Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2010 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
package com.google.gwt.lang;
/**
* Implements a Java long in a way that can be translated to
* JavaScript.
*/
class BigLongLibBase {
/*
* Implementation: A LongEmul containing three values {l, m, h} (low, middle,
* high) such that (x.l + ((long) x.m << 22) + ((long) x.h << 44)) is equal to
* the original long integer. The constant 22 is chosen since some browsers
* are faster when operating on integers of 24 bits or less.
*
* By convention, we expect and maintain that the upper bits of each word be
* zeroed.
*
* Note that this class must be careful using type "long". Being the
* implementation of the long type for Production Mode, any place it uses a
* long is not usable in Production Mode. There is currently one such method:
* {@link LongLib#getAsLongArray}.
*/
static class BigLong {
int l, m, h;
}
// Note that the {@link LonghLib#mul} method implicitly depends on the
// specific value BITS == 22
protected static final int BITS = 22;
protected static final int BITS01 = 2 * BITS;
protected static final int BITS2 = 64 - BITS01;
protected static final int MASK = (1 << BITS) - 1;
protected static final int MASK_2 = (1 << BITS2) - 1;
protected static BigLong remainder;
protected static final int SIGN_BIT = BITS2 - 1;
protected static final int SIGN_BIT_VALUE = 1 << SIGN_BIT;
protected static final double TWO_PWR_15_DBL = 0x8000;
protected static final double TWO_PWR_16_DBL = 0x10000;
protected static final double TWO_PWR_22_DBL = 0x400000;
protected static final double TWO_PWR_31_DBL = TWO_PWR_16_DBL
* TWO_PWR_15_DBL;
protected static final double TWO_PWR_32_DBL = TWO_PWR_16_DBL
* TWO_PWR_16_DBL;
protected static final double TWO_PWR_44_DBL = TWO_PWR_22_DBL
* TWO_PWR_22_DBL;
protected static final double TWO_PWR_63_DBL = TWO_PWR_32_DBL
* TWO_PWR_31_DBL;
protected static BigLong create(int value) {
int a0 = value & MASK;
int a1 = (value >> BITS) & MASK;
int a2 = (value < 0) ? MASK_2 : 0;
if (LongLib.RUN_IN_JVM) {
BigLong a = new BigLong();
a.l = a0;
a.m = a1;
a.h = a2;
return a;
}
return create0(a0, a1, a2);
}
protected static BigLong create(int a0, int a1, int a2) {
if (LongLib.RUN_IN_JVM) {
BigLong a = new BigLong();
a.l = a0;
a.m = a1;
a.h = a2;
return a;
}
return create0(a0, a1, a2);
}
protected static BigLong divMod(BigLong a, BigLong b,
boolean computeRemainder) {
if (isZero(b)) {
throw new ArithmeticException("divide by zero");
}
if (isZero(a)) {
if (computeRemainder) {
remainder = create(); // zero
}
return create(); // zero
}
// MIN_VALUE / MIN_VALUE = 1, anything other a / MIN_VALUE is 0
if (isMinValue(b)) {
return divModByMinValue(a, computeRemainder);
}
// Normalize b to abs(b), keeping track of the parity in 'negative'.
// We can do this because we have already ensured that b != MIN_VALUE.
boolean negative = false;
if (isNegative(b)) {
b = BigLongLib.neg(b);
negative = !negative;
}
// If b == 2^n, bpower will be n, otherwise it will be -1
int bpower = powerOfTwo(b);
// True if the original value of a is negative
boolean aIsNegative = false;
// True if the original value of a is Long.MIN_VALUE
boolean aIsMinValue = false;
/*
* Normalize a to a positive value, keeping track of the sign change in
* 'negative' (which tracks the sign of both a and b and is used to
* determine the sign of the quotient) and 'aIsNegative' (which is used to
* determine the sign of the remainder).
*
* For all values of a except MIN_VALUE, we can just negate a and modify
* negative and aIsNegative appropriately. When a == MIN_VALUE, negation is
* not possible without overflowing 64 bits, so instead of computing
* abs(MIN_VALUE) / abs(b) we compute (abs(MIN_VALUE) - 1) / abs(b). The
* only circumstance under which these quotients differ is when b is a power
* of two, which will divide abs(MIN_VALUE) == 2^64 exactly. In this case,
* we can get the proper result by shifting MIN_VALUE in unsigned fashion.
*
* We make a single copy of a before the first operation that needs to
* modify its value.
*/
boolean aIsCopy = false;
if (isMinValue(a)) {
aIsMinValue = true;
aIsNegative = true;
// If b is not a power of two, treat -a as MAX_VALUE (instead of the
// actual value (MAX_VALUE + 1)).
if (bpower == -1) {
a = create(BigLongLib.Const.MAX_VALUE);
aIsCopy = true;
negative = !negative;
} else {
// Signed shift of MIN_VALUE produces the right answer
BigLong c = BigLongLib.shr(a, bpower);
if (negative) {
negate(c);
}
if (computeRemainder) {
remainder = create(); // zero
}
return c;
}
} else if (isNegative(a)) {
aIsNegative = true;
a = BigLongLib.neg(a);
aIsCopy = true;
negative = !negative;
}
// Now both a and b are non-negative
// If b is a power of two, just shift
if (bpower != -1) {
return divModByShift(a, bpower, negative, aIsNegative, computeRemainder);
}
// if a < b, the quotient is 0 and the remainder is a
if (BigLongLib.compare(a, b) < 0) {
if (computeRemainder) {
if (aIsNegative) {
remainder = BigLongLib.neg(a);
} else {
remainder = create(a);
}
}
return create(); // zero
}
// Generate the quotient using bit-at-a-time long division
return divModHelper(aIsCopy ? a : create(a), b, negative, aIsNegative,
aIsMinValue, computeRemainder);
}
protected static int getH(BigLong a) {
if (LongLib.RUN_IN_JVM) {
return a.h;
}
return getHNative(a);
}
protected static int getL(BigLong a) {
if (LongLib.RUN_IN_JVM) {
return a.l;
}
return getLNative(a);
}
protected static int getM(BigLong a) {
if (LongLib.RUN_IN_JVM) {
return a.m;
}
return getMNative(a);
}
protected static boolean isMinValue(BigLong a) {
return getH(a) == SIGN_BIT_VALUE && getM(a) == 0 && getL(a) == 0;
}
protected static boolean isNegative(BigLong a) {
return sign(a) != 0;
}
protected static boolean isZero(BigLong a) {
return getL(a) == 0 && getM(a) == 0 && getH(a) == 0;
}
/**
* a = -a
*/
protected static void negate(BigLong a) {
int neg0 = (~getL(a) + 1) & MASK;
int neg1 = (~getM(a) + (neg0 == 0 ? 1 : 0)) & MASK;
int neg2 = (~getH(a) + ((neg0 == 0 && neg1 == 0) ? 1 : 0)) & MASK_2;
if (LongLib.RUN_IN_JVM) {
a.l = neg0;
a.m = neg1;
a.h = neg2;
} else {
setL(a, neg0);
setM(a, neg1);
setH(a, neg2);
}
}
/**
* @return 0 if a is >= 0, 1 if a < 0.
*/
protected static int sign(BigLong a) {
return getH(a) >> (BITS2 - 1);
}
// Assumes a is non-negative
protected static double toDoubleHelper(BigLong a) {
return getL(a) + (getM(a) * TWO_PWR_22_DBL) + (getH(a) * TWO_PWR_44_DBL);
}
/**
* Return the number of leading zeros of a long value.
*/
// package-private for testing
static int numberOfLeadingZeros(BigLong a) {
int b2 = Integer.numberOfLeadingZeros(getH(a));
if (b2 == 32) {
int b1 = Integer.numberOfLeadingZeros(getM(a));
if (b1 == 32) {
return Integer.numberOfLeadingZeros(getL(a)) + 32;
} else {
return b1 + BITS2 - (32 - BITS);
}
} else {
return b2 - (32 - BITS2);
}
}
/**
* Creates a long instance equal to 0.
*/
private static BigLong create() {
if (LongLib.RUN_IN_JVM) {
return new BigLong();
}
return create0(0, 0, 0);
}
/**
* Creates a long instance equal to a given long.
*/
static BigLong create(BigLong a) {
if (LongLib.RUN_IN_JVM) {
BigLong b = new BigLong();
b.l = getL(a);
b.m = getM(a);
b.h = getH(a);
return b;
}
return create0(getL(a), getM(a), getH(a));
}
private static native BigLong create0(int l, int m, int h) /*-{
return {l:l,m:m,h:h};
}-*/;
private static BigLong divModByMinValue(BigLong a, boolean computeRemainder) {
// MIN_VALUE / MIN_VALUE == 1, remainder = 0
// (a != MIN_VALUE) / MIN_VALUE == 0, remainder == a
if (isMinValue(a)) {
if (computeRemainder) {
remainder = create(); // zero
}
return create(BigLongLib.Const.ONE);
}
if (computeRemainder) {
remainder = create(a);
}
return create(); // zero
}
private static BigLong divModByShift(BigLong a, int bpower,
boolean negative, boolean aIsNegative, boolean computeRemainder) {
BigLong c = BigLongLib.shr(a, bpower);
if (negative) {
negate(c);
}
if (computeRemainder) {
a = maskRight(a, bpower);
if (aIsNegative) {
remainder = BigLongLib.neg(a);
} else {
remainder = create(a);
}
}
return c;
}
private static BigLong divModHelper(BigLong a, BigLong b,
boolean negative, boolean aIsNegative, boolean aIsMinValue,
boolean computeRemainder) {
// Align the leading one bits of a and b by shifting b left
int shift = numberOfLeadingZeros(b) - numberOfLeadingZeros(a);
BigLong bshift = BigLongLib.shl(b, shift);
BigLong quotient = create();
while (shift >= 0) {
boolean gte = trialSubtract(a, bshift);
if (gte) {
setBit(quotient, shift);
if (isZero(a)) {
break;
}
}
toShru1(bshift);
shift--;
}
if (negative) {
negate(quotient);
}
if (computeRemainder) {
if (aIsNegative) {
remainder = BigLongLib.neg(a);
if (aIsMinValue) {
remainder = BigLongLib.sub(remainder, BigLongLib.Const.ONE);
}
} else {
remainder = create(a);
}
}
return quotient;
}
private static native int getHNative(BigLong a) /*-{
return a.h;
}-*/;
private static native int getLNative(BigLong a) /*-{
return a.l;
}-*/;
private static native int getMNative(BigLong a) /*-{
return a.m;
}-*/;
/**
* a &= ((1L << bits) - 1)
*/
private static BigLong maskRight(BigLong a, int bits) {
int b0, b1, b2;
if (bits <= BITS) {
b0 = getL(a) & ((1 << bits) - 1);
b1 = b2 = 0;
} else if (bits <= BITS01) {
b0 = getL(a);
b1 = getM(a) & ((1 << (bits - BITS)) - 1);
b2 = 0;
} else {
b0 = getL(a);
b1 = getM(a);
b2 = getH(a) & ((1 << (bits - BITS01)) - 1);
}
return create(b0, b1, b2);
}
/**
* Return the exact log base 2 of a, or -1 if a is not a power of two:
*
*