com.google.crypto.tink.subtle.EllipticCurves Maven / Gradle / Ivy
Show all versions of tink Show documentation
// Copyright 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
////////////////////////////////////////////////////////////////////////////////
package com.google.crypto.tink.subtle;
import java.math.BigInteger;
import java.security.GeneralSecurityException;
import java.security.InvalidAlgorithmParameterException;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.NoSuchAlgorithmException;
import java.security.PublicKey;
import java.security.interfaces.ECPrivateKey;
import java.security.interfaces.ECPublicKey;
import java.security.spec.ECFieldFp;
import java.security.spec.ECParameterSpec;
import java.security.spec.ECPoint;
import java.security.spec.ECPrivateKeySpec;
import java.security.spec.ECPublicKeySpec;
import java.security.spec.EllipticCurve;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;
import java.util.Arrays;
import javax.crypto.KeyAgreement;
/**
* Utility functions and enums for elliptic curve crypto, used in ECDSA and ECDH.
*
* @since 1.0.0
*/
public final class EllipticCurves {
/** Point formats. */
public enum PointFormatType {
UNCOMPRESSED,
COMPRESSED,
// Like UNCOMPRESSED but without the \x04 prefix. Crunchy uses this format.
// DO NOT USE unless you are a Crunchy user moving to Tink.
DO_NOT_USE_CRUNCHY_UNCOMPRESSED,
}
/** Elliptic curve types. */
public enum CurveType {
NIST_P256,
NIST_P384,
NIST_P521,
}
/** Ecdsa signature encoding. */
public enum EcdsaEncoding {
IEEE_P1363,
DER,
}
public static ECParameterSpec getNistP256Params() {
return getNistCurveSpec(
"115792089210356248762697446949407573530086143415290314195533631308867097853951",
"115792089210356248762697446949407573529996955224135760342422259061068512044369",
"5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b",
"6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296",
"4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5");
}
public static ECParameterSpec getNistP384Params() {
return getNistCurveSpec(
"3940200619639447921227904010014361380507973927046544666794829340"
+ "4245721771496870329047266088258938001861606973112319",
"3940200619639447921227904010014361380507973927046544666794690527"
+ "9627659399113263569398956308152294913554433653942643",
"b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875a"
+ "c656398d8a2ed19d2a85c8edd3ec2aef",
"aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a38"
+ "5502f25dbf55296c3a545e3872760ab7",
"3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c0"
+ "0a60b1ce1d7e819d7a431d7c90ea0e5f");
}
public static ECParameterSpec getNistP521Params() {
return getNistCurveSpec(
"6864797660130609714981900799081393217269435300143305409394463459"
+ "18554318339765605212255964066145455497729631139148085803712198"
+ "7999716643812574028291115057151",
"6864797660130609714981900799081393217269435300143305409394463459"
+ "18554318339765539424505774633321719753296399637136332111386476"
+ "8612440380340372808892707005449",
"051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef10"
+ "9e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00",
"c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3d"
+ "baa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66",
"11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e6"
+ "62c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650");
}
/**
* Checks that a point is on a given elliptic curve.
*
* Warning: Please use {@link #validatePublicKey} if you want to validate a public key
* to avoid invalid curve attacks or small subgroup attacks in ECDH.
*
*
This method implements the partial public key validation routine from Section 5.6.2.6 of NIST SP
* 800-56A. A partial public key validation is sufficient for curves with cofactor 1. See
* Section B.3 of http://www.nsa.gov/ia/_files/SuiteB_Implementer_G-113808.pdf.
*
*
The point validations above are taken from recommendations for ECDH, because parameter
* checks in ECDH are much more important than for the case of ECDSA. Performing this test for
* ECDSA keys is mainly a sanity check.
*
* @param point the point that needs verification
* @param ec the elliptic curve. This must be a curve over a prime order field.
* @throws GeneralSecurityException if the field is binary or if the point is not on the curve.
*/
static void checkPointOnCurve(ECPoint point, EllipticCurve ec) throws GeneralSecurityException {
BigInteger p = getModulus(ec);
BigInteger x = point.getAffineX();
BigInteger y = point.getAffineY();
if (x == null || y == null) {
throw new GeneralSecurityException("point is at infinity");
}
// Check 0 <= x < p and 0 <= y < p.
if (x.signum() == -1 || x.compareTo(p) >= 0) {
throw new GeneralSecurityException("x is out of range");
}
if (y.signum() == -1 || y.compareTo(p) >= 0) {
throw new GeneralSecurityException("y is out of range");
}
// Check y^2 == x^3 + a x + b (mod p)
BigInteger lhs = y.multiply(y).mod(p);
BigInteger rhs = x.multiply(x).add(ec.getA()).multiply(x).add(ec.getB()).mod(p);
if (!lhs.equals(rhs)) {
throw new GeneralSecurityException("Point is not on curve");
}
}
/**
* Checks that the point of the public key is on the curve of the public key.
*
*
Warning
*
* Please use {@link #validatePublicKey} if you want to validate a public key to avoid invalid
* curve attacks or small subgroup attacks in ECDH.
*
*
This is a sanity check, because the curve of the public key might be under control of the
* adversary.
*
* @param key must be a key defined over a curve using a prime order field.
* @throws GeneralSecurityException if the key is not valid.
*/
static void checkPublicKey(ECPublicKey key) throws GeneralSecurityException {
checkPointOnCurve(key.getW(), key.getParams().getCurve());
}
/** Returns whether {@code spec} is a {@link ECParameterSpec} of one of the NIST curves. */
public static boolean isNistEcParameterSpec(ECParameterSpec spec) {
return isSameEcParameterSpec(spec, getNistP256Params())
|| isSameEcParameterSpec(spec, getNistP384Params())
|| isSameEcParameterSpec(spec, getNistP521Params());
}
/** Returns whether {@code one} is the same {@link ECParameterSpec} as {@code two}. */
public static boolean isSameEcParameterSpec(ECParameterSpec one, ECParameterSpec two) {
return one.getCurve().equals(two.getCurve())
&& one.getGenerator().equals(two.getGenerator())
&& one.getOrder().equals(two.getOrder())
&& one.getCofactor() == two.getCofactor();
}
/**
* Checks that the public key's params is the same as the private key's params, and the public key
* is a valid point on the private key's curve.
*
* @since 1.1.0
*/
public static void validatePublicKey(ECPublicKey publicKey, ECPrivateKey privateKey)
throws GeneralSecurityException {
validatePublicKeySpec(publicKey, privateKey);
checkPointOnCurve(publicKey.getW(), privateKey.getParams().getCurve());
}
/** Checks that the public key's params spec is the same as the private key's params spec. */
static void validatePublicKeySpec(ECPublicKey publicKey, ECPrivateKey privateKey)
throws GeneralSecurityException {
try {
ECParameterSpec publicKeySpec = publicKey.getParams();
ECParameterSpec privateKeySpec = privateKey.getParams();
if (!isSameEcParameterSpec(publicKeySpec, privateKeySpec)) {
throw new GeneralSecurityException("invalid public key spec");
}
} catch (IllegalArgumentException | NullPointerException ex) {
// The Java security providers on Android K and Android L might throw these unchecked
// exceptions, converting them to a checked one to not crash the JVM.
throw new GeneralSecurityException(ex.toString());
}
}
/**
* Returns the modulus of the field used by the curve specified in ecParams.
*
* @param curve must be a prime order elliptic curve
* @return the order of the finite field over which curve is defined.
*/
public static BigInteger getModulus(EllipticCurve curve) throws GeneralSecurityException {
java.security.spec.ECField field = curve.getField();
if (field instanceof java.security.spec.ECFieldFp) {
return ((java.security.spec.ECFieldFp) field).getP();
} else {
throw new GeneralSecurityException("Only curves over prime order fields are supported");
}
}
/**
* Returns the size of an element of the field over which the curve is defined.
*
* @param curve must be a prime order elliptic curve
* @return the size of an element in bits
*/
static int fieldSizeInBits(EllipticCurve curve) throws GeneralSecurityException {
return getModulus(curve).subtract(BigInteger.ONE).bitLength();
}
/**
* Returns the size of an element of the field over which the curve is defined.
*
* @param curve must be a prime order elliptic curve
* @return the size of an element in bytes.
*/
public static int fieldSizeInBytes(EllipticCurve curve) throws GeneralSecurityException {
return (fieldSizeInBits(curve) + 7) / 8;
}
private static ECParameterSpec getNistCurveSpec(
String decimalP, String decimalN, String hexB, String hexGX, String hexGY) {
final BigInteger p = new BigInteger(decimalP);
final BigInteger n = new BigInteger(decimalN);
final BigInteger three = new BigInteger("3");
final BigInteger a = p.subtract(three);
final BigInteger b = new BigInteger(hexB, 16);
final BigInteger gx = new BigInteger(hexGX, 16);
final BigInteger gy = new BigInteger(hexGY, 16);
final int h = 1;
ECFieldFp fp = new ECFieldFp(p);
java.security.spec.EllipticCurve curveSpec = new java.security.spec.EllipticCurve(fp, a, b);
ECPoint g = new ECPoint(gx, gy);
ECParameterSpec ecSpec = new ECParameterSpec(curveSpec, g, n, h);
return ecSpec;
}
/**
* Computes a square root modulo an odd prime. Timing and exceptions can leak information about
* the inputs. Therefore this method must only be used to decompress public keys.
*
* @param x the square
* @param p the prime modulus (the behaviour of the method is undefined if p is not prime).
* @return a value s such that s^2 mod p == x mod p
* @throws GeneralSecurityException if the square root could not be found.
*/
protected static BigInteger modSqrt(BigInteger x, BigInteger p) throws GeneralSecurityException {
if (p.signum() != 1) {
throw new InvalidAlgorithmParameterException("p must be positive");
}
x = x.mod(p);
BigInteger squareRoot = null;
// Special case for x == 0.
// This check is necessary for Cipolla's algorithm.
if (x.equals(BigInteger.ZERO)) {
return BigInteger.ZERO;
}
if (p.testBit(0) && p.testBit(1)) {
// Case p % 4 == 3
// q = (p + 1) / 4
BigInteger q = p.add(BigInteger.ONE).shiftRight(2);
squareRoot = x.modPow(q, p);
} else if (p.testBit(0) && !p.testBit(1)) {
// Case p % 4 == 1
// For this case we use Cipolla's algorithm.
// This alogorithm is preferrable to Tonelli-Shanks for primes p where p-1 is divisible by
// a large power of 2, which is a frequent choice since it simplifies modular reduction.
BigInteger a = BigInteger.ONE;
BigInteger d = null;
BigInteger q1 = p.subtract(BigInteger.ONE).shiftRight(1);
int tries = 0;
while (true) {
d = a.multiply(a).subtract(x).mod(p);
// Special case d==0. We need d!=0 below.
if (d.equals(BigInteger.ZERO)) {
return a;
}
// Computes the Legendre symbol. Using the Jacobi symbol would be a faster.
BigInteger t = d.modPow(q1, p);
if (t.add(BigInteger.ONE).equals(p)) {
// d is a quadratic non-residue.
break;
} else if (!t.equals(BigInteger.ONE)) {
// p does not divide d. Hence, t != 1 implies that p is not a prime.
throw new InvalidAlgorithmParameterException("p is not prime");
} else {
a = a.add(BigInteger.ONE);
}
tries++;
// If 128 tries were not enough to find a quadratic non-residue, then it is likely that
// p is not prime. To avoid an infinite loop in this case we perform a primality test.
// If p is prime then this test will be done with a negligible probability of 2^{-128}.
if (tries == 128) {
if (!p.isProbablePrime(80)) {
throw new InvalidAlgorithmParameterException("p is not prime");
}
}
}
// Since d = a^2 - x is a quadratic non-residue modulo p, we have
// a - sqrt(d) == (a + sqrt(d))^p (mod p),
// and hence
// x == (a + sqrt(d))(a - sqrt(d)) == (a + sqrt(d))^(p+1) (mod p).
// Thus if x is square then (a + sqrt(d))^((p+1)/2) (mod p) is a square root of x.
BigInteger q = p.add(BigInteger.ONE).shiftRight(1);
BigInteger u = a;
BigInteger v = BigInteger.ONE;
for (int bit = q.bitLength() - 2; bit >= 0; bit--) {
// Square u + v sqrt(d) and reduce mod p.
BigInteger tmp = u.multiply(v);
u = u.multiply(u).add(v.multiply(v).mod(p).multiply(d)).mod(p);
v = tmp.add(tmp).mod(p);
if (q.testBit(bit)) {
// Multiply u + v sqrt(d) by a + sqrt(d) and reduce mod p.
tmp = u.multiply(a).add(v.multiply(d)).mod(p);
v = a.multiply(v).add(u).mod(p);
u = tmp;
}
}
squareRoot = u;
}
// The methods used to compute the square root only guarantees a correct result if the
// preconditions (i.e. p prime and x is a square) are satisfied. Otherwise the value is
// undefined. Hence it is important to verify that squareRoot is indeed a square root.
if (squareRoot != null && squareRoot.multiply(squareRoot).mod(p).compareTo(x) != 0) {
throw new GeneralSecurityException("Could not find a modular square root");
}
return squareRoot;
}
/**
* Computes the y coordinate of a point on an elliptic curve. This method can be used to
* decompress elliptic curve points.
*
* @param x the x-coordinate of the point
* @param lsb the least significant bit of the y-coordinate of the point.
* @param curve this must be an elliptic curve over a prime field using Weierstrass
* representation.
* @return the y coordinate.
* @throws GeneralSecurityException if there is no point with coordinate x on the curve, or if
* curve is not supported.
*/
public static BigInteger getY(BigInteger x, boolean lsb, EllipticCurve curve)
throws GeneralSecurityException {
BigInteger p = getModulus(curve);
BigInteger a = curve.getA();
BigInteger b = curve.getB();
BigInteger rhs = x.multiply(x).add(a).multiply(x).add(b).mod(p);
BigInteger y = modSqrt(rhs, p);
if (lsb != y.testBit(0)) {
y = p.subtract(y).mod(p);
}
return y;
}
/**
* Transforms a big integer to its minimal signed form, i.e., no extra zero byte at the beginning
* except single one when the highest bit is set.
*/
private static byte[] toMinimalSignedNumber(byte[] bs) {
// Remove zero prefixes.
int start = 0;
while (start < bs.length && bs[start] == 0) {
start++;
}
if (start == bs.length) {
start = bs.length - 1;
}
int extraZero = 0;
// If the 1st bit is not zero, add 1 zero byte.
if ((bs[start] & 0x80) == 0x80) {
// Add extra zero.
extraZero = 1;
}
byte[] res = new byte[bs.length - start + extraZero];
System.arraycopy(bs, start, res, extraZero, bs.length - start);
return res;
}
/**
* Transforms ECDSA IEEE_P1363 signature encoding to DER encoding.
*
*
The IEEE_P1363 signature's format is r || s, where r and s are zero-padded and have the same
* size in bytes as the order of the curve. For example, for NIST P-256 curve, r and s are
* zero-padded to 32 bytes.
*
*
The DER signature is encoded using ASN.1 (https://tools.ietf.org/html/rfc5480#appendix-A):
* ECDSA-Sig-Value :: = SEQUENCE { r INTEGER, s INTEGER }. In particular, the encoding is: 0x30 ||
* totalLength || 0x02 || r's length || r || 0x02 || s's length || s.
*
* @param ieee ECDSA's signature in IEEE_P1363 format.
* @return ECDSA's signature in DER format.
* @throws GeneralSecurityException if ieee's length is zero, greater than 132-byte (corresponding
* to NIST P521) or not divisible by 2.
*/
public static byte[] ecdsaIeee2Der(byte[] ieee) throws GeneralSecurityException {
if (ieee.length % 2 != 0 || ieee.length == 0 || ieee.length > 132) {
throw new GeneralSecurityException("Invalid IEEE_P1363 encoding");
}
byte[] r = toMinimalSignedNumber(Arrays.copyOf(ieee, ieee.length / 2));
byte[] s = toMinimalSignedNumber(Arrays.copyOfRange(ieee, ieee.length / 2, ieee.length));
int offset = 0;
int length = 1 + 1 + r.length + 1 + 1 + s.length;
byte[] der;
if (length >= 128) {
der = new byte[length + 3];
der[offset++] = (byte) 0x30;
der[offset++] = (byte) (0x80 + 0x01);
der[offset++] = (byte) length;
} else {
der = new byte[length + 2];
der[offset++] = (byte) 0x30;
der[offset++] = (byte) length;
}
der[offset++] = (byte) 0x02;
der[offset++] = (byte) r.length;
System.arraycopy(r, 0, der, offset, r.length);
offset += r.length;
der[offset++] = (byte) 0x02;
der[offset++] = (byte) s.length;
System.arraycopy(s, 0, der, offset, s.length);
return der;
}
/**
* Transforms ECDSA DER signature encoding to IEEE_P1363 encoding.
*
*
The IEEE_P1363 signature's format is r || s, where r and s are zero-padded and have the same
* size in bytes as the order of the curve. For example, for NIST P-256 curve, r and s are
* zero-padded to 32 bytes.
*
*
The DER signature is encoded using ASN.1 (https://tools.ietf.org/html/rfc5480#appendix-A):
* ECDSA-Sig-Value :: = SEQUENCE { r INTEGER, s INTEGER }. In particular, the encoding is: 0x30 ||
* totalLength || 0x02 || r's length || r || 0x02 || s's length || s.
*
* @param der ECDSA's signature in DER encoding.
* @param ieeeLength length of ECDSA signature's in IEEE_P1363's format which equals to 2 * (size
* of elliptic curve's field in bytes).
* @return ECDSA's signature in IEEE_P1363 format.
* @throws GeneralSecurityException if the signature is not valid DER encoding.
*/
public static byte[] ecdsaDer2Ieee(byte[] der, int ieeeLength) throws GeneralSecurityException {
if (!isValidDerEncoding(der)) {
throw new GeneralSecurityException("Invalid DER encoding");
}
byte[] ieee = new byte[ieeeLength];
int length = der[1] & 0xff;
int offset = 1 /* 0x30 */ + 1 /* totalLength */;
if (length >= 128) {
offset++; // Long form length
}
offset++; // 0x02
int rLength = der[offset++];
int extraZero = 0;
if (der[offset] == 0) {
extraZero = 1;
}
System.arraycopy(
der, offset + extraZero, ieee, ieeeLength / 2 - rLength + extraZero, rLength - extraZero);
offset += rLength /* r byte array */ + 1 /* 0x02 */;
int sLength = der[offset++];
extraZero = 0;
if (der[offset] == 0) {
extraZero = 1;
}
System.arraycopy(
der, offset + extraZero, ieee, ieeeLength - sLength + extraZero, sLength - extraZero);
return ieee;
}
// Validates that the signature is in DER encoding, based on
// https://github.com/bitcoin/bips/blob/master/bip-0066.mediawiki.
public static boolean isValidDerEncoding(final byte[] sig) {
// Format: 0x30 [total-length] 0x02 [R-length] [R] 0x02 [S-length] [S]
// * total-length: 1-byte or 2-byte length descriptor of everything that follows.
// * R-length: 1-byte length descriptor of the R value that follows.
// * R: arbitrary-length big-endian encoded R value. It must use the shortest
// possible encoding for a positive integers (which means no null bytes at
// the start, except a single one when the next byte has its highest bit set).
// * S-length: 1-byte length descriptor of the S value that follows.
// * S: arbitrary-length big-endian encoded S value. The same rules apply.
if (sig.length
< 1 /* 0x30 */
+ 1 /* total-length */
+ 1 /* 0x02 */
+ 1 /* R-length */
+ 1 /* R */
+ 1 /* 0x02 */
+ 1 /* S-length */
+ 1 /* S */) {
// Signature is too short.
return false;
}
// Checking bytes from left to right.
// byte #1: a signature is of type 0x30 (compound).
if (sig[0] != 0x30) {
return false;
}
// byte #2 and maybe #3: the total length of the signature.
int totalLen = sig[1] & 0xff;
int totalLenLen = 1; // the length of the total length field, could be 2-byte.
if (totalLen == 129) {
// The signature is >= 128 bytes thus total length field is in long-form encoding and occupies
// 2 bytes.
totalLenLen = 2;
// byte #3 is the total length.
totalLen = sig[2] & 0xff;
if (totalLen < 128) {
// Length in long-form encoding must be >= 128.
return false;
}
} else if (totalLen == 128 || totalLen > 129) {
// Impossible values for the second byte.
return false;
}
// Make sure the length covers the entire sig.
if (totalLen != sig.length - 1 - totalLenLen) {
return false;
}
// Start checking R.
// Check whether the R element is an integer.
if (sig[1 + totalLenLen] != 0x02) {
return false;
}
// Extract the length of the R element.
int rLen = sig[1 /* 0x30 */ + totalLenLen + 1 /* 0x02 */] & 0xff;
// Make sure the length of the S element is still inside the signature.
if (1 /* 0x30 */ + totalLenLen + 1 /* 0x02 */ + 1 /* rLen */ + rLen + 1 /* 0x02 */
>= sig.length) {
return false;
}
// Zero-length integers are not allowed for R.
if (rLen == 0) {
return false;
}
// Negative numbers are not allowed for R.
if ((sig[3 + totalLenLen] & 0xff) >= 128) {
return false;
}
// Null bytes at the start of R are not allowed, unless R would
// otherwise be interpreted as a negative number.
if (rLen > 1 && (sig[3 + totalLenLen] == 0x00) && ((sig[4 + totalLenLen] & 0xff) < 128)) {
return false;
}
// Start checking S.
// Check whether the S element is an integer.
if (sig[3 + totalLenLen + rLen] != 0x02) {
return false;
}
// Extract the length of the S element.
int sLen =
sig[1 /* 0x30 */ + totalLenLen + 1 /* 0x02 */ + 1 /* rLen */ + rLen + 1 /* 0x02 */] & 0xff;
// Verify that the length of the signature matches the sum of the length of the elements.
if (1 /* 0x30 */
+ totalLenLen
+ 1 /* 0x02 */
+ 1 /* rLen */
+ rLen
+ 1 /* 0x02 */
+ 1 /* sLen */
+ sLen
!= sig.length) {
return false;
}
// Zero-length integers are not allowed for S.
if (sLen == 0) {
return false;
}
// Negative numbers are not allowed for S.
if ((sig[5 + totalLenLen + rLen] & 0xff) >= 128) {
return false;
}
// Null bytes at the start of S are not allowed, unless S would
// otherwise be interpreted as a negative number.
if (sLen > 1
&& (sig[5 + totalLenLen + rLen] == 0x00)
&& ((sig[6 + totalLenLen + rLen] & 0xff) < 128)) {
return false;
}
return true;
}
/**
* Returns the encoding size of a point on an elliptic curve.
*
* @param curve the elliptic curve
* @param format the format used to encode the point
* @return the size of an encoded point in bytes
* @throws GeneralSecurityException if the point format is unknown or if the elliptic curve is not
* supported
*/
public static int encodingSizeInBytes(EllipticCurve curve, PointFormatType format)
throws GeneralSecurityException {
int coordinateSize = fieldSizeInBytes(curve);
switch (format) {
case UNCOMPRESSED:
return 2 * coordinateSize + 1;
case DO_NOT_USE_CRUNCHY_UNCOMPRESSED:
return 2 * coordinateSize;
case COMPRESSED:
return coordinateSize + 1;
}
throw new GeneralSecurityException("unknown EC point format");
}
/**
* Decodes an encoded point on an elliptic curve. This method checks that the encoded point is on
* the curve.
*
* @param curve the elliptic curve
* @param format the format used to enocde the point
* @param encoded the encoded point
* @return the point
* @throws GeneralSecurityException if the encoded point is invalid or if the curve or format are
* not supported.
* @deprecated use {#pointDecode}
*/
@Deprecated
public static ECPoint ecPointDecode(EllipticCurve curve, PointFormatType format, byte[] encoded)
throws GeneralSecurityException {
return pointDecode(curve, format, encoded);
}
/**
* Decodes an encoded point on an elliptic curve. This method checks that the encoded point is on
* the curve.
*
* @param curve the elliptic curve
* @param format the format used to enocde the point
* @param encoded the encoded point
* @return the point
* @throws GeneralSecurityException if the encoded point is invalid or if the curve or format are
* not supported.
* @since 1.1.0
*/
public static ECPoint pointDecode(CurveType curveType, PointFormatType format, byte[] encoded)
throws GeneralSecurityException {
return pointDecode(getCurveSpec(curveType).getCurve(), format, encoded);
}
/**
* Decodes an encoded point on an elliptic curve. This method checks that the encoded point is on
* the curve.
*
* @param curve the elliptic curve
* @param format the format used to enocde the point
* @param encoded the encoded point
* @return the point
* @throws GeneralSecurityException if the encoded point is invalid or if the curve or format are
* not supported.
* @since 1.1.0
*/
public static ECPoint pointDecode(EllipticCurve curve, PointFormatType format, byte[] encoded)
throws GeneralSecurityException {
int coordinateSize = fieldSizeInBytes(curve);
switch (format) {
case UNCOMPRESSED:
{
if (encoded.length != 2 * coordinateSize + 1) {
throw new GeneralSecurityException("invalid point size");
}
if (encoded[0] != 4) {
throw new GeneralSecurityException("invalid point format");
}
BigInteger x = new BigInteger(1, Arrays.copyOfRange(encoded, 1, coordinateSize + 1));
BigInteger y =
new BigInteger(1, Arrays.copyOfRange(encoded, coordinateSize + 1, encoded.length));
ECPoint point = new ECPoint(x, y);
checkPointOnCurve(point, curve);
return point;
}
case DO_NOT_USE_CRUNCHY_UNCOMPRESSED:
{
if (encoded.length != 2 * coordinateSize) {
throw new GeneralSecurityException("invalid point size");
}
BigInteger x = new BigInteger(1, Arrays.copyOfRange(encoded, 0, coordinateSize));
BigInteger y =
new BigInteger(1, Arrays.copyOfRange(encoded, coordinateSize, encoded.length));
ECPoint point = new ECPoint(x, y);
checkPointOnCurve(point, curve);
return point;
}
case COMPRESSED:
{
BigInteger p = getModulus(curve);
if (encoded.length != coordinateSize + 1) {
throw new GeneralSecurityException("compressed point has wrong length");
}
boolean lsb;
if (encoded[0] == 2) {
lsb = false;
} else if (encoded[0] == 3) {
lsb = true;
} else {
throw new GeneralSecurityException("invalid format");
}
BigInteger x = new BigInteger(1, Arrays.copyOfRange(encoded, 1, encoded.length));
if (x.signum() == -1 || x.compareTo(p) >= 0) {
throw new GeneralSecurityException("x is out of range");
}
BigInteger y = getY(x, lsb, curve);
return new ECPoint(x, y);
}
}
throw new GeneralSecurityException("invalid format:" + format);
}
/**
* Encodes a point on an elliptic curve.
*
* @param curve the elliptic curve
* @param format the format for the encoding
* @param point the point to encode
* @return the encoded key exchange
* @throws GeneralSecurityException if the point is not on the curve or if the format is not
* supported.
* @since 1.1.0
*/
public static byte[] pointEncode(CurveType curveType, PointFormatType format, ECPoint point)
throws GeneralSecurityException {
return pointEncode(getCurveSpec(curveType).getCurve(), format, point);
}
/**
* Encodes a point on an elliptic curve.
*
* @param curve the elliptic curve
* @param format the format for the encoding
* @param point the point to encode
* @return the encoded key exchange
* @throws GeneralSecurityException if the point is not on the curve or if the format is not
* supported.
* @since 1.1.0
*/
public static byte[] pointEncode(EllipticCurve curve, PointFormatType format, ECPoint point)
throws GeneralSecurityException {
checkPointOnCurve(point, curve);
int coordinateSize = fieldSizeInBytes(curve);
switch (format) {
case UNCOMPRESSED:
{
byte[] encoded = new byte[2 * coordinateSize + 1];
byte[] x = point.getAffineX().toByteArray();
byte[] y = point.getAffineY().toByteArray();
// Order of System.arraycopy is important because x,y can have leading 0's.
System.arraycopy(y, 0, encoded, 1 + 2 * coordinateSize - y.length, y.length);
System.arraycopy(x, 0, encoded, 1 + coordinateSize - x.length, x.length);
encoded[0] = 4;
return encoded;
}
case DO_NOT_USE_CRUNCHY_UNCOMPRESSED:
{
byte[] encoded = new byte[2 * coordinateSize];
byte[] x = point.getAffineX().toByteArray();
if (x.length > coordinateSize) {
// x has leading 0's, strip them.
x = Arrays.copyOfRange(x, x.length - coordinateSize, x.length);
}
byte[] y = point.getAffineY().toByteArray();
if (y.length > coordinateSize) {
// y has leading 0's, strip them.
y = Arrays.copyOfRange(y, y.length - coordinateSize, y.length);
}
System.arraycopy(y, 0, encoded, 2 * coordinateSize - y.length, y.length);
System.arraycopy(x, 0, encoded, coordinateSize - x.length, x.length);
return encoded;
}
case COMPRESSED:
{
byte[] encoded = new byte[coordinateSize + 1];
byte[] x = point.getAffineX().toByteArray();
System.arraycopy(x, 0, encoded, 1 + coordinateSize - x.length, x.length);
encoded[0] = (byte) (point.getAffineY().testBit(0) ? 3 : 2);
return encoded;
}
}
throw new GeneralSecurityException("invalid format:" + format);
}
/**
* Returns the ECParameterSpec for a named curve.
*
* @param curve the curve type
* @return the ECParameterSpec for the curve.
*/
public static ECParameterSpec getCurveSpec(CurveType curve) throws NoSuchAlgorithmException {
switch (curve) {
case NIST_P256:
return getNistP256Params();
case NIST_P384:
return getNistP384Params();
case NIST_P521:
return getNistP521Params();
}
throw new NoSuchAlgorithmException("curve not implemented:" + curve);
}
/**
* Returns an {@link ECPublicKey} from {@code x509PublicKey} which is an encoding of a public
* key, encoded according to the ASN.1 type SubjectPublicKeyInfo.
*
* TODO(b/68672497): test that in Java one can always get this representation by using
* {@link ECPublicKey#getEncoded), regardless of the provider.
*/
public static ECPublicKey getEcPublicKey(final byte[] x509PublicKey)
throws GeneralSecurityException {
KeyFactory kf = EngineFactory.KEY_FACTORY.getInstance("EC");
return (ECPublicKey) kf.generatePublic(new X509EncodedKeySpec(x509PublicKey));
}
/**
* Returns an {@link ECPublicKey} from {@code publicKey} that is a public key in point format
* {@code pointFormat} on {@code curve}.
*/
public static ECPublicKey getEcPublicKey(
CurveType curve, PointFormatType pointFormat, final byte[] publicKey)
throws GeneralSecurityException {
return getEcPublicKey(getCurveSpec(curve), pointFormat, publicKey);
}
/**
* Returns an {@link ECPublicKey} from {@code publicKey} that is a public key in point format
* {@code pointFormat} on {@code curve}.
*/
public static ECPublicKey getEcPublicKey(
ECParameterSpec spec, PointFormatType pointFormat, final byte[] publicKey)
throws GeneralSecurityException {
ECPoint point = pointDecode(spec.getCurve(), pointFormat, publicKey);
ECPublicKeySpec pubSpec = new ECPublicKeySpec(point, spec);
KeyFactory kf = EngineFactory.KEY_FACTORY.getInstance("EC");
return (ECPublicKey) kf.generatePublic(pubSpec);
}
/**
* Returns an {@code ECPublicKey} from {@code curve} type and {@code x} and {@code y} coordinates.
*/
public static ECPublicKey getEcPublicKey(CurveType curve, final byte[] x, final byte[] y)
throws GeneralSecurityException {
ECParameterSpec ecParams = getCurveSpec(curve);
BigInteger pubX = new BigInteger(1, x);
BigInteger pubY = new BigInteger(1, y);
ECPoint w = new ECPoint(pubX, pubY);
checkPointOnCurve(w, ecParams.getCurve());
ECPublicKeySpec spec = new ECPublicKeySpec(w, ecParams);
KeyFactory kf = EngineFactory.KEY_FACTORY.getInstance("EC");
return (ECPublicKey) kf.generatePublic(spec);
}
/**
* Returns an {@code ECPrivateKey} from {@code pkcs8PrivateKey} which is an encoding of a private
* key, encoded according to the ASN.1 type SubjectPublicKeyInfo.
*
* TODO(b/68672497): test that in Java one can always get this representation by using
* {@link ECPrivateKey#getEncoded), regardless of the provider.
*/
public static ECPrivateKey getEcPrivateKey(final byte[] pkcs8PrivateKey)
throws GeneralSecurityException {
KeyFactory kf = EngineFactory.KEY_FACTORY.getInstance("EC");
return (ECPrivateKey) kf.generatePrivate(new PKCS8EncodedKeySpec(pkcs8PrivateKey));
}
/** Returns an {@code ECPrivateKey} from {@code curve} type and {@code keyValue}. */
public static ECPrivateKey getEcPrivateKey(CurveType curve, final byte[] keyValue)
throws GeneralSecurityException {
ECParameterSpec ecParams = getCurveSpec(curve);
BigInteger privValue = new BigInteger(1, keyValue);
ECPrivateKeySpec spec = new ECPrivateKeySpec(privValue, ecParams);
KeyFactory kf = EngineFactory.KEY_FACTORY.getInstance("EC");
return (ECPrivateKey) kf.generatePrivate(spec);
}
/** Generates a new key pair for {@code curve}. */
public static KeyPair generateKeyPair(CurveType curve) throws GeneralSecurityException {
return generateKeyPair(getCurveSpec(curve));
}
/** Generates a new key pair for {@code spec}. */
public static KeyPair generateKeyPair(ECParameterSpec spec) throws GeneralSecurityException {
KeyPairGenerator keyGen = EngineFactory.KEY_PAIR_GENERATOR.getInstance("EC");
keyGen.initialize(spec);
return keyGen.generateKeyPair();
}
/**
* Checks that the shared secret is on the curve of the private key, to prevent arithmetic errors
* or fault attacks.
*/
private static void validateSharedSecret(byte[] secret, ECPrivateKey privateKey)
throws GeneralSecurityException {
EllipticCurve privateKeyCurve = privateKey.getParams().getCurve();
BigInteger x = new BigInteger(1, secret);
if (x.signum() == -1 || x.compareTo(getModulus(privateKeyCurve)) >= 0) {
throw new GeneralSecurityException("shared secret is out of range");
}
// This will throw if x is not a valid coordinate.
getY(x, true /* lsb, doesn't matter here */, privateKeyCurve);
}
/* Generates the DH shared secret using {@code myPrivateKey} and {@code peerPublicKey} */
public static byte[] computeSharedSecret(ECPrivateKey myPrivateKey, ECPublicKey peerPublicKey)
throws GeneralSecurityException {
validatePublicKeySpec(peerPublicKey, myPrivateKey);
return computeSharedSecret(myPrivateKey, peerPublicKey.getW());
}
/**
* Generates the DH shared secret using {@code myPrivateKey} and {@code publicPoint}
*
* @since 1.1.0
*/
public static byte[] computeSharedSecret(ECPrivateKey myPrivateKey, ECPoint publicPoint)
throws GeneralSecurityException {
checkPointOnCurve(publicPoint, myPrivateKey.getParams().getCurve());
// Explicitly reconstruct the peer public key using private key's spec.
ECParameterSpec privSpec = myPrivateKey.getParams();
ECPublicKeySpec publicKeySpec = new ECPublicKeySpec(publicPoint, privSpec);
KeyFactory kf = EngineFactory.KEY_FACTORY.getInstance("EC");
PublicKey publicKey = kf.generatePublic(publicKeySpec);
KeyAgreement ka = EngineFactory.KEY_AGREEMENT.getInstance("ECDH");
ka.init(myPrivateKey);
try {
ka.doPhase(publicKey, true /* lastPhase */);
byte[] secret = ka.generateSecret();
validateSharedSecret(secret, myPrivateKey);
return secret;
} catch (IllegalStateException ex) {
// Due to CVE-2017-10176 some versions of OpenJDK might throw this unchecked exception,
// converting it to a checked one to not crash the JVM. See also b/73760761.
throw new GeneralSecurityException(ex.toString());
}
}
}