All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.collect.Iterators Maven / Gradle / Ivy

Go to download

Guava is a suite of core and expanded libraries that include utility classes, Google's collections, I/O classes, and much more. This project includes GWT-friendly sources.

The newest version!
/*
 * Copyright (C) 2007 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.collect;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkState;
import static com.google.common.base.Predicates.instanceOf;
import static com.google.common.collect.CollectPreconditions.checkRemove;
import static com.google.common.collect.NullnessCasts.uncheckedCastNullableTToT;
import static java.util.Arrays.asList;
import static java.util.Collections.unmodifiableList;
import static java.util.Objects.requireNonNull;

import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.base.Function;
import com.google.common.base.Objects;
import com.google.common.base.Optional;
import com.google.common.base.Preconditions;
import com.google.common.base.Predicate;
import com.google.common.primitives.Ints;
import com.google.errorprone.annotations.CanIgnoreReturnValue;
import java.util.ArrayDeque;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.Deque;
import java.util.Enumeration;
import java.util.Iterator;
import java.util.List;
import java.util.NoSuchElementException;
import java.util.PriorityQueue;
import java.util.Queue;
import javax.annotation.CheckForNull;
import org.checkerframework.checker.nullness.qual.NonNull;
import org.checkerframework.checker.nullness.qual.Nullable;

/**
 * This class contains static utility methods that operate on or return objects of type {@link
 * Iterator}. Except as noted, each method has a corresponding {@link Iterable}-based method in the
 * {@link Iterables} class.
 *
 * 

Performance notes: Unless otherwise noted, all of the iterators produced in this class * are lazy, which means that they only advance the backing iteration when absolutely * necessary. * *

See the Guava User Guide section on {@code * Iterators}. * * @author Kevin Bourrillion * @author Jared Levy * @since 2.0 */ @GwtCompatible(emulated = true) @ElementTypesAreNonnullByDefault public final class Iterators { private Iterators() {} /** * Returns the empty iterator. * *

The {@link Iterable} equivalent of this method is {@link ImmutableSet#of()}. */ static UnmodifiableIterator emptyIterator() { return emptyListIterator(); } /** * Returns the empty iterator. * *

The {@link Iterable} equivalent of this method is {@link ImmutableSet#of()}. */ // Casting to any type is safe since there are no actual elements. @SuppressWarnings("unchecked") static UnmodifiableListIterator emptyListIterator() { return (UnmodifiableListIterator) ArrayItr.EMPTY; } /** * This is an enum singleton rather than an anonymous class so ProGuard can figure out it's only * referenced by emptyModifiableIterator(). */ private enum EmptyModifiableIterator implements Iterator { INSTANCE; @Override public boolean hasNext() { return false; } @Override public Object next() { throw new NoSuchElementException(); } @Override public void remove() { checkRemove(false); } } /** * Returns the empty {@code Iterator} that throws {@link IllegalStateException} instead of {@link * UnsupportedOperationException} on a call to {@link Iterator#remove()}. */ // Casting to any type is safe since there are no actual elements. @SuppressWarnings("unchecked") static Iterator emptyModifiableIterator() { return (Iterator) EmptyModifiableIterator.INSTANCE; } /** Returns an unmodifiable view of {@code iterator}. */ public static UnmodifiableIterator unmodifiableIterator( Iterator iterator) { checkNotNull(iterator); if (iterator instanceof UnmodifiableIterator) { @SuppressWarnings("unchecked") // Since it's unmodifiable, the covariant cast is safe UnmodifiableIterator result = (UnmodifiableIterator) iterator; return result; } return new UnmodifiableIterator() { @Override public boolean hasNext() { return iterator.hasNext(); } @Override @ParametricNullness public T next() { return iterator.next(); } }; } /** * Simply returns its argument. * * @deprecated no need to use this * @since 10.0 */ @Deprecated public static UnmodifiableIterator unmodifiableIterator( UnmodifiableIterator iterator) { return checkNotNull(iterator); } /** * Returns the number of elements remaining in {@code iterator}. The iterator will be left * exhausted: its {@code hasNext()} method will return {@code false}. */ public static int size(Iterator iterator) { long count = 0L; while (iterator.hasNext()) { iterator.next(); count++; } return Ints.saturatedCast(count); } /** Returns {@code true} if {@code iterator} contains {@code element}. */ public static boolean contains(Iterator iterator, @CheckForNull Object element) { if (element == null) { while (iterator.hasNext()) { if (iterator.next() == null) { return true; } } } else { while (iterator.hasNext()) { if (element.equals(iterator.next())) { return true; } } } return false; } /** * Traverses an iterator and removes every element that belongs to the provided collection. The * iterator will be left exhausted: its {@code hasNext()} method will return {@code false}. * * @param removeFrom the iterator to (potentially) remove elements from * @param elementsToRemove the elements to remove * @return {@code true} if any element was removed from {@code iterator} */ @CanIgnoreReturnValue public static boolean removeAll(Iterator removeFrom, Collection elementsToRemove) { checkNotNull(elementsToRemove); boolean result = false; while (removeFrom.hasNext()) { if (elementsToRemove.contains(removeFrom.next())) { removeFrom.remove(); result = true; } } return result; } /** * Removes every element that satisfies the provided predicate from the iterator. The iterator * will be left exhausted: its {@code hasNext()} method will return {@code false}. * * @param removeFrom the iterator to (potentially) remove elements from * @param predicate a predicate that determines whether an element should be removed * @return {@code true} if any elements were removed from the iterator * @since 2.0 */ @CanIgnoreReturnValue public static boolean removeIf( Iterator removeFrom, Predicate predicate) { checkNotNull(predicate); boolean modified = false; while (removeFrom.hasNext()) { if (predicate.apply(removeFrom.next())) { removeFrom.remove(); modified = true; } } return modified; } /** * Traverses an iterator and removes every element that does not belong to the provided * collection. The iterator will be left exhausted: its {@code hasNext()} method will return * {@code false}. * * @param removeFrom the iterator to (potentially) remove elements from * @param elementsToRetain the elements to retain * @return {@code true} if any element was removed from {@code iterator} */ @CanIgnoreReturnValue public static boolean retainAll(Iterator removeFrom, Collection elementsToRetain) { checkNotNull(elementsToRetain); boolean result = false; while (removeFrom.hasNext()) { if (!elementsToRetain.contains(removeFrom.next())) { removeFrom.remove(); result = true; } } return result; } /** * Determines whether two iterators contain equal elements in the same order. More specifically, * this method returns {@code true} if {@code iterator1} and {@code iterator2} contain the same * number of elements and every element of {@code iterator1} is equal to the corresponding element * of {@code iterator2}. * *

Note that this will modify the supplied iterators, since they will have been advanced some * number of elements forward. */ public static boolean elementsEqual(Iterator iterator1, Iterator iterator2) { while (iterator1.hasNext()) { if (!iterator2.hasNext()) { return false; } Object o1 = iterator1.next(); Object o2 = iterator2.next(); if (!Objects.equal(o1, o2)) { return false; } } return !iterator2.hasNext(); } /** * Returns a string representation of {@code iterator}, with the format {@code [e1, e2, ..., en]}. * The iterator will be left exhausted: its {@code hasNext()} method will return {@code false}. */ public static String toString(Iterator iterator) { StringBuilder sb = new StringBuilder().append('['); boolean first = true; while (iterator.hasNext()) { if (!first) { sb.append(", "); } first = false; sb.append(iterator.next()); } return sb.append(']').toString(); } /** * Returns the single element contained in {@code iterator}. * * @throws NoSuchElementException if the iterator is empty * @throws IllegalArgumentException if the iterator contains multiple elements. The state of the * iterator is unspecified. */ @ParametricNullness public static T getOnlyElement(Iterator iterator) { T first = iterator.next(); if (!iterator.hasNext()) { return first; } StringBuilder sb = new StringBuilder().append("expected one element but was: <").append(first); for (int i = 0; i < 4 && iterator.hasNext(); i++) { sb.append(", ").append(iterator.next()); } if (iterator.hasNext()) { sb.append(", ..."); } sb.append('>'); throw new IllegalArgumentException(sb.toString()); } /** * Returns the single element contained in {@code iterator}, or {@code defaultValue} if the * iterator is empty. * * @throws IllegalArgumentException if the iterator contains multiple elements. The state of the * iterator is unspecified. */ @ParametricNullness public static T getOnlyElement( Iterator iterator, @ParametricNullness T defaultValue) { return iterator.hasNext() ? getOnlyElement(iterator) : defaultValue; } /** * Copies an iterator's elements into an array. The iterator will be left exhausted: its {@code * hasNext()} method will return {@code false}. * * @param iterator the iterator to copy * @param type the type of the elements * @return a newly-allocated array into which all the elements of the iterator have been copied */ @GwtIncompatible // Array.newInstance(Class, int) public static T[] toArray( Iterator iterator, Class< T> type) { List list = Lists.newArrayList(iterator); return Iterables.toArray(list, type); } /** * Adds all elements in {@code iterator} to {@code collection}. The iterator will be left * exhausted: its {@code hasNext()} method will return {@code false}. * * @return {@code true} if {@code collection} was modified as a result of this operation */ @CanIgnoreReturnValue public static boolean addAll( Collection addTo, Iterator iterator) { checkNotNull(addTo); checkNotNull(iterator); boolean wasModified = false; while (iterator.hasNext()) { wasModified |= addTo.add(iterator.next()); } return wasModified; } /** * Returns the number of elements in the specified iterator that equal the specified object. The * iterator will be left exhausted: its {@code hasNext()} method will return {@code false}. * * @see Collections#frequency */ public static int frequency(Iterator iterator, @CheckForNull Object element) { int count = 0; while (contains(iterator, element)) { // Since it lives in the same class, we know contains gets to the element and then stops, // though that isn't currently publicly documented. count++; } return count; } /** * Returns an iterator that cycles indefinitely over the elements of {@code iterable}. * *

The returned iterator supports {@code remove()} if the provided iterator does. After {@code * remove()} is called, subsequent cycles omit the removed element, which is no longer in {@code * iterable}. The iterator's {@code hasNext()} method returns {@code true} until {@code iterable} * is empty. * *

Warning: Typical uses of the resulting iterator may produce an infinite loop. You * should use an explicit {@code break} or be certain that you will eventually remove all the * elements. */ public static Iterator cycle(Iterable iterable) { checkNotNull(iterable); return new Iterator() { Iterator iterator = emptyModifiableIterator(); @Override public boolean hasNext() { /* * Don't store a new Iterator until we know the user can't remove() the last returned * element anymore. Otherwise, when we remove from the old iterator, we may be invalidating * the new one. The result is a ConcurrentModificationException or other bad behavior. * * (If we decide that we really, really hate allocating two Iterators per cycle instead of * one, we can optimistically store the new Iterator and then be willing to throw it out if * the user calls remove().) */ return iterator.hasNext() || iterable.iterator().hasNext(); } @Override @ParametricNullness public T next() { if (!iterator.hasNext()) { iterator = iterable.iterator(); if (!iterator.hasNext()) { throw new NoSuchElementException(); } } return iterator.next(); } @Override public void remove() { iterator.remove(); } }; } /** * Returns an iterator that cycles indefinitely over the provided elements. * *

The returned iterator supports {@code remove()}. After {@code remove()} is called, * subsequent cycles omit the removed element, but {@code elements} does not change. The * iterator's {@code hasNext()} method returns {@code true} until all of the original elements * have been removed. * *

Warning: Typical uses of the resulting iterator may produce an infinite loop. You * should use an explicit {@code break} or be certain that you will eventually remove all the * elements. */ @SafeVarargs public static Iterator cycle(T... elements) { return cycle(Lists.newArrayList(elements)); } /** * Returns an Iterator that walks the specified array, nulling out elements behind it. This can * avoid memory leaks when an element is no longer necessary. * *

This method accepts an array with element type {@code T}, but callers must pass an * array whose contents are initially non-null. The {@code } annotation indicates that * this method will write nulls into the array during iteration. * *

This is mainly just to avoid the intermediate ArrayDeque in ConsumingQueueIterator. */ private static > Iterator consumingForArray( I... elements) { return new UnmodifiableIterator() { int index = 0; @Override public boolean hasNext() { return index < elements.length; } @Override public I next() { if (!hasNext()) { throw new NoSuchElementException(); } /* * requireNonNull is safe because our callers always pass non-null arguments. Each element * of the array becomes null only when we iterate past it and then clear it. */ I result = requireNonNull(elements[index]); elements[index] = null; index++; return result; } }; } /** * Combines two iterators into a single iterator. The returned iterator iterates across the * elements in {@code a}, followed by the elements in {@code b}. The source iterators are not * polled until necessary. * *

The returned iterator supports {@code remove()} when the corresponding input iterator * supports it. */ public static Iterator concat( Iterator a, Iterator b) { checkNotNull(a); checkNotNull(b); return concat(consumingForArray(a, b)); } /** * Combines three iterators into a single iterator. The returned iterator iterates across the * elements in {@code a}, followed by the elements in {@code b}, followed by the elements in * {@code c}. The source iterators are not polled until necessary. * *

The returned iterator supports {@code remove()} when the corresponding input iterator * supports it. */ public static Iterator concat( Iterator a, Iterator b, Iterator c) { checkNotNull(a); checkNotNull(b); checkNotNull(c); return concat(consumingForArray(a, b, c)); } /** * Combines four iterators into a single iterator. The returned iterator iterates across the * elements in {@code a}, followed by the elements in {@code b}, followed by the elements in * {@code c}, followed by the elements in {@code d}. The source iterators are not polled until * necessary. * *

The returned iterator supports {@code remove()} when the corresponding input iterator * supports it. */ public static Iterator concat( Iterator a, Iterator b, Iterator c, Iterator d) { checkNotNull(a); checkNotNull(b); checkNotNull(c); checkNotNull(d); return concat(consumingForArray(a, b, c, d)); } /** * Combines multiple iterators into a single iterator. The returned iterator iterates across the * elements of each iterator in {@code inputs}. The input iterators are not polled until * necessary. * *

The returned iterator supports {@code remove()} when the corresponding input iterator * supports it. * * @throws NullPointerException if any of the provided iterators is null */ @SafeVarargs public static Iterator concat(Iterator... inputs) { return concatNoDefensiveCopy(Arrays.copyOf(inputs, inputs.length)); } /** * Combines multiple iterators into a single iterator. The returned iterator iterates across the * elements of each iterator in {@code inputs}. The input iterators are not polled until * necessary. * *

The returned iterator supports {@code remove()} when the corresponding input iterator * supports it. The methods of the returned iterator may throw {@code NullPointerException} if any * of the input iterators is null. */ public static Iterator concat( Iterator> inputs) { return new ConcatenatedIterator<>(inputs); } /** Concats a varargs array of iterators without making a defensive copy of the array. */ static Iterator concatNoDefensiveCopy( Iterator... inputs) { for (Iterator input : checkNotNull(inputs)) { checkNotNull(input); } return concat(consumingForArray(inputs)); } /** * Divides an iterator into unmodifiable sublists of the given size (the final list may be * smaller). For example, partitioning an iterator containing {@code [a, b, c, d, e]} with a * partition size of 3 yields {@code [[a, b, c], [d, e]]} -- an outer iterator containing two * inner lists of three and two elements, all in the original order. * *

The returned lists implement {@link java.util.RandomAccess}. * *

Note: The current implementation eagerly allocates storage for {@code size} elements. * As a consequence, passing values like {@code Integer.MAX_VALUE} can lead to {@link * OutOfMemoryError}. * * @param iterator the iterator to return a partitioned view of * @param size the desired size of each partition (the last may be smaller) * @return an iterator of immutable lists containing the elements of {@code iterator} divided into * partitions * @throws IllegalArgumentException if {@code size} is nonpositive */ public static UnmodifiableIterator> partition( Iterator iterator, int size) { return partitionImpl(iterator, size, false); } /** * Divides an iterator into unmodifiable sublists of the given size, padding the final iterator * with null values if necessary. For example, partitioning an iterator containing {@code [a, b, * c, d, e]} with a partition size of 3 yields {@code [[a, b, c], [d, e, null]]} -- an outer * iterator containing two inner lists of three elements each, all in the original order. * *

The returned lists implement {@link java.util.RandomAccess}. * * @param iterator the iterator to return a partitioned view of * @param size the desired size of each partition * @return an iterator of immutable lists containing the elements of {@code iterator} divided into * partitions (the final iterable may have trailing null elements) * @throws IllegalArgumentException if {@code size} is nonpositive */ public static UnmodifiableIterator> paddedPartition(Iterator iterator, int size) { return partitionImpl(iterator, size, true); } private static UnmodifiableIterator> partitionImpl( Iterator iterator, int size, boolean pad) { checkNotNull(iterator); checkArgument(size > 0); return new UnmodifiableIterator>() { @Override public boolean hasNext() { return iterator.hasNext(); } @Override public List< T> next() { if (!hasNext()) { throw new NoSuchElementException(); } @SuppressWarnings("unchecked") // we only put Ts in it T[] array = ( T[]) new Object[size]; int count = 0; for (; count < size && iterator.hasNext(); count++) { array[count] = iterator.next(); } for (int i = count; i < size; i++) { array[i] = null; // for GWT } List< T> list = unmodifiableList(asList(array)); // TODO(b/192579700): Use a ternary once it no longer confuses our nullness checker. if (pad || count == size) { return list; } else { return list.subList(0, count); } } }; } /** * Returns a view of {@code unfiltered} containing all elements that satisfy the input predicate * {@code retainIfTrue}. */ public static UnmodifiableIterator filter( Iterator unfiltered, Predicate retainIfTrue) { checkNotNull(unfiltered); checkNotNull(retainIfTrue); return new AbstractIterator() { @Override @CheckForNull protected T computeNext() { while (unfiltered.hasNext()) { T element = unfiltered.next(); if (retainIfTrue.apply(element)) { return element; } } return endOfData(); } }; } /** * Returns a view of {@code unfiltered} containing all elements that are of the type {@code * desiredType}. */ @SuppressWarnings("unchecked") // can cast to because non-Ts are removed @GwtIncompatible // Class.isInstance public static UnmodifiableIterator filter(Iterator unfiltered, Class desiredType) { return (UnmodifiableIterator) filter(unfiltered, instanceOf(desiredType)); } /** * Returns {@code true} if one or more elements returned by {@code iterator} satisfy the given * predicate. */ public static boolean any( Iterator iterator, Predicate predicate) { return indexOf(iterator, predicate) != -1; } /** * Returns {@code true} if every element returned by {@code iterator} satisfies the given * predicate. If {@code iterator} is empty, {@code true} is returned. */ public static boolean all( Iterator iterator, Predicate predicate) { checkNotNull(predicate); while (iterator.hasNext()) { T element = iterator.next(); if (!predicate.apply(element)) { return false; } } return true; } /** * Returns the first element in {@code iterator} that satisfies the given predicate; use this * method only when such an element is known to exist. If no such element is found, the iterator * will be left exhausted: its {@code hasNext()} method will return {@code false}. If it is * possible that no element will match, use {@link #tryFind} or {@link #find(Iterator, * Predicate, Object)} instead. * * @throws NoSuchElementException if no element in {@code iterator} matches the given predicate */ @ParametricNullness public static T find( Iterator iterator, Predicate predicate) { checkNotNull(iterator); checkNotNull(predicate); while (iterator.hasNext()) { T t = iterator.next(); if (predicate.apply(t)) { return t; } } throw new NoSuchElementException(); } /** * Returns the first element in {@code iterator} that satisfies the given predicate. If no such * element is found, {@code defaultValue} will be returned from this method and the iterator will * be left exhausted: its {@code hasNext()} method will return {@code false}. Note that this can * usually be handled more naturally using {@code tryFind(iterator, predicate).or(defaultValue)}. * * @since 7.0 */ // For discussion of this signature, see the corresponding overload of *Iterables*.find. @CheckForNull public static T find( Iterator iterator, Predicate predicate, @CheckForNull T defaultValue) { checkNotNull(iterator); checkNotNull(predicate); while (iterator.hasNext()) { T t = iterator.next(); if (predicate.apply(t)) { return t; } } return defaultValue; } /** * Returns an {@link Optional} containing the first element in {@code iterator} that satisfies the * given predicate, if such an element exists. If no such element is found, an empty {@link * Optional} will be returned from this method and the iterator will be left exhausted: its {@code * hasNext()} method will return {@code false}. * *

Warning: avoid using a {@code predicate} that matches {@code null}. If {@code null} * is matched in {@code iterator}, a NullPointerException will be thrown. * * @since 11.0 */ public static Optional tryFind(Iterator iterator, Predicate predicate) { checkNotNull(iterator); checkNotNull(predicate); while (iterator.hasNext()) { T t = iterator.next(); if (predicate.apply(t)) { return Optional.of(t); } } return Optional.absent(); } /** * Returns the index in {@code iterator} of the first element that satisfies the provided {@code * predicate}, or {@code -1} if the Iterator has no such elements. * *

More formally, returns the lowest index {@code i} such that {@code * predicate.apply(Iterators.get(iterator, i))} returns {@code true}, or {@code -1} if there is no * such index. * *

If -1 is returned, the iterator will be left exhausted: its {@code hasNext()} method will * return {@code false}. Otherwise, the iterator will be set to the element which satisfies the * {@code predicate}. * * @since 2.0 */ public static int indexOf( Iterator iterator, Predicate predicate) { checkNotNull(predicate, "predicate"); for (int i = 0; iterator.hasNext(); i++) { T current = iterator.next(); if (predicate.apply(current)) { return i; } } return -1; } /** * Returns a view containing the result of applying {@code function} to each element of {@code * fromIterator}. * *

The returned iterator supports {@code remove()} if {@code fromIterator} does. After a * successful {@code remove()} call, {@code fromIterator} no longer contains the corresponding * element. */ public static Iterator transform( Iterator fromIterator, Function function) { checkNotNull(function); return new TransformedIterator(fromIterator) { @ParametricNullness @Override T transform(@ParametricNullness F from) { return function.apply(from); } }; } /** * Advances {@code iterator} {@code position + 1} times, returning the element at the {@code * position}th position. * * @param position position of the element to return * @return the element at the specified position in {@code iterator} * @throws IndexOutOfBoundsException if {@code position} is negative or greater than or equal to * the number of elements remaining in {@code iterator} */ @ParametricNullness public static T get(Iterator iterator, int position) { checkNonnegative(position); int skipped = advance(iterator, position); if (!iterator.hasNext()) { throw new IndexOutOfBoundsException( "position (" + position + ") must be less than the number of elements that remained (" + skipped + ")"); } return iterator.next(); } /** * Advances {@code iterator} {@code position + 1} times, returning the element at the {@code * position}th position or {@code defaultValue} otherwise. * * @param position position of the element to return * @param defaultValue the default value to return if the iterator is empty or if {@code position} * is greater than the number of elements remaining in {@code iterator} * @return the element at the specified position in {@code iterator} or {@code defaultValue} if * {@code iterator} produces fewer than {@code position + 1} elements. * @throws IndexOutOfBoundsException if {@code position} is negative * @since 4.0 */ @ParametricNullness public static T get( Iterator iterator, int position, @ParametricNullness T defaultValue) { checkNonnegative(position); advance(iterator, position); return getNext(iterator, defaultValue); } static void checkNonnegative(int position) { if (position < 0) { throw new IndexOutOfBoundsException("position (" + position + ") must not be negative"); } } /** * Returns the next element in {@code iterator} or {@code defaultValue} if the iterator is empty. * The {@link Iterables} analog to this method is {@link Iterables#getFirst}. * * @param defaultValue the default value to return if the iterator is empty * @return the next element of {@code iterator} or the default value * @since 7.0 */ @ParametricNullness public static T getNext( Iterator iterator, @ParametricNullness T defaultValue) { return iterator.hasNext() ? iterator.next() : defaultValue; } /** * Advances {@code iterator} to the end, returning the last element. * * @return the last element of {@code iterator} * @throws NoSuchElementException if the iterator is empty */ @ParametricNullness public static T getLast(Iterator iterator) { while (true) { T current = iterator.next(); if (!iterator.hasNext()) { return current; } } } /** * Advances {@code iterator} to the end, returning the last element or {@code defaultValue} if the * iterator is empty. * * @param defaultValue the default value to return if the iterator is empty * @return the last element of {@code iterator} * @since 3.0 */ @ParametricNullness public static T getLast( Iterator iterator, @ParametricNullness T defaultValue) { return iterator.hasNext() ? getLast(iterator) : defaultValue; } /** * Calls {@code next()} on {@code iterator}, either {@code numberToAdvance} times or until {@code * hasNext()} returns {@code false}, whichever comes first. * * @return the number of elements the iterator was advanced * @since 13.0 (since 3.0 as {@code Iterators.skip}) */ @CanIgnoreReturnValue public static int advance(Iterator iterator, int numberToAdvance) { checkNotNull(iterator); checkArgument(numberToAdvance >= 0, "numberToAdvance must be nonnegative"); int i; for (i = 0; i < numberToAdvance && iterator.hasNext(); i++) { iterator.next(); } return i; } /** * Returns a view containing the first {@code limitSize} elements of {@code iterator}. If {@code * iterator} contains fewer than {@code limitSize} elements, the returned view contains all of its * elements. The returned iterator supports {@code remove()} if {@code iterator} does. * * @param iterator the iterator to limit * @param limitSize the maximum number of elements in the returned iterator * @throws IllegalArgumentException if {@code limitSize} is negative * @since 3.0 */ public static Iterator limit( Iterator iterator, int limitSize) { checkNotNull(iterator); checkArgument(limitSize >= 0, "limit is negative"); return new Iterator() { private int count; @Override public boolean hasNext() { return count < limitSize && iterator.hasNext(); } @Override @ParametricNullness public T next() { if (!hasNext()) { throw new NoSuchElementException(); } count++; return iterator.next(); } @Override public void remove() { iterator.remove(); } }; } /** * Returns a view of the supplied {@code iterator} that removes each element from the supplied * {@code iterator} as it is returned. * *

The provided iterator must support {@link Iterator#remove()} or else the returned iterator * will fail on the first call to {@code next}. The returned {@link Iterator} is also not * thread-safe. * * @param iterator the iterator to remove and return elements from * @return an iterator that removes and returns elements from the supplied iterator * @since 2.0 */ public static Iterator consumingIterator(Iterator iterator) { checkNotNull(iterator); return new UnmodifiableIterator() { @Override public boolean hasNext() { return iterator.hasNext(); } @Override @ParametricNullness public T next() { T next = iterator.next(); iterator.remove(); return next; } @Override public String toString() { return "Iterators.consumingIterator(...)"; } }; } /** * Deletes and returns the next value from the iterator, or returns {@code null} if there is no * such value. */ @CheckForNull static T pollNext(Iterator iterator) { if (iterator.hasNext()) { T result = iterator.next(); iterator.remove(); return result; } else { return null; } } // Methods only in Iterators, not in Iterables /** Clears the iterator using its remove method. */ static void clear(Iterator iterator) { checkNotNull(iterator); while (iterator.hasNext()) { iterator.next(); iterator.remove(); } } /** * Returns an iterator containing the elements of {@code array} in order. The returned iterator is * a view of the array; subsequent changes to the array will be reflected in the iterator. * *

Note: It is often preferable to represent your data using a collection type, for * example using {@link Arrays#asList(Object[])}, making this method unnecessary. * *

The {@code Iterable} equivalent of this method is either {@link Arrays#asList(Object[])}, * {@link ImmutableList#copyOf(Object[])}}, or {@link ImmutableList#of}. */ @SafeVarargs public static UnmodifiableIterator forArray(T... array) { return forArrayWithPosition(array, 0); } /** * Returns a list iterator containing the elements in the specified {@code array} in order, * starting at the specified {@code position}. * *

The {@code Iterable} equivalent of this method is {@code * Arrays.asList(array).listIterator(position)}. */ static UnmodifiableListIterator forArrayWithPosition( T[] array, int position) { if (array.length == 0) { Preconditions.checkPositionIndex(position, array.length); // otherwise checked in ArrayItr return emptyListIterator(); } return new ArrayItr<>(array, position); } private static final class ArrayItr extends AbstractIndexedListIterator { static final UnmodifiableListIterator EMPTY = new ArrayItr<>(new Object[0], 0); private final T[] array; ArrayItr(T[] array, int position) { super(array.length, position); this.array = array; } @Override @ParametricNullness protected T get(int index) { return array[index]; } } /** * Returns an iterator containing only {@code value}. * *

The {@link Iterable} equivalent of this method is {@link Collections#singleton}. */ public static UnmodifiableIterator singletonIterator( @ParametricNullness T value) { return new SingletonIterator<>(value); } private static final class SingletonIterator extends UnmodifiableIterator { private final T value; private boolean done; SingletonIterator(T value) { this.value = value; } @Override public boolean hasNext() { return !done; } @Override @ParametricNullness public T next() { if (done) { throw new NoSuchElementException(); } done = true; return value; } } /** * Adapts an {@code Enumeration} to the {@code Iterator} interface. * *

This method has no equivalent in {@link Iterables} because viewing an {@code Enumeration} as * an {@code Iterable} is impossible. However, the contents can be copied into a collection * using {@link Collections#list}. * *

Java 9 users: use {@code enumeration.asIterator()} instead, unless it is important to * return an {@code UnmodifiableIterator} instead of a plain {@code Iterator}. */ public static UnmodifiableIterator forEnumeration( Enumeration enumeration) { checkNotNull(enumeration); return new UnmodifiableIterator() { @Override public boolean hasNext() { return enumeration.hasMoreElements(); } @Override @ParametricNullness public T next() { return enumeration.nextElement(); } }; } /** * Adapts an {@code Iterator} to the {@code Enumeration} interface. * *

The {@code Iterable} equivalent of this method is either {@link Collections#enumeration} (if * you have a {@link Collection}), or {@code Iterators.asEnumeration(collection.iterator())}. */ public static Enumeration asEnumeration(Iterator iterator) { checkNotNull(iterator); return new Enumeration() { @Override public boolean hasMoreElements() { return iterator.hasNext(); } @Override @ParametricNullness public T nextElement() { return iterator.next(); } }; } /** Implementation of PeekingIterator that avoids peeking unless necessary. */ private static class PeekingImpl implements PeekingIterator { private final Iterator iterator; private boolean hasPeeked; @CheckForNull private E peekedElement; public PeekingImpl(Iterator iterator) { this.iterator = checkNotNull(iterator); } @Override public boolean hasNext() { return hasPeeked || iterator.hasNext(); } @Override @ParametricNullness public E next() { if (!hasPeeked) { return iterator.next(); } // The cast is safe because of the hasPeeked check. E result = uncheckedCastNullableTToT(peekedElement); hasPeeked = false; peekedElement = null; return result; } @Override public void remove() { checkState(!hasPeeked, "Can't remove after you've peeked at next"); iterator.remove(); } @Override @ParametricNullness public E peek() { if (!hasPeeked) { peekedElement = iterator.next(); hasPeeked = true; } // The cast is safe because of the hasPeeked check. return uncheckedCastNullableTToT(peekedElement); } } /** * Returns a {@code PeekingIterator} backed by the given iterator. * *

Calls to the {@code peek} method with no intervening calls to {@code next} do not affect the * iteration, and hence return the same object each time. A subsequent call to {@code next} is * guaranteed to return the same object again. For example: * *

{@code
   * PeekingIterator peekingIterator =
   *     Iterators.peekingIterator(Iterators.forArray("a", "b"));
   * String a1 = peekingIterator.peek(); // returns "a"
   * String a2 = peekingIterator.peek(); // also returns "a"
   * String a3 = peekingIterator.next(); // also returns "a"
   * }
* *

Any structural changes to the underlying iteration (aside from those performed by the * iterator's own {@link PeekingIterator#remove()} method) will leave the iterator in an undefined * state. * *

The returned iterator does not support removal after peeking, as explained by {@link * PeekingIterator#remove()}. * *

Note: If the given iterator is already a {@code PeekingIterator}, it might be * returned to the caller, although this is neither guaranteed to occur nor required to be * consistent. For example, this method might choose to pass through recognized * implementations of {@code PeekingIterator} when the behavior of the implementation is known to * meet the contract guaranteed by this method. * *

There is no {@link Iterable} equivalent to this method, so use this method to wrap each * individual iterator as it is generated. * * @param iterator the backing iterator. The {@link PeekingIterator} assumes ownership of this * iterator, so users should cease making direct calls to it after calling this method. * @return a peeking iterator backed by that iterator. Apart from the additional {@link * PeekingIterator#peek()} method, this iterator behaves exactly the same as {@code iterator}. */ public static PeekingIterator peekingIterator( Iterator iterator) { if (iterator instanceof PeekingImpl) { // Safe to cast to because PeekingImpl only uses T // covariantly (and cannot be subclassed to add non-covariant uses). @SuppressWarnings("unchecked") PeekingImpl peeking = (PeekingImpl) iterator; return peeking; } return new PeekingImpl<>(iterator); } /** * Simply returns its argument. * * @deprecated no need to use this * @since 10.0 */ @Deprecated public static PeekingIterator peekingIterator( PeekingIterator iterator) { return checkNotNull(iterator); } /** * Returns an iterator over the merged contents of all given {@code iterators}, traversing every * element of the input iterators. Equivalent entries will not be de-duplicated. * *

Callers must ensure that the source {@code iterators} are in non-descending order as this * method does not sort its input. * *

For any equivalent elements across all {@code iterators}, it is undefined which element is * returned first. * * @since 11.0 */ public static UnmodifiableIterator mergeSorted( Iterable> iterators, Comparator comparator) { checkNotNull(iterators, "iterators"); checkNotNull(comparator, "comparator"); return new MergingIterator<>(iterators, comparator); } /** * An iterator that performs a lazy N-way merge, calculating the next value each time the iterator * is polled. This amortizes the sorting cost over the iteration and requires less memory than * sorting all elements at once. * *

Retrieving a single element takes approximately O(log(M)) time, where M is the number of * iterators. (Retrieving all elements takes approximately O(N*log(M)) time, where N is the total * number of elements.) */ private static class MergingIterator extends UnmodifiableIterator { final Queue> queue; public MergingIterator( Iterable> iterators, Comparator itemComparator) { // A comparator that's used by the heap, allowing the heap // to be sorted based on the top of each iterator. Comparator> heapComparator = (PeekingIterator o1, PeekingIterator o2) -> itemComparator.compare(o1.peek(), o2.peek()); queue = new PriorityQueue<>(2, heapComparator); for (Iterator iterator : iterators) { if (iterator.hasNext()) { queue.add(Iterators.peekingIterator(iterator)); } } } @Override public boolean hasNext() { return !queue.isEmpty(); } @Override @ParametricNullness public T next() { PeekingIterator nextIter = queue.remove(); T next = nextIter.next(); if (nextIter.hasNext()) { queue.add(nextIter); } return next; } } private static class ConcatenatedIterator implements Iterator { /* The last iterator to return an element. Calls to remove() go to this iterator. */ @CheckForNull private Iterator toRemove; /* The iterator currently returning elements. */ private Iterator iterator; /* * We track the "meta iterators," the iterators-of-iterators, below. Usually, topMetaIterator * is the only one in use, but if we encounter nested concatenations, we start a deque of * meta-iterators rather than letting the nesting get arbitrarily deep. This keeps each * operation O(1). */ @CheckForNull private Iterator> topMetaIterator; // Only becomes nonnull if we encounter nested concatenations. @CheckForNull private Deque>> metaIterators; ConcatenatedIterator(Iterator> metaIterator) { iterator = emptyIterator(); topMetaIterator = checkNotNull(metaIterator); } // Returns a nonempty meta-iterator or, if all meta-iterators are empty, null. @CheckForNull private Iterator> getTopMetaIterator() { while (topMetaIterator == null || !topMetaIterator.hasNext()) { if (metaIterators != null && !metaIterators.isEmpty()) { topMetaIterator = metaIterators.removeFirst(); } else { return null; } } return topMetaIterator; } @Override public boolean hasNext() { while (!checkNotNull(iterator).hasNext()) { // this weird checkNotNull positioning appears required by our tests, which expect // both hasNext and next to throw NPE if an input iterator is null. topMetaIterator = getTopMetaIterator(); if (topMetaIterator == null) { return false; } iterator = topMetaIterator.next(); if (iterator instanceof ConcatenatedIterator) { // Instead of taking linear time in the number of nested concatenations, unpack // them into the queue @SuppressWarnings("unchecked") ConcatenatedIterator topConcat = (ConcatenatedIterator) iterator; iterator = topConcat.iterator; // topConcat.topMetaIterator, then topConcat.metaIterators, then this.topMetaIterator, // then this.metaIterators if (this.metaIterators == null) { this.metaIterators = new ArrayDeque<>(); } this.metaIterators.addFirst(this.topMetaIterator); if (topConcat.metaIterators != null) { while (!topConcat.metaIterators.isEmpty()) { this.metaIterators.addFirst(topConcat.metaIterators.removeLast()); } } this.topMetaIterator = topConcat.topMetaIterator; } } return true; } @Override @ParametricNullness public T next() { if (hasNext()) { toRemove = iterator; return iterator.next(); } else { throw new NoSuchElementException(); } } @Override public void remove() { if (toRemove == null) { throw new IllegalStateException("no calls to next() since the last call to remove()"); } toRemove.remove(); toRemove = null; } } }