All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.google.common.primitives.UnsignedBytes Maven / Gradle / Ivy

Go to download

Guava is a suite of core and expanded libraries that include utility classes, google's collections, io classes, and much much more. This project is a complete packaging of all the Guava libraries into a single jar. Individual portions of Guava can be used by downloading the appropriate module and its dependencies. Guava (complete) has only one code dependency - javax.annotation, per the JSR-305 spec.

There is a newer version: 33.2.0-jre
Show newest version
/*
 * Copyright (C) 2009 Google Inc.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package com.google.common.primitives;

import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkNotNull;

import com.google.common.annotations.VisibleForTesting;

import sun.misc.Unsafe;

import java.lang.reflect.Field;
import java.nio.ByteOrder;
import java.security.AccessController;
import java.security.PrivilegedAction;
import java.util.Comparator;

/**
 * Static utility methods pertaining to {@code byte} primitives that interpret
 * values as unsigned (that is, any negative value {@code b} is treated
 * as the positive value {@code 256 + b}). The corresponding methods that treat
 * the values as signed are found in {@link SignedBytes}, and the methods for
 * which signedness is not an issue are in {@link Bytes}.
 *
 * @author Kevin Bourrillion
 * @author Martin Buchholz
 * @author Hiroshi Yamauchi
 * @since 1
 */
public final class UnsignedBytes {
  private UnsignedBytes() {}

  /**
   * Returns the value of the given byte as an integer, when treated as
   * unsigned. That is, returns {@code value + 256} if {@code value} is
   * negative; {@code value} itself otherwise.
   *
   * @since 6
   */
  public static int toInt(byte value) {
    return value & 0xFF;
  }

  /**
   * Returns the {@code byte} value that, when treated as unsigned, is equal to
   * {@code value}, if possible.
   *
   * @param value a value between 0 and 255 inclusive
   * @return the {@code byte} value that, when treated as unsigned, equals
   *     {@code value}
   * @throws IllegalArgumentException if {@code value} is negative or greater
   *     than 255
   */
  public static byte checkedCast(long value) {
    checkArgument(value >> 8 == 0, "out of range: %s", value);
    return (byte) value;
  }

  /**
   * Returns the {@code byte} value that, when treated as unsigned, is nearest
   * in value to {@code value}.
   *
   * @param value any {@code long} value
   * @return {@code (byte) 255} if {@code value >= 255}, {@code (byte) 0} if
   *     {@code value <= 0}, and {@code value} cast to {@code byte} otherwise
   */
  public static byte saturatedCast(long value) {
    if (value > 255) {
      return (byte) 255; // -1
    }
    if (value < 0) {
      return (byte) 0;
    }
    return (byte) value;
  }

  /**
   * Compares the two specified {@code byte} values, treating them as unsigned
   * values between 0 and 255 inclusive. For example, {@code (byte) -127} is
   * considered greater than {@code (byte) 127} because it is seen as having
   * the value of positive {@code 129}.
   *
   * @param a the first {@code byte} to compare
   * @param b the second {@code byte} to compare
   * @return a negative value if {@code a} is less than {@code b}; a positive
   *     value if {@code a} is greater than {@code b}; or zero if they are equal
   */
  public static int compare(byte a, byte b) {
    return toInt(a) - toInt(b);
  }

  /**
   * Returns the least value present in {@code array}.
   *
   * @param array a nonempty array of {@code byte} values
   * @return the value present in {@code array} that is less than or equal to
   *     every other value in the array
   * @throws IllegalArgumentException if {@code array} is empty
   */
  public static byte min(byte... array) {
    checkArgument(array.length > 0);
    int min = toInt(array[0]);
    for (int i = 1; i < array.length; i++) {
      int next = toInt(array[i]);
      if (next < min) {
        min = next;
      }
    }
    return (byte) min;
  }

  /**
   * Returns the greatest value present in {@code array}.
   *
   * @param array a nonempty array of {@code byte} values
   * @return the value present in {@code array} that is greater than or equal
   *     to every other value in the array
   * @throws IllegalArgumentException if {@code array} is empty
   */
  public static byte max(byte... array) {
    checkArgument(array.length > 0);
    int max = toInt(array[0]);
    for (int i = 1; i < array.length; i++) {
      int next = toInt(array[i]);
      if (next > max) {
        max = next;
      }
    }
    return (byte) max;
  }

  /**
   * Returns a string containing the supplied {@code byte} values separated by
   * {@code separator}. For example, {@code join(":", (byte) 1, (byte) 2,
   * (byte) 255)} returns the string {@code "1:2:255"}.
   *
   * @param separator the text that should appear between consecutive values in
   *     the resulting string (but not at the start or end)
   * @param array an array of {@code byte} values, possibly empty
   */
  public static String join(String separator, byte... array) {
    checkNotNull(separator);
    if (array.length == 0) {
      return "";
    }

    // For pre-sizing a builder, just get the right order of magnitude
    StringBuilder builder = new StringBuilder(array.length * 5);
    builder.append(toInt(array[0]));
    for (int i = 1; i < array.length; i++) {
      builder.append(separator).append(toInt(array[i]));
    }
    return builder.toString();
  }

  /**
   * Returns a comparator that compares two {@code byte} arrays
   * lexicographically. That is, it compares, using {@link
   * #compare(byte, byte)}), the first pair of values that follow any common
   * prefix, or when one array is a prefix of the other, treats the shorter
   * array as the lesser. For example, {@code [] < [0x01] < [0x01, 0x7F] <
   * [0x01, 0x80] < [0x02]}. Values are treated as unsigned.
   *
   * 

The returned comparator is inconsistent with {@link * Object#equals(Object)} (since arrays support only identity equality), but * it is consistent with {@link java.util.Arrays#equals(byte[], byte[])}. * * @see * Lexicographical order article at Wikipedia * @since 2 */ public static Comparator lexicographicalComparator() { return LexicographicalComparatorHolder.BEST_COMPARATOR; } @VisibleForTesting static Comparator lexicographicalComparatorJavaImpl() { return LexicographicalComparatorHolder.PureJavaComparator.INSTANCE; } /** * Provides a lexicographical comparator implementation; either a Java * implementation or a faster implementation based on {@link Unsafe}. * *

Uses reflection to gracefully fall back to the Java implementation if * {@code Unsafe} isn't available. */ private static class LexicographicalComparatorHolder { static final Comparator BEST_COMPARATOR = getBestComparator(); static final String UNSAFE_COMPARATOR_NAME = LexicographicalComparatorHolder.class.getName() + "$UnsafeComparator"; @SuppressWarnings("unused") // only access this class via reflection! enum UnsafeComparator implements Comparator { INSTANCE; static final boolean littleEndian = ByteOrder.nativeOrder().equals(ByteOrder.LITTLE_ENDIAN); /* * The following static final fields exist for performance reasons. * * In UnsignedBytesBenchmark, accessing the following objects via static * final fields is the fastest (more than twice as fast as the Java * implementation, vs ~1.5x with non-final static fields, on x86_32) * under the Hotspot server compiler. The reason is obviously that the * non-final fields need to be reloaded inside the loop. * * And, no, defining (final or not) local variables out of the loop still * isn't as good because the null check on the theUnsafe object remains * inside the loop and BYTE_ARRAY_BASE_OFFSET doesn't get * constant-folded. * * The compiler can treat static final fields as compile-time constants * and can constant-fold them while (final or not) local variables are * run time values. */ static final Unsafe theUnsafe; /** The offset to the first element in a byte array. */ static final int BYTE_ARRAY_BASE_OFFSET; static { theUnsafe = (Unsafe) AccessController.doPrivileged( new PrivilegedAction() { public Object run() { try { Field f = Unsafe.class.getDeclaredField("theUnsafe"); f.setAccessible(true); return f.get(null); } catch (NoSuchFieldException e) { // It doesn't matter what we throw; // it's swallowed in getBestComparator(). throw new Error(); } catch (IllegalAccessException e) { throw new Error(); } } }); BYTE_ARRAY_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class); // sanity check - this should never fail if (theUnsafe.arrayIndexScale(byte[].class) != 1) { throw new AssertionError(); } } /** * Returns true if x1 is less than x2, when both values are treated as * unsigned. */ // TODO(kevinb): Should be a common method in primitives.UnsignedLongs. static boolean lessThanUnsigned(long x1, long x2) { return (x1 + Long.MIN_VALUE) < (x2 + Long.MIN_VALUE); } @Override public int compare(byte[] left, byte[] right) { int minLength = Math.min(left.length, right.length); int minWords = minLength / Longs.BYTES; /* * Compare 8 bytes at a time. Benchmarking shows comparing 8 bytes at a * time is no slower than comparing 4 bytes at a time even on 32-bit. * On the other hand, it is substantially faster on 64-bit. */ for (int i = 0; i < minWords * Longs.BYTES; i += Longs.BYTES) { long lw = theUnsafe.getLong(left, BYTE_ARRAY_BASE_OFFSET + (long) i); long rw = theUnsafe.getLong(right, BYTE_ARRAY_BASE_OFFSET + (long) i); long diff = lw ^ rw; if (diff != 0) { if (!littleEndian) { return lessThanUnsigned(lw, rw) ? -1 : 1; } // Use binary search int n = 0; int y; int x = (int) diff; if (x == 0) { x = (int) (diff >>> 32); n = 32; } y = x << 16; if (y == 0) { n += 16; } else { x = y; } y = x << 8; if (y == 0) { n += 8; } return (int) (((lw >>> n) & 0xFFL) - ((rw >>> n) & 0xFFL)); } } // The epilogue to cover the last (minLength % 8) elements. for (int i = minWords * Longs.BYTES; i < minLength; i++) { int result = UnsignedBytes.compare(left[i], right[i]); if (result != 0) { return result; } } return left.length - right.length; } } enum PureJavaComparator implements Comparator { INSTANCE; @Override public int compare(byte[] left, byte[] right) { int minLength = Math.min(left.length, right.length); for (int i = 0; i < minLength; i++) { int result = UnsignedBytes.compare(left[i], right[i]); if (result != 0) { return result; } } return left.length - right.length; } } /** * Returns the Unsafe-using Comparator, or falls back to the pure-Java * implementation if unable to do so. */ static Comparator getBestComparator() { try { Class theClass = Class.forName(UNSAFE_COMPARATOR_NAME); // yes, UnsafeComparator does implement Comparator @SuppressWarnings("unchecked") Comparator comparator = (Comparator) theClass.getEnumConstants()[0]; return comparator; } catch (Throwable t) { // ensure we really catch *everything* return lexicographicalComparatorJavaImpl(); } } } }