All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.testing.GcFinalization Maven / Gradle / Ivy

Go to download

Guava testlib is a set of java classes used for more convenient unit testing - particularly to assist the tests for Guava itself.

There is a newer version: 17.0
Show newest version
/*
 * Copyright (C) 2011 The Guava Authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.testing;

import static java.util.concurrent.TimeUnit.SECONDS;

import com.google.common.annotations.Beta;

import java.lang.ref.WeakReference;
import java.util.concurrent.CancellationException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;
import java.util.concurrent.TimeoutException;

/**
 * Testing utilities relating to garbage collection finalization.
 *
 * 

Use this class to test code triggered by finalization, that is, one of the * following actions taken by the java garbage collection system: * *

    *
  • invoking the {@code finalize} methods of unreachable objects *
  • clearing weak references to unreachable referents *
  • enqueuing weak references to unreachable referents in their reference queue *
* *

This class uses (possibly repeated) invocations of {@link java.lang.System#gc()} to cause * finalization to happen. However, a call to {@code System.gc()} is specified to be no more * than a hint, so this technique may fail at the whim of the JDK implementation, for example if * a user specified the JVM flag {@code -XX:+DisableExplicitGC}. But in practice, it works very * well for ordinary tests. * *

Failure of the expected event to occur within an implementation-defined "reasonable" time * period or an interrupt while waiting for the expected event will result in a {@link * RuntimeException}. * *

Here's an example that tests a {@code finalize} method: * *

   {@code
 *   final CountDownLatch latch = new CountDownLatch(1);
 *   Object x = new MyClass() {
 *     ...
 *     protected void finalize() { latch.countDown(); ... }
 *   };
 *   x = null;  // Hint to the JIT that x is stack-unreachable
 *   GcFinalization.await(latch);}
* *

Here's an example that uses a user-defined finalization predicate: * *

   {@code
 *   final WeakHashMap map = new WeakHashMap();
 *   map.put(new Object(), Boolean.TRUE);
 *   GcFinalization.awaitDone(new FinalizationPredicate() {
 *     public boolean isDone() {
 *       return map.isEmpty();
 *     }
 *   });}
* *

Even if your non-test code does not use finalization, you can * use this class to test for leaks, by ensuring that objects are no * longer strongly referenced: * *

 {@code
 * // Helper function keeps victim stack-unreachable.
 * private WeakReference fooWeakRef() {
 *   Foo x = ....;
 *   WeakReference weakRef = new WeakReference(x);
 *   // ... use x ...
 *   x = null;  // Hint to the JIT that x is stack-unreachable
 *   return weakRef;
 * }
 * public void testFooLeak() {
 *   GcFinalization.awaitClear(fooWeakRef());
 * }}
* *

This class cannot currently be used to test soft references, since this class does not try to * create the memory pressure required to cause soft references to be cleared. * *

This class only provides testing utilities. It is not designed for direct use in production * or for benchmarking. * * @author mike nonemacher * @author Martin Buchholz * @since 11.0 */ @Beta public final class GcFinalization { private GcFinalization() {} /** * 10 seconds ought to be long enough for any object to be GC'ed and finalized. Unless we have a * gigantic heap, in which case we scale by heap size. */ private static long timeoutSeconds() { // This class can make no hard guarantees. The methods in this class are inherently flaky, but // we try hard to make them robust in practice. We could additionally try to add in a system // load timeout multiplier. Or we could try to use a CPU time bound instead of wall clock time // bound. But these ideas are harder to implement. We do not try to detect or handle a // user-specified -XX:+DisableExplicitGC. // // TODO(user): Consider using // java/lang/management/OperatingSystemMXBean.html#getSystemLoadAverage() // // TODO(user): Consider scaling by number of mutator threads, // e.g. using Thread#activeCount() return Math.max(10L, Runtime.getRuntime().totalMemory() / (32L * 1024L * 1024L)); } /** * Waits until the given future {@linkplain Future#isDone is done}, invoking the garbage * collector as necessary to try to ensure that this will happen. * * @throws RuntimeException if timed out or interrupted while waiting */ public static void awaitDone(Future future) { if (future.isDone()) { return; } final long timeoutSeconds = timeoutSeconds(); final long deadline = System.nanoTime() + SECONDS.toNanos(timeoutSeconds); do { System.runFinalization(); if (future.isDone()) { return; } System.gc(); try { future.get(1L, SECONDS); return; } catch (CancellationException ok) { return; } catch (ExecutionException ok) { return; } catch (InterruptedException ie) { throw new RuntimeException("Unexpected interrupt while waiting for future", ie); } catch (TimeoutException tryHarder) { /* OK */ } } while (System.nanoTime() - deadline < 0); throw new RuntimeException( String.format("Future not done within %d second timeout", timeoutSeconds)); } /** * Waits until the given latch has {@linkplain CountDownLatch#countDown counted down} to zero, * invoking the garbage collector as necessary to try to ensure that this will happen. * * @throws RuntimeException if timed out or interrupted while waiting */ public static void await(CountDownLatch latch) { if (latch.getCount() == 0) { return; } final long timeoutSeconds = timeoutSeconds(); final long deadline = System.nanoTime() + SECONDS.toNanos(timeoutSeconds); do { System.runFinalization(); if (latch.getCount() == 0) { return; } System.gc(); try { if (latch.await(1L, SECONDS)) { return; } } catch (InterruptedException ie) { throw new RuntimeException("Unexpected interrupt while waiting for latch", ie); } } while (System.nanoTime() - deadline < 0); throw new RuntimeException( String.format("Latch failed to count down within %d second timeout", timeoutSeconds)); } /** * Creates a garbage object that counts down the latch in its finalizer. Sequestered into a * separate method to make it somewhat more likely to be unreachable. */ private static void createUnreachableLatchFinalizer(final CountDownLatch latch) { new Object() { @Override protected void finalize() { latch.countDown(); }}; } /** * A predicate that is expected to return true subsequent to finalization, that is, one * of the following actions taken by the garbage collector when performing a full collection in * response to {@link System#gc()}: * *

    *
  • invoking the {@code finalize} methods of unreachable objects *
  • clearing weak references to unreachable referents *
  • enqueuing weak references to unreachable referents in their reference queue *
*/ public interface FinalizationPredicate { boolean isDone(); } /** * Waits until the given predicate returns true, invoking the garbage collector as necessary to * try to ensure that this will happen. * * @throws RuntimeException if timed out or interrupted while waiting */ public static void awaitDone(FinalizationPredicate predicate) { if (predicate.isDone()) { return; } final long timeoutSeconds = timeoutSeconds(); final long deadline = System.nanoTime() + SECONDS.toNanos(timeoutSeconds); do { System.runFinalization(); if (predicate.isDone()) { return; } CountDownLatch done = new CountDownLatch(1); createUnreachableLatchFinalizer(done); await(done); if (predicate.isDone()) { return; } } while (System.nanoTime() - deadline < 0); throw new RuntimeException( String.format("Predicate did not become true within %d second timeout", timeoutSeconds)); } /** * Waits until the given weak reference is cleared, invoking the garbage collector as necessary * to try to ensure that this will happen. * *

This is a convenience method, equivalent to: *

   {@code
   *   awaitDone(new FinalizationPredicate() {
   *     public boolean isDone() {
   *       return ref.get() == null;
   *     }
   *   });}
* * @throws RuntimeException if timed out or interrupted while waiting */ public static void awaitClear(final WeakReference ref) { awaitDone(new FinalizationPredicate() { public boolean isDone() { return ref.get() == null; } }); } /** * Tries to perform a "full" garbage collection cycle (including processing of weak references * and invocation of finalize methods) and waits for it to complete. Ensures that at least one * weak reference has been cleared and one {@code finalize} method has been run before this * method returns. This method may be useful when testing the garbage collection mechanism * itself, or inhibiting a spontaneous GC initiation in subsequent code. * *

In contrast, a plain call to {@link java.lang.System#gc()} does not ensure finalization * processing and may run concurrently, for example, if the JVM flag {@code * -XX:+ExplicitGCInvokesConcurrent} is used. * *

Whenever possible, it is preferable to test directly for some observable change resulting * from GC, as with {@link #awaitClear}. Because there are no guarantees for the order of GC * finalization processing, there may still be some unfinished work for the GC to do after this * method returns. * *

This method does not create any memory pressure as would be required to cause soft * references to be processed. * * @throws RuntimeException if timed out or interrupted while waiting * @since 12.0 */ public static void awaitFullGc() { final CountDownLatch finalizerRan = new CountDownLatch(1); WeakReference ref = new WeakReference( new Object() { @Override protected void finalize() { finalizerRan.countDown(); } }); await(finalizerRan); awaitClear(ref); // Hope to catch some stragglers queued up behind our finalizable object System.runFinalization(); } }