All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.crypto.tink.subtle.EllipticCurves Maven / Gradle / Ivy

Go to download

Tink is a small cryptographic library that provides a safe, simple, agile and fast way to accomplish some common cryptographic tasks.

There is a newer version: 1.16.0
Show newest version
// Copyright 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
////////////////////////////////////////////////////////////////////////////////

package com.google.crypto.tink.subtle;

import java.math.BigInteger;
import java.security.GeneralSecurityException;
import java.security.InvalidAlgorithmParameterException;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.NoSuchAlgorithmException;
import java.security.PublicKey;
import java.security.interfaces.ECPrivateKey;
import java.security.interfaces.ECPublicKey;
import java.security.spec.ECFieldFp;
import java.security.spec.ECParameterSpec;
import java.security.spec.ECPoint;
import java.security.spec.ECPrivateKeySpec;
import java.security.spec.ECPublicKeySpec;
import java.security.spec.EllipticCurve;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;
import java.util.Arrays;
import javax.crypto.KeyAgreement;

/**
 * Utility functions and enums for elliptic curve crypto, used in ECDSA and ECDH.
 *
 * @since 1.0.0
 */
public final class EllipticCurves {

  /** Point formats. */
  public enum PointFormatType {
    UNCOMPRESSED,
    COMPRESSED,
    // Like UNCOMPRESSED but without the \x04 prefix. Crunchy uses this format.
    // DO NOT USE unless you are a Crunchy user moving to Tink.
    DO_NOT_USE_CRUNCHY_UNCOMPRESSED,
  }

  /** Elliptic curve types. */
  public enum CurveType {
    NIST_P256,
    NIST_P384,
    NIST_P521,
  }

  /** Ecdsa signature encoding. */
  public enum EcdsaEncoding {
    IEEE_P1363,
    DER,
  }

  public static ECParameterSpec getNistP256Params() {
    return getNistCurveSpec(
        "115792089210356248762697446949407573530086143415290314195533631308867097853951",
        "115792089210356248762697446949407573529996955224135760342422259061068512044369",
        "5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b",
        "6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296",
        "4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5");
  }

  public static ECParameterSpec getNistP384Params() {
    return getNistCurveSpec(
        "3940200619639447921227904010014361380507973927046544666794829340"
            + "4245721771496870329047266088258938001861606973112319",
        "3940200619639447921227904010014361380507973927046544666794690527"
            + "9627659399113263569398956308152294913554433653942643",
        "b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875a"
            + "c656398d8a2ed19d2a85c8edd3ec2aef",
        "aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a38"
            + "5502f25dbf55296c3a545e3872760ab7",
        "3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c0"
            + "0a60b1ce1d7e819d7a431d7c90ea0e5f");
  }

  public static ECParameterSpec getNistP521Params() {
    return getNistCurveSpec(
        "6864797660130609714981900799081393217269435300143305409394463459"
            + "18554318339765605212255964066145455497729631139148085803712198"
            + "7999716643812574028291115057151",
        "6864797660130609714981900799081393217269435300143305409394463459"
            + "18554318339765539424505774633321719753296399637136332111386476"
            + "8612440380340372808892707005449",
        "051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef10"
            + "9e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00",
        "c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3d"
            + "baa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66",
        "11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e6"
            + "62c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650");
  }

  /**
   * Checks that a point is on a given elliptic curve.
   *
   * 

Warning: Please use {@link #validatePublicKey} if you want to validate a public key * to avoid invalid curve attacks or small subgroup attacks in ECDH. * *

This method implements the partial public key validation routine from Section 5.6.2.6 of NIST SP * 800-56A. A partial public key validation is sufficient for curves with cofactor 1. See * Section B.3 of http://www.nsa.gov/ia/_files/SuiteB_Implementer_G-113808.pdf. * *

The point validations above are taken from recommendations for ECDH, because parameter * checks in ECDH are much more important than for the case of ECDSA. Performing this test for * ECDSA keys is mainly a sanity check. * * @param point the point that needs verification * @param ec the elliptic curve. This must be a curve over a prime order field. * @throws GeneralSecurityException if the field is binary or if the point is not on the curve. */ static void checkPointOnCurve(ECPoint point, EllipticCurve ec) throws GeneralSecurityException { BigInteger p = getModulus(ec); BigInteger x = point.getAffineX(); BigInteger y = point.getAffineY(); if (x == null || y == null) { throw new GeneralSecurityException("point is at infinity"); } // Check 0 <= x < p and 0 <= y < p. if (x.signum() == -1 || x.compareTo(p) >= 0) { throw new GeneralSecurityException("x is out of range"); } if (y.signum() == -1 || y.compareTo(p) >= 0) { throw new GeneralSecurityException("y is out of range"); } // Check y^2 == x^3 + a x + b (mod p) BigInteger lhs = y.multiply(y).mod(p); BigInteger rhs = x.multiply(x).add(ec.getA()).multiply(x).add(ec.getB()).mod(p); if (!lhs.equals(rhs)) { throw new GeneralSecurityException("Point is not on curve"); } } /** * Checks that the point of the public key is on the curve of the public key. * *

Warning

* *

Please use {@link #validatePublicKey} if you want to validate a public key to avoid invalid * curve attacks or small subgroup attacks in ECDH. * *

This is a sanity check, because the curve of the public key might be under control of the * adversary. * * @param key must be a key defined over a curve using a prime order field. * @throws GeneralSecurityException if the key is not valid. */ static void checkPublicKey(ECPublicKey key) throws GeneralSecurityException { checkPointOnCurve(key.getW(), key.getParams().getCurve()); } /** Returns whether {@code spec} is a {@link ECParameterSpec} of one of the NIST curves. */ public static boolean isNistEcParameterSpec(ECParameterSpec spec) { return isSameEcParameterSpec(spec, getNistP256Params()) || isSameEcParameterSpec(spec, getNistP384Params()) || isSameEcParameterSpec(spec, getNistP521Params()); } /** Returns whether {@code one} is the same {@link ECParameterSpec} as {@code two}. */ public static boolean isSameEcParameterSpec(ECParameterSpec one, ECParameterSpec two) { return one.getCurve().equals(two.getCurve()) && one.getGenerator().equals(two.getGenerator()) && one.getOrder().equals(two.getOrder()) && one.getCofactor() == two.getCofactor(); } /** * Checks that the public key's params is the same as the private key's params, and the public key * is a valid point on the private key's curve. * * @since 1.1.0 */ public static void validatePublicKey(ECPublicKey publicKey, ECPrivateKey privateKey) throws GeneralSecurityException { validatePublicKeySpec(publicKey, privateKey); checkPointOnCurve(publicKey.getW(), privateKey.getParams().getCurve()); } /** Checks that the public key's params spec is the same as the private key's params spec. */ static void validatePublicKeySpec(ECPublicKey publicKey, ECPrivateKey privateKey) throws GeneralSecurityException { try { ECParameterSpec publicKeySpec = publicKey.getParams(); ECParameterSpec privateKeySpec = privateKey.getParams(); if (!isSameEcParameterSpec(publicKeySpec, privateKeySpec)) { throw new GeneralSecurityException("invalid public key spec"); } } catch (IllegalArgumentException | NullPointerException ex) { // The Java security providers on Android K and Android L might throw these unchecked // exceptions, converting them to a checked one to not crash the JVM. throw new GeneralSecurityException(ex.toString()); } } /** * Returns the modulus of the field used by the curve specified in ecParams. * * @param curve must be a prime order elliptic curve * @return the order of the finite field over which curve is defined. */ public static BigInteger getModulus(EllipticCurve curve) throws GeneralSecurityException { java.security.spec.ECField field = curve.getField(); if (field instanceof java.security.spec.ECFieldFp) { return ((java.security.spec.ECFieldFp) field).getP(); } else { throw new GeneralSecurityException("Only curves over prime order fields are supported"); } } /** * Returns the size of an element of the field over which the curve is defined. * * @param curve must be a prime order elliptic curve * @return the size of an element in bits */ static int fieldSizeInBits(EllipticCurve curve) throws GeneralSecurityException { return getModulus(curve).subtract(BigInteger.ONE).bitLength(); } /** * Returns the size of an element of the field over which the curve is defined. * * @param curve must be a prime order elliptic curve * @return the size of an element in bytes. */ public static int fieldSizeInBytes(EllipticCurve curve) throws GeneralSecurityException { return (fieldSizeInBits(curve) + 7) / 8; } private static ECParameterSpec getNistCurveSpec( String decimalP, String decimalN, String hexB, String hexGX, String hexGY) { final BigInteger p = new BigInteger(decimalP); final BigInteger n = new BigInteger(decimalN); final BigInteger three = new BigInteger("3"); final BigInteger a = p.subtract(three); final BigInteger b = new BigInteger(hexB, 16); final BigInteger gx = new BigInteger(hexGX, 16); final BigInteger gy = new BigInteger(hexGY, 16); final int h = 1; ECFieldFp fp = new ECFieldFp(p); java.security.spec.EllipticCurve curveSpec = new java.security.spec.EllipticCurve(fp, a, b); ECPoint g = new ECPoint(gx, gy); ECParameterSpec ecSpec = new ECParameterSpec(curveSpec, g, n, h); return ecSpec; } /** * Computes a square root modulo an odd prime. Timing and exceptions can leak information about * the inputs. Therefore this method must only be used to decompress public keys. * * @param x the square * @param p the prime modulus (the behaviour of the method is undefined if p is not prime). * @return a value s such that s^2 mod p == x mod p * @throws GeneralSecurityException if the square root could not be found. */ protected static BigInteger modSqrt(BigInteger x, BigInteger p) throws GeneralSecurityException { if (p.signum() != 1) { throw new InvalidAlgorithmParameterException("p must be positive"); } x = x.mod(p); BigInteger squareRoot = null; // Special case for x == 0. // This check is necessary for Cipolla's algorithm. if (x.equals(BigInteger.ZERO)) { return BigInteger.ZERO; } if (p.testBit(0) && p.testBit(1)) { // Case p % 4 == 3 // q = (p + 1) / 4 BigInteger q = p.add(BigInteger.ONE).shiftRight(2); squareRoot = x.modPow(q, p); } else if (p.testBit(0) && !p.testBit(1)) { // Case p % 4 == 1 // For this case we use Cipolla's algorithm. // This alogorithm is preferrable to Tonelli-Shanks for primes p where p-1 is divisible by // a large power of 2, which is a frequent choice since it simplifies modular reduction. BigInteger a = BigInteger.ONE; BigInteger d = null; BigInteger q1 = p.subtract(BigInteger.ONE).shiftRight(1); int tries = 0; while (true) { d = a.multiply(a).subtract(x).mod(p); // Special case d==0. We need d!=0 below. if (d.equals(BigInteger.ZERO)) { return a; } // Computes the Legendre symbol. Using the Jacobi symbol would be a faster. BigInteger t = d.modPow(q1, p); if (t.add(BigInteger.ONE).equals(p)) { // d is a quadratic non-residue. break; } else if (!t.equals(BigInteger.ONE)) { // p does not divide d. Hence, t != 1 implies that p is not a prime. throw new InvalidAlgorithmParameterException("p is not prime"); } else { a = a.add(BigInteger.ONE); } tries++; // If 128 tries were not enough to find a quadratic non-residue, then it is likely that // p is not prime. To avoid an infinite loop in this case we perform a primality test. // If p is prime then this test will be done with a negligible probability of 2^{-128}. if (tries == 128) { if (!p.isProbablePrime(80)) { throw new InvalidAlgorithmParameterException("p is not prime"); } } } // Since d = a^2 - x is a quadratic non-residue modulo p, we have // a - sqrt(d) == (a + sqrt(d))^p (mod p), // and hence // x == (a + sqrt(d))(a - sqrt(d)) == (a + sqrt(d))^(p+1) (mod p). // Thus if x is square then (a + sqrt(d))^((p+1)/2) (mod p) is a square root of x. BigInteger q = p.add(BigInteger.ONE).shiftRight(1); BigInteger u = a; BigInteger v = BigInteger.ONE; for (int bit = q.bitLength() - 2; bit >= 0; bit--) { // Square u + v sqrt(d) and reduce mod p. BigInteger tmp = u.multiply(v); u = u.multiply(u).add(v.multiply(v).mod(p).multiply(d)).mod(p); v = tmp.add(tmp).mod(p); if (q.testBit(bit)) { // Multiply u + v sqrt(d) by a + sqrt(d) and reduce mod p. tmp = u.multiply(a).add(v.multiply(d)).mod(p); v = a.multiply(v).add(u).mod(p); u = tmp; } } squareRoot = u; } // The methods used to compute the square root only guarantees a correct result if the // preconditions (i.e. p prime and x is a square) are satisfied. Otherwise the value is // undefined. Hence it is important to verify that squareRoot is indeed a square root. if (squareRoot != null && squareRoot.multiply(squareRoot).mod(p).compareTo(x) != 0) { throw new GeneralSecurityException("Could not find a modular square root"); } return squareRoot; } /** * Computes the y coordinate of a point on an elliptic curve. This method can be used to * decompress elliptic curve points. * * @param x the x-coordinate of the point * @param lsb the least significant bit of the y-coordinate of the point. * @param curve this must be an elliptic curve over a prime field using Weierstrass * representation. * @return the y coordinate. * @throws GeneralSecurityException if there is no point with coordinate x on the curve, or if * curve is not supported. */ public static BigInteger getY(BigInteger x, boolean lsb, EllipticCurve curve) throws GeneralSecurityException { BigInteger p = getModulus(curve); BigInteger a = curve.getA(); BigInteger b = curve.getB(); BigInteger rhs = x.multiply(x).add(a).multiply(x).add(b).mod(p); BigInteger y = modSqrt(rhs, p); if (lsb != y.testBit(0)) { y = p.subtract(y).mod(p); } return y; } /** * Transforms a big integer to its minimal signed form, i.e., no extra zero byte at the beginning * except single one when the highest bit is set. */ private static byte[] toMinimalSignedNumber(byte[] bs) { // Remove zero prefixes. int start = 0; while (start < bs.length && bs[start] == 0) { start++; } if (start == bs.length) { start = bs.length - 1; } int extraZero = 0; // If the 1st bit is not zero, add 1 zero byte. if ((bs[start] & 0x80) == 0x80) { // Add extra zero. extraZero = 1; } byte[] res = new byte[bs.length - start + extraZero]; System.arraycopy(bs, start, res, extraZero, bs.length - start); return res; } /** * Transforms ECDSA IEEE_P1363 signature encoding to DER encoding. * *

The IEEE_P1363 signature's format is r || s, where r and s are zero-padded and have the same * size in bytes as the order of the curve. For example, for NIST P-256 curve, r and s are * zero-padded to 32 bytes. * *

The DER signature is encoded using ASN.1 (https://tools.ietf.org/html/rfc5480#appendix-A): * ECDSA-Sig-Value :: = SEQUENCE { r INTEGER, s INTEGER }. In particular, the encoding is: 0x30 || * totalLength || 0x02 || r's length || r || 0x02 || s's length || s. * * @param ieee ECDSA's signature in IEEE_P1363 format. * @return ECDSA's signature in DER format. * @throws GeneralSecurityException if ieee's length is zero, greater than 132-byte (corresponding * to NIST P521) or not divisible by 2. */ public static byte[] ecdsaIeee2Der(byte[] ieee) throws GeneralSecurityException { if (ieee.length % 2 != 0 || ieee.length == 0 || ieee.length > 132) { throw new GeneralSecurityException("Invalid IEEE_P1363 encoding"); } byte[] r = toMinimalSignedNumber(Arrays.copyOf(ieee, ieee.length / 2)); byte[] s = toMinimalSignedNumber(Arrays.copyOfRange(ieee, ieee.length / 2, ieee.length)); int offset = 0; int length = 1 + 1 + r.length + 1 + 1 + s.length; byte[] der; if (length >= 128) { der = new byte[length + 3]; der[offset++] = (byte) 0x30; der[offset++] = (byte) (0x80 + 0x01); der[offset++] = (byte) length; } else { der = new byte[length + 2]; der[offset++] = (byte) 0x30; der[offset++] = (byte) length; } der[offset++] = (byte) 0x02; der[offset++] = (byte) r.length; System.arraycopy(r, 0, der, offset, r.length); offset += r.length; der[offset++] = (byte) 0x02; der[offset++] = (byte) s.length; System.arraycopy(s, 0, der, offset, s.length); return der; } /** * Transforms ECDSA DER signature encoding to IEEE_P1363 encoding. * *

The IEEE_P1363 signature's format is r || s, where r and s are zero-padded and have the same * size in bytes as the order of the curve. For example, for NIST P-256 curve, r and s are * zero-padded to 32 bytes. * *

The DER signature is encoded using ASN.1 (https://tools.ietf.org/html/rfc5480#appendix-A): * ECDSA-Sig-Value :: = SEQUENCE { r INTEGER, s INTEGER }. In particular, the encoding is: 0x30 || * totalLength || 0x02 || r's length || r || 0x02 || s's length || s. * * @param der ECDSA's signature in DER encoding. * @param ieeeLength length of ECDSA signature's in IEEE_P1363's format which equals to 2 * (size * of elliptic curve's field in bytes). * @return ECDSA's signature in IEEE_P1363 format. * @throws GeneralSecurityException if the signature is not valid DER encoding. */ public static byte[] ecdsaDer2Ieee(byte[] der, int ieeeLength) throws GeneralSecurityException { if (!isValidDerEncoding(der)) { throw new GeneralSecurityException("Invalid DER encoding"); } byte[] ieee = new byte[ieeeLength]; int length = der[1] & 0xff; int offset = 1 /* 0x30 */ + 1 /* totalLength */; if (length >= 128) { offset++; // Long form length } offset++; // 0x02 int rLength = der[offset++]; int extraZero = 0; if (der[offset] == 0) { extraZero = 1; } System.arraycopy( der, offset + extraZero, ieee, ieeeLength / 2 - rLength + extraZero, rLength - extraZero); offset += rLength /* r byte array */ + 1 /* 0x02 */; int sLength = der[offset++]; extraZero = 0; if (der[offset] == 0) { extraZero = 1; } System.arraycopy( der, offset + extraZero, ieee, ieeeLength - sLength + extraZero, sLength - extraZero); return ieee; } // Validates that the signature is in DER encoding, based on // https://github.com/bitcoin/bips/blob/master/bip-0066.mediawiki. public static boolean isValidDerEncoding(final byte[] sig) { // Format: 0x30 [total-length] 0x02 [R-length] [R] 0x02 [S-length] [S] // * total-length: 1-byte or 2-byte length descriptor of everything that follows. // * R-length: 1-byte length descriptor of the R value that follows. // * R: arbitrary-length big-endian encoded R value. It must use the shortest // possible encoding for a positive integers (which means no null bytes at // the start, except a single one when the next byte has its highest bit set). // * S-length: 1-byte length descriptor of the S value that follows. // * S: arbitrary-length big-endian encoded S value. The same rules apply. if (sig.length < 1 /* 0x30 */ + 1 /* total-length */ + 1 /* 0x02 */ + 1 /* R-length */ + 1 /* R */ + 1 /* 0x02 */ + 1 /* S-length */ + 1 /* S */) { // Signature is too short. return false; } // Checking bytes from left to right. // byte #1: a signature is of type 0x30 (compound). if (sig[0] != 0x30) { return false; } // byte #2 and maybe #3: the total length of the signature. int totalLen = sig[1] & 0xff; int totalLenLen = 1; // the length of the total length field, could be 2-byte. if (totalLen == 129) { // The signature is >= 128 bytes thus total length field is in long-form encoding and occupies // 2 bytes. totalLenLen = 2; // byte #3 is the total length. totalLen = sig[2] & 0xff; if (totalLen < 128) { // Length in long-form encoding must be >= 128. return false; } } else if (totalLen == 128 || totalLen > 129) { // Impossible values for the second byte. return false; } // Make sure the length covers the entire sig. if (totalLen != sig.length - 1 - totalLenLen) { return false; } // Start checking R. // Check whether the R element is an integer. if (sig[1 + totalLenLen] != 0x02) { return false; } // Extract the length of the R element. int rLen = sig[1 /* 0x30 */ + totalLenLen + 1 /* 0x02 */] & 0xff; // Make sure the length of the S element is still inside the signature. if (1 /* 0x30 */ + totalLenLen + 1 /* 0x02 */ + 1 /* rLen */ + rLen + 1 /* 0x02 */ >= sig.length) { return false; } // Zero-length integers are not allowed for R. if (rLen == 0) { return false; } // Negative numbers are not allowed for R. if ((sig[3 + totalLenLen] & 0xff) >= 128) { return false; } // Null bytes at the start of R are not allowed, unless R would // otherwise be interpreted as a negative number. if (rLen > 1 && (sig[3 + totalLenLen] == 0x00) && ((sig[4 + totalLenLen] & 0xff) < 128)) { return false; } // Start checking S. // Check whether the S element is an integer. if (sig[3 + totalLenLen + rLen] != 0x02) { return false; } // Extract the length of the S element. int sLen = sig[1 /* 0x30 */ + totalLenLen + 1 /* 0x02 */ + 1 /* rLen */ + rLen + 1 /* 0x02 */] & 0xff; // Verify that the length of the signature matches the sum of the length of the elements. if (1 /* 0x30 */ + totalLenLen + 1 /* 0x02 */ + 1 /* rLen */ + rLen + 1 /* 0x02 */ + 1 /* sLen */ + sLen != sig.length) { return false; } // Zero-length integers are not allowed for S. if (sLen == 0) { return false; } // Negative numbers are not allowed for S. if ((sig[5 + totalLenLen + rLen] & 0xff) >= 128) { return false; } // Null bytes at the start of S are not allowed, unless S would // otherwise be interpreted as a negative number. if (sLen > 1 && (sig[5 + totalLenLen + rLen] == 0x00) && ((sig[6 + totalLenLen + rLen] & 0xff) < 128)) { return false; } return true; } /** * Returns the encoding size of a point on an elliptic curve. * * @param curve the elliptic curve * @param format the format used to encode the point * @return the size of an encoded point in bytes * @throws GeneralSecurityException if the point format is unknown or if the elliptic curve is not * supported */ public static int encodingSizeInBytes(EllipticCurve curve, PointFormatType format) throws GeneralSecurityException { int coordinateSize = fieldSizeInBytes(curve); switch (format) { case UNCOMPRESSED: return 2 * coordinateSize + 1; case DO_NOT_USE_CRUNCHY_UNCOMPRESSED: return 2 * coordinateSize; case COMPRESSED: return coordinateSize + 1; } throw new GeneralSecurityException("unknown EC point format"); } /** * Decodes an encoded point on an elliptic curve. This method checks that the encoded point is on * the curve. * * @param curve the elliptic curve * @param format the format used to enocde the point * @param encoded the encoded point * @return the point * @throws GeneralSecurityException if the encoded point is invalid or if the curve or format are * not supported. * @deprecated use {#pointDecode} */ @Deprecated public static ECPoint ecPointDecode(EllipticCurve curve, PointFormatType format, byte[] encoded) throws GeneralSecurityException { return pointDecode(curve, format, encoded); } /** * Decodes an encoded point on an elliptic curve. This method checks that the encoded point is on * the curve. * * @param curve the elliptic curve * @param format the format used to enocde the point * @param encoded the encoded point * @return the point * @throws GeneralSecurityException if the encoded point is invalid or if the curve or format are * not supported. * @since 1.1.0 */ public static ECPoint pointDecode(CurveType curveType, PointFormatType format, byte[] encoded) throws GeneralSecurityException { return pointDecode(getCurveSpec(curveType).getCurve(), format, encoded); } /** * Decodes an encoded point on an elliptic curve. This method checks that the encoded point is on * the curve. * * @param curve the elliptic curve * @param format the format used to enocde the point * @param encoded the encoded point * @return the point * @throws GeneralSecurityException if the encoded point is invalid or if the curve or format are * not supported. * @since 1.1.0 */ public static ECPoint pointDecode(EllipticCurve curve, PointFormatType format, byte[] encoded) throws GeneralSecurityException { int coordinateSize = fieldSizeInBytes(curve); switch (format) { case UNCOMPRESSED: { if (encoded.length != 2 * coordinateSize + 1) { throw new GeneralSecurityException("invalid point size"); } if (encoded[0] != 4) { throw new GeneralSecurityException("invalid point format"); } BigInteger x = new BigInteger(1, Arrays.copyOfRange(encoded, 1, coordinateSize + 1)); BigInteger y = new BigInteger(1, Arrays.copyOfRange(encoded, coordinateSize + 1, encoded.length)); ECPoint point = new ECPoint(x, y); checkPointOnCurve(point, curve); return point; } case DO_NOT_USE_CRUNCHY_UNCOMPRESSED: { if (encoded.length != 2 * coordinateSize) { throw new GeneralSecurityException("invalid point size"); } BigInteger x = new BigInteger(1, Arrays.copyOfRange(encoded, 0, coordinateSize)); BigInteger y = new BigInteger(1, Arrays.copyOfRange(encoded, coordinateSize, encoded.length)); ECPoint point = new ECPoint(x, y); checkPointOnCurve(point, curve); return point; } case COMPRESSED: { BigInteger p = getModulus(curve); if (encoded.length != coordinateSize + 1) { throw new GeneralSecurityException("compressed point has wrong length"); } boolean lsb; if (encoded[0] == 2) { lsb = false; } else if (encoded[0] == 3) { lsb = true; } else { throw new GeneralSecurityException("invalid format"); } BigInteger x = new BigInteger(1, Arrays.copyOfRange(encoded, 1, encoded.length)); if (x.signum() == -1 || x.compareTo(p) >= 0) { throw new GeneralSecurityException("x is out of range"); } BigInteger y = getY(x, lsb, curve); return new ECPoint(x, y); } } throw new GeneralSecurityException("invalid format:" + format); } /** * Encodes a point on an elliptic curve. * * @param curve the elliptic curve * @param format the format for the encoding * @param point the point to encode * @return the encoded key exchange * @throws GeneralSecurityException if the point is not on the curve or if the format is not * supported. * @since 1.1.0 */ public static byte[] pointEncode(CurveType curveType, PointFormatType format, ECPoint point) throws GeneralSecurityException { return pointEncode(getCurveSpec(curveType).getCurve(), format, point); } /** * Encodes a point on an elliptic curve. * * @param curve the elliptic curve * @param format the format for the encoding * @param point the point to encode * @return the encoded key exchange * @throws GeneralSecurityException if the point is not on the curve or if the format is not * supported. * @since 1.1.0 */ public static byte[] pointEncode(EllipticCurve curve, PointFormatType format, ECPoint point) throws GeneralSecurityException { checkPointOnCurve(point, curve); int coordinateSize = fieldSizeInBytes(curve); switch (format) { case UNCOMPRESSED: { byte[] encoded = new byte[2 * coordinateSize + 1]; byte[] x = point.getAffineX().toByteArray(); byte[] y = point.getAffineY().toByteArray(); // Order of System.arraycopy is important because x,y can have leading 0's. System.arraycopy(y, 0, encoded, 1 + 2 * coordinateSize - y.length, y.length); System.arraycopy(x, 0, encoded, 1 + coordinateSize - x.length, x.length); encoded[0] = 4; return encoded; } case DO_NOT_USE_CRUNCHY_UNCOMPRESSED: { byte[] encoded = new byte[2 * coordinateSize]; byte[] x = point.getAffineX().toByteArray(); if (x.length > coordinateSize) { // x has leading 0's, strip them. x = Arrays.copyOfRange(x, x.length - coordinateSize, x.length); } byte[] y = point.getAffineY().toByteArray(); if (y.length > coordinateSize) { // y has leading 0's, strip them. y = Arrays.copyOfRange(y, y.length - coordinateSize, y.length); } System.arraycopy(y, 0, encoded, 2 * coordinateSize - y.length, y.length); System.arraycopy(x, 0, encoded, coordinateSize - x.length, x.length); return encoded; } case COMPRESSED: { byte[] encoded = new byte[coordinateSize + 1]; byte[] x = point.getAffineX().toByteArray(); System.arraycopy(x, 0, encoded, 1 + coordinateSize - x.length, x.length); encoded[0] = (byte) (point.getAffineY().testBit(0) ? 3 : 2); return encoded; } } throw new GeneralSecurityException("invalid format:" + format); } /** * Returns the ECParameterSpec for a named curve. * * @param curve the curve type * @return the ECParameterSpec for the curve. */ public static ECParameterSpec getCurveSpec(CurveType curve) throws NoSuchAlgorithmException { switch (curve) { case NIST_P256: return getNistP256Params(); case NIST_P384: return getNistP384Params(); case NIST_P521: return getNistP521Params(); } throw new NoSuchAlgorithmException("curve not implemented:" + curve); } /** * Returns an {@link ECPublicKey} from {@code x509PublicKey} which is an encoding of a public * key, encoded according to the ASN.1 type SubjectPublicKeyInfo. * * TODO(b/68672497): test that in Java one can always get this representation by using * {@link ECPublicKey#getEncoded), regardless of the provider. */ public static ECPublicKey getEcPublicKey(final byte[] x509PublicKey) throws GeneralSecurityException { KeyFactory kf = EngineFactory.KEY_FACTORY.getInstance("EC"); return (ECPublicKey) kf.generatePublic(new X509EncodedKeySpec(x509PublicKey)); } /** * Returns an {@link ECPublicKey} from {@code publicKey} that is a public key in point format * {@code pointFormat} on {@code curve}. */ public static ECPublicKey getEcPublicKey( CurveType curve, PointFormatType pointFormat, final byte[] publicKey) throws GeneralSecurityException { return getEcPublicKey(getCurveSpec(curve), pointFormat, publicKey); } /** * Returns an {@link ECPublicKey} from {@code publicKey} that is a public key in point format * {@code pointFormat} on {@code curve}. */ public static ECPublicKey getEcPublicKey( ECParameterSpec spec, PointFormatType pointFormat, final byte[] publicKey) throws GeneralSecurityException { ECPoint point = pointDecode(spec.getCurve(), pointFormat, publicKey); ECPublicKeySpec pubSpec = new ECPublicKeySpec(point, spec); KeyFactory kf = EngineFactory.KEY_FACTORY.getInstance("EC"); return (ECPublicKey) kf.generatePublic(pubSpec); } /** * Returns an {@code ECPublicKey} from {@code curve} type and {@code x} and {@code y} coordinates. */ public static ECPublicKey getEcPublicKey(CurveType curve, final byte[] x, final byte[] y) throws GeneralSecurityException { ECParameterSpec ecParams = getCurveSpec(curve); BigInteger pubX = new BigInteger(1, x); BigInteger pubY = new BigInteger(1, y); ECPoint w = new ECPoint(pubX, pubY); checkPointOnCurve(w, ecParams.getCurve()); ECPublicKeySpec spec = new ECPublicKeySpec(w, ecParams); KeyFactory kf = EngineFactory.KEY_FACTORY.getInstance("EC"); return (ECPublicKey) kf.generatePublic(spec); } /** * Returns an {@code ECPrivateKey} from {@code pkcs8PrivateKey} which is an encoding of a private * key, encoded according to the ASN.1 type SubjectPublicKeyInfo. * * TODO(b/68672497): test that in Java one can always get this representation by using * {@link ECPrivateKey#getEncoded), regardless of the provider. */ public static ECPrivateKey getEcPrivateKey(final byte[] pkcs8PrivateKey) throws GeneralSecurityException { KeyFactory kf = EngineFactory.KEY_FACTORY.getInstance("EC"); return (ECPrivateKey) kf.generatePrivate(new PKCS8EncodedKeySpec(pkcs8PrivateKey)); } /** Returns an {@code ECPrivateKey} from {@code curve} type and {@code keyValue}. */ public static ECPrivateKey getEcPrivateKey(CurveType curve, final byte[] keyValue) throws GeneralSecurityException { ECParameterSpec ecParams = getCurveSpec(curve); BigInteger privValue = new BigInteger(1, keyValue); ECPrivateKeySpec spec = new ECPrivateKeySpec(privValue, ecParams); KeyFactory kf = EngineFactory.KEY_FACTORY.getInstance("EC"); return (ECPrivateKey) kf.generatePrivate(spec); } /** Generates a new key pair for {@code curve}. */ public static KeyPair generateKeyPair(CurveType curve) throws GeneralSecurityException { return generateKeyPair(getCurveSpec(curve)); } /** Generates a new key pair for {@code spec}. */ public static KeyPair generateKeyPair(ECParameterSpec spec) throws GeneralSecurityException { KeyPairGenerator keyGen = EngineFactory.KEY_PAIR_GENERATOR.getInstance("EC"); keyGen.initialize(spec); return keyGen.generateKeyPair(); } /** * Checks that the shared secret is on the curve of the private key, to prevent arithmetic errors * or fault attacks. */ private static void validateSharedSecret(byte[] secret, ECPrivateKey privateKey) throws GeneralSecurityException { EllipticCurve privateKeyCurve = privateKey.getParams().getCurve(); BigInteger x = new BigInteger(1, secret); if (x.signum() == -1 || x.compareTo(getModulus(privateKeyCurve)) >= 0) { throw new GeneralSecurityException("shared secret is out of range"); } // This will throw if x is not a valid coordinate. getY(x, true /* lsb, doesn't matter here */, privateKeyCurve); } /* Generates the DH shared secret using {@code myPrivateKey} and {@code peerPublicKey} */ public static byte[] computeSharedSecret(ECPrivateKey myPrivateKey, ECPublicKey peerPublicKey) throws GeneralSecurityException { validatePublicKeySpec(peerPublicKey, myPrivateKey); return computeSharedSecret(myPrivateKey, peerPublicKey.getW()); } /** * Generates the DH shared secret using {@code myPrivateKey} and {@code publicPoint} * * @since 1.1.0 */ public static byte[] computeSharedSecret(ECPrivateKey myPrivateKey, ECPoint publicPoint) throws GeneralSecurityException { checkPointOnCurve(publicPoint, myPrivateKey.getParams().getCurve()); // Explicitly reconstruct the peer public key using private key's spec. ECParameterSpec privSpec = myPrivateKey.getParams(); ECPublicKeySpec publicKeySpec = new ECPublicKeySpec(publicPoint, privSpec); KeyFactory kf = EngineFactory.KEY_FACTORY.getInstance("EC"); PublicKey publicKey = kf.generatePublic(publicKeySpec); KeyAgreement ka = EngineFactory.KEY_AGREEMENT.getInstance("ECDH"); ka.init(myPrivateKey); try { ka.doPhase(publicKey, true /* lastPhase */); byte[] secret = ka.generateSecret(); validateSharedSecret(secret, myPrivateKey); return secret; } catch (IllegalStateException ex) { // Due to CVE-2017-10176 some versions of OpenJDK might throw this unchecked exception, // converting it to a checked one to not crash the JVM. See also b/73760761. throw new GeneralSecurityException(ex.toString()); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy