = noPrefixSign(data);
if (outputPrefix.length == 0) {
return signature;
} else {
return Bytes.concat(outputPrefix, signature);
}
}
private byte[] rsasp1(byte[] m) throws GeneralSecurityException {
Cipher decryptCipher = EngineFactory.CIPHER.getInstance(RAW_RSA_ALGORITHM);
decryptCipher.init(Cipher.DECRYPT_MODE, this.privateKey);
byte[] c = decryptCipher.doFinal(m);
// To make sure the private key operation is correct, we check the result with public key
// operation.
Cipher encryptCipher = EngineFactory.CIPHER.getInstance(RAW_RSA_ALGORITHM);
encryptCipher.init(Cipher.ENCRYPT_MODE, this.publicKey);
byte[] m0 = encryptCipher.doFinal(c);
if (!new BigInteger(1, m).equals(new BigInteger(1, m0))) {
throw new IllegalStateException("Security bug: RSA signature computation error");
}
return c;
}
// https://tools.ietf.org/html/rfc8017#section-9.1.1.
private byte[] emsaPssEncode(byte[] message, int emBits) throws GeneralSecurityException {
// Step 1. Length checking.
// This step is unnecessary because Java's byte[] only supports up to 2^31 -1 bytes while the
// input limitation for the hash function is far larger (2^61 - 1 for SHA-1).
// Step 2. Compute hash.
Validators.validateSignatureHash(sigHash);
MessageDigest digest =
EngineFactory.MESSAGE_DIGEST.getInstance(SubtleUtil.toDigestAlgo(this.sigHash));
// M = concat(message, messageSuffix)
digest.update(message);
if (messageSuffix.length != 0) {
digest.update(messageSuffix);
}
byte[] mHash = digest.digest();
// Step 3. Check emLen.
int hLen = digest.getDigestLength();
int emLen = (emBits - 1) / 8 + 1;
if (emLen < hLen + this.saltLength + 2) {
throw new GeneralSecurityException("encoding error");
}
// Step 4. Generate random salt.
byte[] salt = Random.randBytes(this.saltLength);
// Step 5. Compute M'.
byte[] mPrime = new byte[8 + hLen + this.saltLength];
System.arraycopy(mHash, 0, mPrime, 8, hLen);
System.arraycopy(salt, 0, mPrime, 8 + hLen, salt.length);
// Step 6. Compute H.
byte[] h = digest.digest(mPrime);
// Step 7, 8. Generate DB.
byte[] db = new byte[emLen - hLen - 1];
db[emLen - this.saltLength - hLen - 2] = (byte) 0x01;
System.arraycopy(salt, 0, db, emLen - this.saltLength - hLen - 1, salt.length);
// Step 9. Compute dbMask.
byte[] dbMask = SubtleUtil.mgf1(h, emLen - hLen - 1, this.mgf1Hash);
// Step 10. Compute maskedDb.
byte[] maskedDb = new byte[emLen - hLen - 1];
for (int i = 0; i < maskedDb.length; i++) {
maskedDb[i] = (byte) (db[i] ^ dbMask[i]);
}
// Step 11. Set the leftmost 8 * emLen - emBits bits of the leftmost octet in maskedDB to
// zero.
for (int i = 0; i < (long) emLen * 8 - emBits; i++) {
int bytePos = i / 8;
int bitPos = 7 - i % 8;
maskedDb[bytePos] = (byte) (maskedDb[bytePos] & ~(1 << bitPos));
}
// Step 12. Generate EM.
byte[] em = new byte[maskedDb.length + hLen + 1];
System.arraycopy(maskedDb, 0, em, 0, maskedDb.length);
System.arraycopy(h, 0, em, maskedDb.length, h.length);
em[maskedDb.length + hLen] = (byte) 0xbc;
return em;
}
}
@SuppressWarnings("Immutable")
private final PublicKeySign sign;
@AccessesPartialKey
public static PublicKeySign create(RsaSsaPssPrivateKey key) throws GeneralSecurityException {
try {
return RsaSsaPssSignConscrypt.create(key);
} catch (NoSuchProviderException e) {
// Ignore, and fall back to the Java implementation.
}
KeyFactory kf = EngineFactory.KEY_FACTORY.getInstance("RSA");
RSAPrivateCrtKey privateKey =
(RSAPrivateCrtKey)
kf.generatePrivate(
new RSAPrivateCrtKeySpec(
key.getPublicKey().getModulus(),
key.getParameters().getPublicExponent(),
key.getPrivateExponent().getBigInteger(InsecureSecretKeyAccess.get()),
key.getPrimeP().getBigInteger(InsecureSecretKeyAccess.get()),
key.getPrimeQ().getBigInteger(InsecureSecretKeyAccess.get()),
key.getPrimeExponentP().getBigInteger(InsecureSecretKeyAccess.get()),
key.getPrimeExponentQ().getBigInteger(InsecureSecretKeyAccess.get()),
key.getCrtCoefficient().getBigInteger(InsecureSecretKeyAccess.get())));
RsaSsaPssParameters params = key.getParameters();
return new InternalImpl(
privateKey,
RsaSsaPssVerifyJce.HASH_TYPE_CONVERTER.toProtoEnum(params.getSigHashType()),
RsaSsaPssVerifyJce.HASH_TYPE_CONVERTER.toProtoEnum(params.getMgf1HashType()),
params.getSaltLengthBytes(),
key.getOutputPrefix().toByteArray(),
key.getParameters().getVariant().equals(RsaSsaPssParameters.Variant.LEGACY)
? LEGACY_MESSAGE_SUFFIX
: EMPTY);
}
private static RsaSsaPssParameters.HashType getHashType(HashType hash)
throws GeneralSecurityException {
switch (hash) {
case SHA256:
return RsaSsaPssParameters.HashType.SHA256;
case SHA384:
return RsaSsaPssParameters.HashType.SHA384;
case SHA512:
return RsaSsaPssParameters.HashType.SHA512;
default:
throw new GeneralSecurityException("Unsupported hash: " + hash);
}
}
@AccessesPartialKey
private RsaSsaPssPrivateKey convertKey(
final RSAPrivateCrtKey key, HashType sigHash, HashType mgf1Hash, int saltLength)
throws GeneralSecurityException {
RsaSsaPssParameters parameters =
RsaSsaPssParameters.builder()
.setModulusSizeBits(key.getModulus().bitLength())
.setPublicExponent(key.getPublicExponent())
.setSigHashType(getHashType(sigHash))
.setMgf1HashType(getHashType(mgf1Hash))
.setSaltLengthBytes(saltLength)
.setVariant(RsaSsaPssParameters.Variant.NO_PREFIX)
.build();
return RsaSsaPssPrivateKey.builder()
.setPublicKey(
RsaSsaPssPublicKey.builder()
.setParameters(parameters)
.setModulus(key.getModulus())
.build())
.setPrimes(
SecretBigInteger.fromBigInteger(key.getPrimeP(), InsecureSecretKeyAccess.get()),
SecretBigInteger.fromBigInteger(key.getPrimeQ(), InsecureSecretKeyAccess.get()))
.setPrivateExponent(
SecretBigInteger.fromBigInteger(
key.getPrivateExponent(), InsecureSecretKeyAccess.get()))
.setPrimeExponents(
SecretBigInteger.fromBigInteger(key.getPrimeExponentP(), InsecureSecretKeyAccess.get()),
SecretBigInteger.fromBigInteger(key.getPrimeExponentQ(), InsecureSecretKeyAccess.get()))
.setCrtCoefficient(
SecretBigInteger.fromBigInteger(key.getCrtCoefficient(), InsecureSecretKeyAccess.get()))
.build();
}
public RsaSsaPssSignJce(
final RSAPrivateCrtKey priv, HashType sigHash, HashType mgf1Hash, int saltLength)
throws GeneralSecurityException {
this.sign = create(convertKey(priv, sigHash, mgf1Hash, saltLength));
}
@Override
public byte[] sign(final byte[] data) throws GeneralSecurityException {
return sign.sign(data);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy